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(a) Path tracing (1spp), 4.2 ms (b) ReSTIR PT, 9.5 ms (c) Area ReSTIR (Ours), 14.0 ms (d) Ground Truth

Fig. 1. Prior ReSTIR methods [Bitterli et al. 2020] reuse paths between fixed subpixel locations. Randomizing paths’ subpixel locations avoids

aliasing, but changes their primary hits. In pixels with high-frequency content, the changing normals and occlusions often make the new primary

hits incompatible with later vertices (from reused, shifted paths), preventing effective reuse. Here the Franck model, with complex fur, is lit by the

Blue Lagoon HDR environment. (a) Path tracing has high variance at low sample rates. On smoother surfaces, (b) ReSTIR PT [Lin et al. 2022]

reuses samples for large quality improvements while shading only one path per pixel. But reusing samples in a higher-dimensional ray space,

including subpixel and lens coordinates, allows our (c) Area ReSTIR to reuse even more paths (despite bokeh and high-frequency content) also while

shading just one sample per pixel. This approaches the quality of (d) converged path tracing. Note: (a), (b), and (c) all use the same number of

independent paths each pixel.

Recent advancements in spatiotemporal reservoir resampling (ReSTIR) lever-

age sample reuse from neighbors to efficiently evaluate the path integral.

Like rasterization, ReSTIR methods implicitly assume a pinhole camera and

evaluate the light arriving at a pixel through a single predetermined subpixel

location at a time (e.g., the pixel center). This prevents efficient path reuse

in and near pixels with high-frequency details.

We introduce Area ReSTIR, extending ReSTIR reservoirs to also integrate

each pixel’s 4D ray space, including 2D areas on the film and lens. We

design novel subpixel-tracking temporal reuse and shift mappings that max-

imize resampling quality in such regions. This robustifies ReSTIR against

high-frequency content, letting us importance sample subpixel and lens

coordinates and efficiently render antialiasing and depth of field.
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tance sampling, ReSTIR, depth-of-field, antialiasing

∗
Joint first authors; equal contribution.

Authors’ addresses: Song Zhang, song.zhang@utah.edu, University of Utah, USA;

Daqi Lin, daqil@nvidia.com, NVIDIA, USA; Markus Kettunen, mkettunen@nvidia.com,

NVIDIA, Finland; Cem Yuksel, cem@cemyuksel.com, University of Utah, USA; Chris

Wyman, chris.wyman@acm.org, NVIDIA, USA.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

0730-0301/2024/7-ART98

https://doi.org/10.1145/3658210

ACM Reference Format:

Song Zhang, Daqi Lin, Markus Kettunen, Cem Yuksel, and Chris Wyman.

2024. Area ReSTIR: Resampling for Real-Time Defocus and Antialiasing.

ACM Trans. Graph. 43, 4, Article 98 (July 2024), 13 pages. https://doi.org/10.

1145/3658210

1 INTRODUCTION
Reservoir-based spatiotemporal importance resampling, or ReSTIR

[Bitterli et al. 2020], uses weighted reservoir sampling [Chao 1982]

to aggregate spatial and temporal neighbor samples in a streaming

fashion, giving effective sample counts up to 100× higher than naive

independent sampling. This has been applied to various rendering

problems: many-light sampling [Bitterli et al. 2020], diffuse global

illumination [Ouyang et al. 2021], and more general light paths [Lin

et al. 2022] including volumetric scattering [Lin et al. 2021].

But these algorithms shade only at pixel centers, essentially using

a delta function as the pixel filter; this introduces aliasing. But more

interesting pixel filters cause problems. Near subpixel detail, such

as foliage or hair, randomizing subpixel locations forcibly changes

the reused path’s primary hit, making it difficult to reuse secondary

path vertices from neighbors. Thus, high-frequency detail often

causes significant quality degradation.

We introduce Area ReSTIR,which expands ReSTIR to sample pixel

footprints. Our samples estimate radiance over the entire pixel rather

than a single point. Besides pixel areas, our method also integrates

over camera aperture, resampling primary rays in a 4D ray space.

The intuition goes: ReSTIR PT [Lin et al. 2022] already estimates
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(a) Path tracing, 4.4 ms (b) ReSTIR PT, 13.8 ms (c) Area ReSTIR, 16.0 ms (d) Ground Truth (a) (b) (c) (d)

Fig. 2. Depth of field in the Contemporary Bathroom with focal plane on the (reflected) far wall. (a) With one independent path per pixel, no

reuse occurs. (b) ReSTIR PT [Lin et al. 2022] reuses samples, but struggles to identify reusable paths in defocused areas with complex geometry,

specular effects, or edge discontinuities. (c) Our new Area ReSTIR reuses significantly more samples in these regions, as we analyze the signal in the

measurement equation’s higher-dimensional space. (d) A converged path traced reference.

high-dimensional integrals over complex domains; we should be

able to include a few more dimensions, e.g., subpixel location (𝑢, 𝑣)
and aperture (𝑠, 𝑡).

Instead of reusing samples to solve the rendering equation for one

subpixel location at a time, we reuse to solve the higher-dimensional

measurement equation, which integrates over the pixel filter and

camera parameters, enhancing analysis of overlaps among adjacent

pixel domains or reservoirs. Counterintuitively, estimating a higher-

dimensional integral increases quality at a given sampling rate. By

enabling more effective reuse, fewer pixels discard their history and

must restart aggregation; this reduces noise (e.g., see Figure 1).

We initially aimed to reduce aliasing with ReSTIR, but discovered

our method also improves reuse on areas with e.g., high-frequency

normal maps and geometry. Our Area ReSTIR also naturally ex-

tended to depth of field. This follows the general direction of extend-

ing reuse dimensions in ReSTIR literature (see Figure 2); ReSTIR was

first designed to reuse direct illumination, then extended to global

illumination, and now also to subpixel and aperture coordinates.

Our specific contributions include:

• Importance sampling pixel footprint and depth of field by

applying ReSTIR to the measurement equation,

• Subpixel-tracking temporal reuse by reprojection with non-

integer motion vectors, drawing samples from multiple over-

lapping prior reservoirs (Section 4.2),

• Robustifying temporal reuse in pixels with high-frequency

geometry or normals (Section 4.3),

• A new shift mapping and MIS weights to improve sample

reuse for depth of field (Sections 4.6 and 5.3),

• Direct support for advanced (non-box) pixel filters in ReSTIR,

which may improve temporal reuse (Section 4.4).

We show that when shading just one sample per pixel, spatiotem-

poral sample reuse allows complex primary ray effects in real-time,

including antialiasing and depth of field.

2 RELATED WORK
Renderers typically solve the intensity of a pixel by themeasurement

equation [Veach 1998], integrating radiance over all paths through a

pixel. Most algorithms do this by point sampling the rendering equa-

tion [Kajiya 1986] for one or more incident directions. Recovering

the accurate intensity from few point samples spawned entire new

research fields (e.g., postprocess antialiasing [Yang et al. 2020] and

depth of field [Demers 2004]), to perform higher-quality filtering

despite a low sampling budget.

2.1 Spatiotemporal Reservoir Resampling
We extend reservoir-based spatiotemporal importance resampling

(ReSTIR) [Bitterli et al. 2020] to solve the measurement equation

by explicitly integrating over camera and pixel footprints. Gener-

ally, ReSTIR enables complex sample reuse, even between varied

integration domains, by unbiased resampling and reweighting us-

ing reservoir sampling [Chao 1982] to efficiently leverage modern

GPUs’ stream computation model.

Bitterli et al. [2020] applied ReSTIR to direct lighting, and it

has been extended to diffuse global illumination [Jiang et al. 2023;

Ouyang et al. 2021], and more complex paths [Lin et al. 2022, 2021].

Recently, Chang et al. [2023] and Wang et al. [2023] both adapt

ReSTIR to differentiable rendering, and Sawhney et al. [2024] inte-

grates Markov Chain Monte Carlo mutations with ReSTIR to reduce

correlations. But most of these methods use reservoirs to estimate

radiance through a single point in screen space and reuse only

subpaths leaving the corresponding primary hit point.

A few techniques apply ReSTIR in other spaces. Kettunen et al.

[2023] resample in conditional probability spaces, Weinrauch et al.

[2023] use reservoirs in object space, and Boissé [2021] stores reser-

voirs in world space hash grids. Boksansky et al. [2021] use reser-

voirs in voxels, but keeping this unbiased is tricky. Pixels using

voxels with high-frequency geometry may see arbitrarily different

parts of the scene (compared to voxel centers); this is hard to track.

And as Wyman et al. [2023] emphasize, knowing and accounting

for supports is key to keeping ReSTIR unbiased.

Area ReSTIR breaks the convention of integrating at points. Our

reservoirs act as estimators over an integration domain including

pixel footprint and camera aperture. A reservoir is no longer associ-

ated with a single point, but a region. If we jitter the pixel (𝑢, 𝑣) or
aperture (𝑠, 𝑡), we can often continue reusing our temporal history.

These area sample domains overlap, so many samples can still help

estimate a future frame’s (higher-dimensional) integral.

2.2 Gradient-Domain Rendering
Researchers have explored other path reuse techniques. Bekaert et al.

[2002] reuse samples within a single integration domain and Bauszat

et al. [2017] expand to reuse between domains with appropriate
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shift mappings. Shift maps come from gradient-domain rendering

[Kettunen et al. 2015; Lehtinen et al. 2013], which computes discrete

image gradients between a pixel sample and shifted neighbor.

Many shift mappings exist (see Hua et al.’s [2019] survey), but

Lin et al. [2022] design a hybrid shift, combining random replay and

reconnection shifts, optimized for ReSTIR-based path reuse on the

GPU. In all previous shift mappings, primary hits are given as fixed,

and the shift mapping produces the rest of the path vertices.

In Area ReSTIR, we must also decide how to shift map primary

hits (i.e., subpixel locations) between only partially overlapping

pixel footprints (due to motion between frames). In this paper, we

extend existing shift mappings to this context and define a new shift

mapping to improve bokeh of directly visible emissives.

2.3 Depth of Field
Frequently, renderers approximate depth of field from a thin-lens

camera using a postprocess blur [Potmesil and Chakravarty 1982].

Distributed ray tracing [Cook et al. 1984] and accumulation buffers

[Haeberli and Akeley 1990] use Monte Carlo sampling to accurately

estimate depth of field, but both are generally infeasible in real time.

Specialized reconstruction filters improve the quality of such

Monte Carlo estimates [Bako et al. 2017; Belcour et al. 2013; Li et al.

2012], but these typically require providing relatively high sample

counts as input, limiting use in real time.

Real-time applications typically postprocess a pinhole camera

image, often split into multiple layers using depth peeling [Everitt

2001], and then processing with pyramidal processing [Kraus and

Strengert 2007], diffusion [Kass et al. 2006], or layer traversal via ray

queries [Lee et al. 2009]. Production games often use a complex mix

of multiple techniques [Abadie 2018; Jimenez 2014] to ameliorate

the artifacts inherent in postprocessing, including light leaking,

over-blurring, ghosting, and hallucination (of occluded samples).

Our work instead expands integration to include camera aperture,

letting ReSTIR integrate depth of field. Shading only a single sample

per pixel, we get an unbiased, high-quality estimate.

2.4 Antialiasing
Renderers sampling pixels at few deterministic locations (e.g., pixel

centers) leave the image aliased, and require postprocess filtering

to remove these artifacts. This has challenged real-time renderers

for decades, leading to techniques like hardware multisampling

[Akeley 1993], inferring edges from the image [Jimenez et al. 2011;

Lottes 2009; Reshetov 2009], or the recently ubiquitous temporal

antialiasing [Karis 2014; Korein and Badler 1983; Yang et al. 2020].

More recently, researchers and developers have leveraged neural

networks to antialias and upsample images (e.g., DLSS and XeSS)

[Hasselgren et al. 2020; NVIDIA 2019; Xiao et al. 2020]. After long

training over giant datasets, these networks predict high-quality

weights for nearby spatiotemporal pixels to guess an antialiased

image from aliased inputs (plus some other benefits, like denoising).

Compared to point-sampling real-time renderers, our work ex-

pands the integration domain over pixel footprints, allowing us to

deterministically apply MIS weighting [Veach and Guibas 1995] to

spatiotemporally reuse samples without any training process. This

spatiotemporal reuse gives an unbiased estimate of the perfectly

antialiased image, while only shading one sample per pixel.

3 PRELIMINARIES
Before introducing our work, we first review ReSTIR and key related

concepts. See Wyman et al. [2023] for a more in-depth review.

3.1 Resampling and ReSTIR
Resampled importance sampling (RIS) [Talbot et al. 2005] provides

an unbiased way to estimate an integral

∫
Ω 𝑓 (𝑥) d𝑥 using samples 𝑌

resampled from a set of𝑀 independent candidates 𝑋 𝑗 . By drawing

candidates with a cheap distribution 𝑝 (𝑥) and resampling with user-

selected target function 𝑝 (𝑥), 𝑌 ’s sample distribution converges to

𝑝 (𝑥) = 𝑝 (𝑥)/
∫
Ω 𝑝 (𝑥) d𝑥 as 𝑀 grows. Picking 𝑝 ≈ 𝑓 means such 𝑌

estimates the integral of 𝑓 with low variance. This has the form

⟨𝐼 ⟩RIS = 𝑓 (𝑌 )𝑊𝑌 , where𝑊𝑌 =
1

𝑝 (𝑌 )

𝑀∑︁
𝑗=1

1

𝑀

𝑝 (𝑋 𝑗 )
𝑝 (𝑋 𝑗 )

, (1)

where the sum better approximates

∫
Ω 𝑝 (𝑥) d𝑥 as𝑀 increases, i.e.,

𝑊𝑌 ≈ 1/𝑝 (𝑌 ).
Generalized RIS (GRIS) [Lin et al. 2022] formally defines an un-

biased contribution weight (UCW) 𝑊𝑋 as any weight satisfying

E[𝑊𝑋 |𝑋 ] = 1/𝑝𝑋 (𝑋 ), meaning Monte Carlo integration can use

these weights instead of a sample PDF (as in Equation 1, left).

Lin et al. [2022] show UCWs can replace not just simple PDFs;

UCWs often exist where exact PDFs are impossible to practically

evaluate, as in resampling over frames with different per-pixel in-

tegration domains. If reusing from varied domains, a per-domain

shift mapping 𝑇𝑗 maps candidates 𝑋 𝑗 into 𝑇𝑗 (𝑋 𝑗 ) in the common

target domain. In this case, a more general form of Equation 1 is

𝑊𝑌 =
1

𝑝 (𝑌 )

𝑀∑︁
𝑗=1

𝑤 𝑗 , for𝑤 𝑗 =𝑚 𝑗

(
𝑇𝑗 (𝑋 𝑗 )

)
𝑝
(
𝑇𝑗 (𝑋 𝑗 )

)
𝑊𝑋 𝑗

���� 𝜕𝑇𝑗𝜕𝑋 𝑗

���� , (2)
where𝑤 𝑗 are per-candidate resampling weights,𝑚 𝑗 are resampling

MIS weights, and 𝑌 is chosen from𝑇𝑗 (𝑋 𝑗 ) proportionally to𝑤 𝑗 . The

candidates are treated as different sampling strategies, and these

MIS weights normalize their coverage over the target domain.

Mathematically, the𝑚 𝑗 form a partition of unity over these strate-

gies, so every target domain point 𝑦 has

∑𝑀
𝑗=1

𝑚 𝑗 (𝑦)=1. If strategy

𝑗 cannot generate 𝑦 with positive PDF, then𝑚 𝑗 (𝑦)=0. Incorrect𝑚 𝑗 ,

as when assuming constant𝑚 𝑗 = 1/𝑀 during spatiotemporal reuse,

are a common cause of bias when implementing ReSTIR.

When reusing from many domains, the union of candidate sup-

ports must cover the target domain (any path with 𝑝 > 0 must be

producible by at least one strategy). To guarantee coverage, we take

at least one canonical sample (a sample from the current pixel). This

is one role played by new independent, per-pixel candidates in each

frame.

GRIS allows resampling passes to be iteratively chained without

bias. This enables the feed-forward chain of sample distributions,

improving over time, that characterizes ReSTIR [Bitterli et al. 2020].
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3.2 Efficient Streaming Sampling
Efficient feed-forward reuse relies on weighted reservoir sampling

[Chao 1982], a constant-space algorithm to randomly pick one el-

ement from a stream. It has many nice properties, including the

ability to combine choices from many streams without replaying

any of them. This allows paths to improve render quality long after

they no longer reside in memory, as only chosen paths must be

re-evaluated each frame. Other samples contribute indirectly via

the chosen sample’s weight and distribution.

Weighted reservoir sampling uses a reservoir data structure to

store its current state. Fundamentally, reservoirs only need to store

the current selected sample𝑌 and a running sum of weights (equiva-

lently, either𝑊𝑌 or

∑𝑀
𝑗=1

𝑤 𝑗 ). But ReSTIR often localizes reservoirs

to a particular sampling location, so reservoirs may also include,

e.g., a pixel ID, path or shading data, a count of seen samples, or

other implementation dependent details. After sampling a new path,

the reservoir is updated with a short, simple algorithm (see Bitterli

et al. [2020], Algorithm 2).

3.3 Issues with the Measurement Integral
Path tracing computes radiance by solving the rendering equation

[Kajiya 1986],

𝐿(x,𝝎𝑜 ) = 𝐿𝑒 (x,𝝎𝑜 )+
∫
𝑆2

𝜌 (x,𝝎𝑖 ,𝝎𝑜 )𝐿(x,𝝎𝑖 ) |𝑛(x) ·𝝎𝑖 | d𝝎𝑖 , (3)

with incident direction𝝎 integrated over the sphere 𝑆2
, and𝐿(x,𝝎𝑜 ),

the outgoing radiance in direction 𝝎𝑜 from surface point x with

normal 𝑛(x). This surface may emit light 𝐿𝑒 , or reflect other incident

light 𝐿 from directions 𝝎𝑖 ∈𝑆2
according to the surface BSDF 𝜌 .

The intensity of pixel 𝑗 is determined by the measurement equa-

tion [Veach and Guibas 1997],

𝐼 𝑗 =

∫
Ω
ℎ 𝑗 (x̄) 𝑓 (x̄) dx̄, (4)

given as an integral over 𝑥 ∈Ω, all paths connecting emitters to the

sensor, and ℎ 𝑗 is the pixel filter, 𝑓 is the measurement contribution

function. We reparametrize the primary hit x1 with image plane

position u ∈ U= [0, 𝐻 ] × [0,𝑊 ]. Separating image coordinates from

the rest of the path x̂ = x2x3 · · · ∈ Ω̂ gives:

𝐼 𝑗 =

∫
U

(∫
Ω̂
ℎ 𝑗 (u) 𝑓 (u, x̂) dx̂

)
du, (5)

where ℎ 𝑗 (u) is the pixel filter with
∫
U ℎ 𝑗 (u) du = 1.

Prior ReSTIR work estimates 𝐼 𝑗 by fixing image coordinates u𝑗 ∈
R2

inside pixel 𝑗 each frame, spatiotemporally sharing subpaths in

Ω̂ to integrate

𝐼 𝑗 (u𝑗 ) =
∫
Ω̂
ℎ 𝑗 (u𝑗 ) 𝑓 (u𝑗 , x̂) dx̂ (6)

for each pixel. Earlier work assumes a box filter, supporting other

kernels by splatting [Lin et al. 2022].

For best results, ReSTIR should choose target functions matching

the integrand, which in prior work means 𝑝 (x̂) = 𝑓 (u𝑗 , x̂), as u𝑗 is
within pixel 𝑗 . Randomizing u𝑗 mutates ReSTIR’s target distribution,

potentially invalidating temporal reuse where 𝑓 changes quickly

due to high-frequency normal maps, glinty materials, hair, or foliage.

Camera or object motion can degrade reuse quality in these regions

even if using fixed u𝑗 at pixel centers, but the issues are magnified

when rendering with camera jittering for antialiasing.

4 AREA RESTIR
Our Area ReSTIR improves robustness near high frequencies occur-

ring within pixels by targeting the full path spaceU× Ω̂ to integrate

𝐼 𝑗 instead of the varying 𝐼 𝑗 (u𝑗 ). In other words, we let ReSTIR also

importance sample subpixel locations. We store samples over pixel

footprints in area reservoirs, defined in Section 4.1. Area reservoirs

no longer always reside on a pixel grid, so we analyze how fractional

offsets affect reuse in Section 4.2.

We extend Area ReSTIR to also improve depth of field by letting

ReSTIR control the coordinates s ∈ S= [0, 1]2
that map to lens area

in a finite-aperture camera, e.g. via disk sampling. Pixel intensity is

then given by

𝐼 𝑗 =

∫
U×S×Ω̂

ℎ 𝑗 (u) 𝑓 (u, s, x̂) d(u, s, x̂) . (7)

The ideal target function
1
becomes 𝑝 (u, s, x̂) = ℎ 𝑗 (u) 𝑓 (u, s, x̂), and

Area ReSTIR spatiotemporally reuses triplets (u, s, x̂) via shift map-

pings.

Prior methods reprojected, shifted, and reused samples on a pixel

grid at integer precision. To achieve good subpixel-accurate reuse,

we must carefully design our new temporal reuse (see Section 4.3) as

multiple prior-frame reservoirs may now contain reusable samples

(see Figure 3); we discuss spatial reuse in Section 4.5.

Earlier work [Lin et al. 2022] only shifts x̂ and randomizes earlier

path vertices. As those randomized vertices are vital for good path

reuse with depth of field, we design a new shift mapping specifically

to handle defocused areas (see Section 4.6).

Sample reuse with area reservoirs, target function 𝑝 (u, s, x̂), our
temporal reuse, and enhanced shift mapping greatly improve reuse

robustness compared to prior work (see Figure 1). While we start

by assuming area integration with a box filter, our method also

supports more advanced filters ℎ 𝑗 in 𝑝 (see Section 4.4).

4.1 Area Reservoirs
As our reservoirs now span a screen-space area and the path space

behind it (supp(ℎ 𝑗 ) × Ω̂), we call these area reservoirs to distinguish
them from prior work’s point reservoirs covering path space behind

a single point (i.e., {u𝑗 } × Ω̂). Our ℎ 𝑗 may be any common filter with

finite support around pixel centers; we start by assuming a box filter

before later generalizing.

Area reservoirs store paths parametrized as x = (u, s, x̂) along
with their unbiased contribution weights𝑊x . Image-space location

u lies in ℎ 𝑗 ’s support and lens coordinate s lies in [0, 1)2
. Here, u and

s define path vertices x0 and x1, and x̂ defines subsequent vertices.

We use path contribution 𝑝 𝑗 (u, s, x̂) = ℎ 𝑗 (u) 𝑓 (u, s, x̂) as our target
function. A key takeaway: area reservoirs need not have integer u
or be fixed to pixel centers, but as in Figure 3, reservoir footprints

may be offset from the pixel grid.

To get samples, we trace candidates by generating path x. We

sample u proportionally to the pixel filter, 𝑝u = ℎ 𝑗 , and s uniformly

1

��ℎ 𝑗 (u)
��
should be used in 𝑝 if the filter (e.g. Mitchell–Netravali [1988]) has negative

values (as 𝑝 cannot be negative). We drop the absolute value for simplicity.
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Fig. 3. Our subpixel-aware shift map first backprojects the current

pixel to the previous frame by motion vector 𝛿 (left). The projected

pixel’s support overlaps 2 × 2 prior pixels, each with one reservoir

sample (red). We select one via RIS, discarding those outside the support

(gray). We then reproject the chosen sample (orange) forward to the

current frame by shifting by −𝛿 .

from [0, 1)2
. These define path vertices x0 and x1, and remaining

vertices x̂ are produced by path tracing. This gives initial path can-

didates a PDF 𝑝 (x) = 1 · 𝑝u (u)𝑝 (x̂|u, s). While we initially sample

subpixel location u proportional to the pixel filter, reuse via ReSTIR

quickly improves this subpixel distribution.

4.2 Fractional Matching in Area Reservoirs
Previous resampling methods used integer backprojection, i.e., pro-

jecting to the nearest discrete prior frame pixel. This is problematic

where small subpixel offsets drastically impact the path contribution.

Area reservoirs improve robustness due to fractional backprojection,

finding reservoirs with (partially) overlapping integration domains,

resampling with appropriate MIS weights, and allowing subpixel-

precise reuse.

Let us compare a simplified version of our subpixel-aware reuse

to the older method. Consider a static scene with moving camera.

Assume the camera moves from frame 0 to 1 such that pixel 𝑗1
exactly corresponds to off-grid pixel

2 𝑗0 = 𝑗1 + 𝛿 in the previous

frame, where 𝛿 may be fractional. Any x = (u, s, x̂) in 𝑗1 in frame

1 and (u + 𝛿, s, x̂) in 𝑗0 in frame 0 represent the same geometric

path, yielding the same path contribution in the two frames, i.e.

𝑓1 (u, s, x̂) = 𝑓0 (u + 𝛿, s, x̂).
Following Figure 3, we can define a temporal shift from frame 0

to 1, 𝑇 (u, s, x̂) = (u−𝛿, s, x̂) that translates u by the motion vector

and keeps s and x̂ the same. This yields the same geometric path.

Sample reuse quality largely depends on howwell the two frames’

target functions match, with ratios close to one lowering resampling

variance [Wyman et al. 2023]. Assuming a box filter and denoting

the target function of frame 𝑖 by 𝑝𝑖 , we get ratio

𝑝1 (𝑇 (u0, s0, x̂0))
𝑝0 (u0, s0, x̂0)

=
𝑓1 (u0−𝛿, s0, x̂0)
𝑓0 (u0, s0, x̂0)

=
𝑓0 ((u0−𝛿)+𝛿, s0, x̂0)

𝑓0 (u0, s0, x̂0)
=1. (8)

Consider the point reservoirs in the same situation. We read x̂0

from reservoir 𝑗 + round(𝛿). The target function ratio is

𝑝1 (𝑇 (x̂0))
𝑝0 (x̂0)

=
𝑝1 (x̂0)
𝑝0 (x̂0)

=
𝑓1 (u1, s1, x̂0)
𝑓0 (u0, s0, x̂0)

=
𝑓0 (u1 + 𝛿, s1, x̂0)
𝑓0 (u0, s0, x̂0)

, (9)

where u0, u1, s0 and s1 are random, and u1+𝛿 and u0 may be different.

If 𝑓0 varies fast as other parameters change, the ratiomay varywildly.

But if 𝑓0 is insensitive to other parameters, reuse may be efficient.

2
We explain how to populate this off-grid pixel with reusable samples in Section 4.3.

Fig. 4. Our advanced shift reduces variance by always giving RIS

the same number of candidates (right). Prior frame samples outside

the pixel support (gray) are shifted to the target pixel but retain their

subpixel coordinates (middle). We select one by RIS (orange) and repro-

ject it to the current frame by a shift of −𝛿 . Conceptually, we shift all
prior frame samples to their 2 × 2 neighbors, but these virtual samples

(white) are only needed for MIS weights and proving correctness.

This also explains why prior ReSTIRs are sensitive to visual

frequencies, even without jittering or depth of field. Denote 𝑑 =

round(𝛿) and assume shading at pixel centers. Then,

𝑝1 (𝑇 (x̂0))
𝑝0 (x̂0)

=
𝑝1 (x̂0)
𝑝0 (x̂0)

=
𝑓0 ( 𝑗1 + 𝛿 + 0.5, x̂0)
𝑓0 ( 𝑗1 + 𝑑 + 0.5, x̂0)

, (10)

i.e., subpixel detail may degrade reuse for any non-integer motion.

4.3 Temporal Reuse
Area ReSTIR reduces this frequency sensitivity by carefully match-

ing paths at subpixel precision for temporal reuse. To temporally

reuse area reservoirs, we backproject current filter ℎ 𝑗1 ’s footprint

into the previous frame. See Figure 3, which depicts a box filter;

Section 4.4 generalizes to finite support filters. Backprojection can

map to an arbitrary pixel-sized area. We use a real-time convention,

approximating motion with a translation along a motion vector 𝛿 ,

leaving more general projections as future work. We then select

an overlapping sample from the prior frame by RIS, and finish by

shifting the selection back −𝛿 to the current frame.

We outline two options for identifying previous frame samples: a

fast option that picks from samples overlapping the backprojected

pixel (Figure 3), and a more expensive and robust option that ensures

all nearby samples can contribute, by shifting them onto the pixel’s

support (Figure 4). We start with the fast option, which is simpler

to implement and provides a constructive step towards realizing

the robust version. Additionally, it allows trading some quality to

achieve closer to baseline performance.

4.3.1 Option (Fast): Using samples as-is. Consider resampling path

x from four inputs x𝑘 = (u𝑘 , x̂𝑘 ) from area reser-

voirs overlapping the backprojected pixel’s foot-

print ℎ 𝑗1+𝛿 in the prior frame. If pixel coordi-

nate u𝑘 lies in kernel ℎ 𝑗1+𝛿 , sample x𝑘 gets a

positive resampling weight with 𝑝 𝑗1+𝛿 (x𝑘 ) =

ℎ 𝑗1+𝛿 (u𝑘 ) 𝑓 (u𝑘 , x̂𝑘 ); we reuse with the identity

shift. Otherwise we consider x𝑘 invalid, with no contribution. This

gives MIS weights

𝑚𝑘 (𝑦) = 1supp x𝑘 (𝑦) =
{

1 𝑦 ∈ supp x𝑘
0 otherwise

. (11)

ACM Trans. Graph., Vol. 43, No. 4, Article 98. Publication date: July 2024.



98:6 • Song Zhang, Daqi Lin, Markus Kettunen, Cem Yuksel, Chris Wyman

This trivially satisfies

∑
4

𝑘=1
𝑚𝑘 (𝑦) = 1, guaranteeing unbiased inte-

gration (over suppℎ 𝑗1+𝛿 ) using GRIS (see Section 2.1).

While the fast option is unbiased and reduces variance from high

frequency content, it is imperfect: prior frame samples can only be

reused if they lie in backprojected filter ℎ 𝑗1+𝛿 . Such samples may not

exist; x𝑘 may all lie outside of the reprojected pixel’s area (ℎ 𝑗1+𝛿 ),
in which case temporal reuse returns a null sample. This randomly

resets temporal history in motion, and is thus not an ideal reuse

solution in all cases. We still report results with this fast option due

to its good performance, but we default to use the following, more

robust option.

4.3.2 Option (Robust): Guaranteeing coverage. To address this prob-
lem, we propose adjusting the positions of samples x𝑘 located out-

side of the filter ℎ 𝑗1+𝛿 by one-pixel shifts. This brings outside sam-

ples back to the filter range (see Figure 4).

For 2 × 2 prior frame reservoirs, imagine mapping each sample

x𝑘 to all neighbors via one-pixel shifts vertically, horizontally and

diagonally (Figure 4, center). Exactly one (potentially shifted) copy

of each will lie in backprojected pixel ℎ 𝑗1+𝛿 ; the other shifts need
not be executed (Figure 4, white circles). This allows reusing all four

neighbor samples, ideally as-is, but shifting into ℎ 𝑗1+𝛿 as a backup.

For MIS weights to combine these four candi-

dates, we use the generalized balance heuristic

[Lin et al. 2022]. This requires knowing all neigh-

bors’ probability densities of generating the se-

lected sample x= (u, x̂), with u in ℎ 𝑗1+𝛿 . We shift

x to all four pixels and evaluate the pixels’ target

functions as proxies for the unknown PDFs in the balance heuristic.

One of the shifts is identity and returns x.
Considering quality, this method improves on the option in Sec-

tion 4.3.1. When backprojected filter ℎ 𝑗1+𝛿 overlaps prior samples,

they provide good low-variance reuse. The balance heuristic bounds

variance degradation [Veach 1998] from the worst neighbors. When

all samples are outside ℎ 𝑗1+𝛿 ’s support, the fast option produces a

null sample. The robust option can avoid resetting temporal his-

tory by borrowing neighbor samples; if just one shift succeeds, our

current-frame pixel inherits that pixel’s history.

4.3.3 Mapping Back to the Current Frame. After choosing a prior
frame sample to reuse (from ℎ 𝑗1+𝛿 ), we shift this sample back to

the current frame by subtracting the motion vector 𝛿 from its u
coordinate, and apply GRIS to combine with the canonical sam-

ple from current frame’s pixel. (This canonical sample is the new

independent path shot each frame in every pixel.)

Variance depends mainly on how well area reservoirs overlap

between frames, errors due to approximating backprojection via

translation, and how well the used shift mapping adapts to temporal

changes to the scene.

4.4 Extension to General Pixel Filters
For general pixel filters, we assume each filter ℎ 𝑗 ’s support is a

rectangle containing pixel 𝑗 [Pharr et al. 2016]. The analysis in

Sections 4.2 and 4.3 largely still applies; we still backproject filter

ℎ 𝑗 to the prior frame as ℎ 𝑗+𝛿 , overlapping prior area reservoirs. But

prior reservoir contributions are no longer disjoint, which requires

reworking the MIS weights in Equation 11 to account for overlaps:

𝑚𝑘 (𝑦) =
𝛽𝑘ℎ𝑘 (𝑦)∑

4

𝑘 ′=1
𝛽𝑘 ′ℎ𝑘 ′ (𝑦)

, (12)

where 𝛽𝑘 are bilinear interpolation weights for the backprojected

filter relative to the four overlapping reservoirs.

This accounts for filter importance and increases the weight of

better-matching areas: if the backprojected filter exactly aligns with

a single temporal reservoir, that will be the only reservoir used. Box

filters (Equation 11) are a special case of Equation 12.

Theoretically, with larger pixel filter footprints, samples could be

borrowed from a larger number of pixels, but this is not required

for unbiased results. We leave optimizing this for future work.

4.5 Spatial Reuse
Fractional motion vectors help our temporal sample reuse. But we

do not use fractional motion vectors for spatial reuse: that requires

first finding subpixel correspondences between nearby pixels.

Instead, like prior work [Bitterli et al. 2020; Lin et al. 2022, 2021],

we sample random neighbors from a screen-space neighborhood at

integer distances (essentially, integer 𝛿) and rely on shift mappings

between their domains and careful MIS weighting for spatial reuse.

Moving to offline rendering, where larger pixel filters may be

desirable, the integration domains of very nearby spatial neigh-

bors may once again overlap, making the shift in Section 4.3.1 also

interesting for spatial reuse.

However, unlike prior work, our spatial shift maps can also map

lens coordinates (as described in Section 4.6). This improves spatial

reuse in the presence of depth of field.

4.6 Depth of Field
When reusing sample x = (u, x̂) in Section 4.3, we left the shift

map unspecified, e.g., x̂ could be shifted by vertex copy (𝑇 (x̂) = x̂)
[Lehtinen et al. 2013] (e.g. when building Area ReSTIR on ReSTIR

DI) or by Lin et al.’s [2022] hybrid shift (when building on ReSTIR

PT).

For non-pinhole cameras, we must also shift lens position s or,
equivalently, path vertex x0. Generalizing, our lens vertex copy reuses

lens coordinate s, extending how prior methods reuse pinhole cam-

era paths (where x0 must remain fixed). This shift should work for

small apertures and has a Jacobian of 1.

But large apertures can have big circles of confusion. This spreads

bright lights (or reflections) at primary hitpoints x1 into large, glow-

ing bokehs with shape dependent on camera aperture. Since x0 and

x1 together define the pixel, a shift mapping that reuses the camera

vertex x0 necessarilymust have different primary hit x1 for neighbor

pixels. Thus, prior shifts fail to significantly reduce variance inside

bokehs, as x1 is not reused.

We introduce a new shift mapping that reuses vertex x1. Instead,

we produce the shifted camera position x′
0
by projecting x1 through

the focal plane at sample u′ onto the lens and compute s′ correspond-
ing to x′

0
(see Figure 5). We call this the primary hit reconnection

shift and derive its Jacobian in Appendix A.

As with any shift map, this is not universally applicable. Repro-

jecting x1 onto the lens may hit a point x′
0
outside the aperture. The
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Fig. 5. Computing new lens position x′
0
using the primary hit re-

connection shift. Project the input path’s primary hit x1 back to the

camera through the shifted path’s position u′ on the focal plane and

compute s′ corresponding to x′
0
. The shift fails if x′

0
is outside the lens

or the ray x1→x′
0
is occluded.

Fig. 6. Key differences between prior ReSTIR reservoirs (e.g., Bitterli

et al. [2020]) and our area reservoirs. Previously, subpixel sample

and camera locations were fixed per frame, allowing reservoirs to

implicitly reference them. Area reservoirs must store a lens sample and

the fractional subpixel location, relative to the reservoir boundary.

primary ray between x1 and reprojected x′
0
could also be occluded.

In either case, the shift becomes invalid.

For small apertures and vertices x1 near the focal plane, primary

hit reconnections are unlikely to succeed. Using MIS between our

two shifts thus often produces a valid sample. Generalized RIS [Lin

et al. 2022] can handle this MIS by duplicating a reservoir and

assigning different shifts to each. Alternatively, half of our randomly

selected spatial neighbors can be assigned each shift; this typically

improves performance significantly.

5 IMPLEMENTATION DETAILS
Area ReSTIR can augment any screen-space ReSTIR algorithm. We

built upon Bitterli et al.’s [2020] direct illumination algorithm for

simplicity, while also adapting ReSTIR PT [Lin et al. 2022] to verify

the generalizability of our approach. Area ReSTIR affects just lens

and primary hit points, so this was straightforward.

5.1 Reservoirs, Reuse, and G-Buffers
Extending to area reservoirs is fairly simple, as shown in Figure 6.

Previously implicit data like lens sample s and fractional subpixel

positions u must be stored. Storing these values in the range [0, 1)
promotes numerical robustness.

Due to independent lens and subpixel samples, Area ReSTIR

cannot rely on rasterized G-buffers. As ReSTIR defers shading until

after spatiotemporal reuse, to avoid retracing we still store primary

hits in a buffer. We also store motion vectors for temporal reuse (in

Section 4.3) and depth (for MIS scaling in Section 5.3).

We no longer use Bitterli et al.’s [2020] depth and normal based

neighbor rejection heuristic in our Area ReSTIR’s spatial reuse im-

plementation, as we found its effect imperceptible when using Lin

et al.’s [2022] pairwiseMIS. These depth and normal based heuristics

are also incompatible with depth of field rendering.

5.2 Ray Tracing Optimization
In ReSTIR, shifting samples always requires more visibility tests

for correct MIS weights (and thus avoid bias). Area ReSTIR must

test visibility 𝑉 (x0 →x1) in every pixel we shift into or any pixel

that may have generated a selected sample. As pixels have varying

lens and subpixel positions, this needs more visibility tests than

prior work. As an example, our fast temporal reuse (Section 4.3.1)

requires tracing two primary rays per pixel besides the two shadow

rays traced in the original ReSTIR. We need to trace new primary

hits, while the original ReSTIR reads them from the G-Buffer.

Our robust temporal reuse shifts four paths to the target pixel

(Figure 4, right). For each, three more target function evaluations

are needed for MIS weights to account for potential sources. A

naive unbiased implementation of our robust temporal reuse (Sec-

tion 4.3.2), thus requires 12 additional primary rays for each pixel

(and 12 shadow rays for direct light).

But pixels only have 8 neighbors. Using a scatter approach, we

can exhaustively compute visibility to neighbors’ reservoir samples.

This requires only 8 primary (and shadow) rays per pixel, rather

than gathering visibility for all 16 samples. The eight neighbor rays

are also highly coherent; we coalesce tracing to maximize coherent

memory accesses during traversal. Compared to a naive approach,

this runs 40-60% faster on scenes in our test suite.

5.3 Shift Mappings
Earlier ReSTIR work reuses paths by shift mapping x0x1x2 · · · into
x′

0
x′

1
x′

2
· · · with vertices x0 and x1 fixed or randomized as needed

by the implementation. In Area ReSTIR, it is necessary to explicitly

shift map these first two vertices.

In Section 4.6 we described two possible ways, the lens vertex

copy and primary hit reconnection shifts.

Neither is always better, so we opt to perform both and combine

them via MIS weights. We also weight these strategies via a heuristic

modelling their expected quality. This is important, as MIS increases

variance when combining a known-good and a bad estimator. We

know primary hit reconnections fail for pinhole cameras (or on the

focal plane) and the lens copy is less valuable with large circles of

confusion. Our heuristic accounts for this domain knowledge.

This heuristic defines a scaling factor 𝛾 multiplied in as a confi-

dence weight [Wyman et al. 2023] when computing these shift’s

MIS weights. 𝛾 =1 forces selection of the lens vertex copy, and 𝛾 =0

selects the primary hit reconnection.

We leave theoretical derivation of the scaling factor for future

work, and instead derived one empirically. We found image quality

somewhat insensitive to the exact values of 𝛾 , and we use

𝛾 (𝑟 ) = min

(
1.0, 0.2 + 6.2

𝑟 − 5.6

)
, (13)

where 𝑟 is the circle of confusion diameter in pixels.While resolution-

dependent, we tested it works well over varying resolutions (from
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Emerald Sqare (Ours) ReSTIR Ours Reference
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Fig. 7. Our path reuse works well with various lens apertures, ranging from small to large. We show two very different sized lenses here in Emerald

Square, but Area ReSTIR outperforms baseline reuse in both cases. These results were captured without camera motion.

Ours ReSTIR (0.5, 0.5) ReSTIR (Jitter) Ours Reference
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Fig. 8. When shading pixel centers, ReSTIR gives aliasing. If converged, jittering removes aliasing but does not help quality at 1 spp. Our Area

ReSTIR improves temporal reuse, giving higher-quality antialiasing. Note that, based on our MIS scaling function in Section 5.3 (i.e. 𝛾 = 1 for

pinhole camera), only lens vertex copy shift is applied here. Images captured with a static pinhole camera. Franck uses global illumination and

ReSTIR PT baseline [Lin et al. 2022]. Sheep Sweater only uses direct lighting and compares to Bitterli et al. [2020].

720p to 2160p) and generally found this heuristic handled all scenes

well, regardless of aperture size.

When temporally reusing a sample selected from the prior frame,

we apply both mappings when shifting back to the current frame

(Section 4.3.3), using scaling factor 𝛾 as part of our MIS weights. For

spatial reuse, we split neighbors into two groups (in a 𝛾 : 1−𝛾 ratio)

and each group uses just one type of shift map. We use four spatial

neighbors and always assign at least one to use a lens vertex copy.

6 RESULTS
Our prototype builds on the Falcor framework [Kallweit et al. 2022].

Comparisons use the same geometry, lighting, and code framework.

We measured performance on an NVIDIA RTX 4090 with an AMD

Ryzen 9 7950X and 64GB RAM in resolution 1920 × 1080. Error

values are reported using mean absolute percentage error
3
(MAPE).

Note that our prototype has no assumptions stipulating any part of

the scene is static (e.g., no precomputations on load).

3
We use MAPE(𝐼 , 𝐼gt ) = mean

( ���𝐼−𝐼gt

���
0.01·mean

(
𝐼gt

)
+𝐼gt

)
, for 𝐼gt a grayscale ground-truth.
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Carousel (Ours)
Lens Vertex

Copy

Primary Hit

Reconnection MIS Reference

Time: 47.8 ms 42.6 ms 46.7 ms

Fig. 9. The lens vertex copy and primary hit reconnection shifts (Section 4.6) work better in different situations. The vertex copy works best for

regions in focus, while the hit reconnection works better in bokeh and out of focus regions. We MIS between these shift maps (Section 5.3) to achieve

good quality everywhere. These Carousel results were captured with camera motion, using our robust temporal reuse (Section 4.3.2) and the same

shift map (either lens vertex copy or primary hit reconnection) for both spatial and temporal reuse.

(a) Integer motion

Time: 23 ms

(b) Fast reuse

Time: 24 ms

(c) Robust reuse

Time: 32 ms

(d) Reference

-

Fig. 10. Fractional motion vectors enable better reuse across our scenes.

Here we compare our method (a) using integer motion vectors to (c)

fractional motion vectors with our robust reuse. With fractional motion,

our fast reuse (b) also improves quality, but may not find suitable

candidates for all pixels. Images captured with camera motion in

Bistro.

Temporal Spatial Spatiotemporal

Fig. 11. Combined spatiotemporal reuse is much more powerful than

spatial or temporal reuse alone with Area ReSTIR, especially in areas

with strong depth of field. Picture with camera motion in Zero Day.

All ReSTIR variants shown shade just one path per pixel, though

many samples contribute via its unbiased contribution weight. We

use identical ReSTIR settings between Area ReSTIR and our baseline.

For direct lighting, we use 32 light and 1 BSDF candidate samples per

pixel [Bitterli et al. 2020]. For path tracing, we use 1 candidate path

tree per pixel [Lin et al. 2022]. For temporal reuse, we set history

length to 20 (Wyman et al. [2023], Chapter 4.4). For spatial reuse,

we reuse 4 neighbors randomly selected in a 30 pixel radius.

Result images were captured either during motion or with a static

camera, as listed. Please see our supplementary video for more

evaluation under motion.

Improved sample reuse in bokeh. Our new primary hit reconnec-

tion shift (Section 4.6) drastically improves sampling of bokeh com-

pared to baseline ReSTIR. Our approach enables hierarchical reuse

of bokeh samples, maintaining a well importance sampled set of

samples between frames. In Figure 7 we study this benefit for both

small and large lens apertures.

Area ReSTIR improves antialiasing and robustness. Prior resam-

pling methods suffer near high subpixel frequencies (see Section 4.2).

Figure 8 evaluates our improvements on Franck the sheep with

mesh geometries, and Sheep Sweaterwith actual curve geometries.

Both rendered with a still camera and no depth of field. Shading only

pixel centers causes visible aliasing. Jittering removes the aliasing

(at high sample counts) but fails to improve quality with just one

sample per pixel. Area ReSTIR improves antialiasing and is more

robust on those high-frequency fur or fabric.

Robustness with MIS between shift mappings. Since our new pri-

mary hit reconnection shift works best for defocused pixels, and the

lens vertex copy shift works best for in-focus pixels, we combine the

two with MIS (see Section 5.3). We explore the benefits in Figure 9,

showing our MIS scaling heuristic works well across pixels with

varying levels of focus.

Fractional motion vectors improve robustness. To show the impor-

tance of fractional motion, Figure 10 combines different pieces of

our work. With area reservoirs and new shift maps, but only integer

motion vectors we still have significant noise near edges. Using

fractional motion with our fast reuse (Section 4.3.1) improves re-

sults but not consistently, as it still resets temporal history when
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Ours (Robust) ReSTIR PT Ours (Fast) Ours (Robust) Reference
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Fig. 12. Compared to Lin et al.’s [2022] ReSTIR PT, our Area ReSTIR improves path reuse for complex paths like L(S)DSE paths on the cookie

jar (top inset) and the L(D)S+E paths for the glasses (bottom) due to more stable temporal reuse and invalidating fewer accumulated sample

distributions. While our fast version has higher MAPE than baseline ReSTIR PT, the more difficult, hard-to-denoise paths are sampled significantly

better. This scene captured with camera motion.

Ours, Box

1 × 1 px

Ours, Gaussian

𝜎 = 0.7 px

Reference

Box

Reference

Gaussian

12.0 ms 12.1 ms - -

Fig. 13. Area ReSTIR with our fast reuse benefits from larger pixel

filters. Here we compare the 1×1 box filter against a truncated Gaussian

with a two-pixel radius and find improvement in reuse quality. Picture

with camera motion in Zero Day.

the reuse fails. Our robust reuse (Section 4.3.2) improves quality

further, though at a performance cost.

Spatial and temporal reuse are both important. Prior work found

temporal samples contribute most improvement in ReSTIR [Wyman

and Panteleev 2021]. While still true, Figure 11 shows combining

spatiotemporal samples remains valuable. Spatial reuse helps break

up correlations that accumulate during complex nonlinear motion.

This is especially true with strong depth of field.

Area ReSTIR improves glossy reflections. Specular paths are highly

direction-dependent, which makes reuse tricky, especially under

motion. Figure 12 shows our higher dimensional space improves

reuse of these tricky paths. This results from our smaller sensitivity

to pixel-level details (Section 4.2) and our potential to better reuse

nearby paths’ primary hit points.

Better reuse with advanced pixel filters. While most of our results

use a 1×1 box filter, Section 4.4 extends our work to other pixel

filters without using kernel splatting. Larger filter supports can

improve our temporal reuse, perhaps making such filters attractive

for real-time use. We show an example with our fast temporal reuse

(Section 4.3.1) in Figure 13.

General performance and quality evaluation. In Figure 15, we eval-

uate our quality by comparing to prior ReSTIR algorithms [Bitterli

et al. 2020; Lin et al. 2022] as a baseline. Our comparisons cover

various geometric and lighting scenarios: direct lighting v.s. global

illumination; emissive geometry v.s. environment map lighting; dif-

fuse v.s. specular or glossy materals; varying aperture sizes; and

high-frequency foliage and normals maps.

Area ReSTIR and baseline ReSTIR use identical independent sam-

ple counts and the same number of spatial neighbors, but our area

reservoirs allow much better temporal reuse. This gives consistent

quality improvement in Figure 15. Our robust temporal reuse (Sec-

tion 4.3.2) gives better quality than the fast reuse (Section 4.3.1),

albeit at higher cost due to more visibility rays for MIS weights.

Additionally, running multiple instances of the baseline ReSTIR

and averging their results provides very limited improvement in

challenging regions, still falling short of the quality achieved by our

method at equal time.

Performance overheads grow in scenes with costly ray tracing,

e.g., more triangles, complex BVHs, large bokeh with incoherent

primary rays, or lots of alpha testing
4
. This overhead comes from

tracing rays to compute unbiased MIS weights.

To quantify this ray overhead, we measured our optimized visibil-

ity passes (Section 5.2), which coalesce the extra visibility rays into

separate ray wavefronts. For the scenes in Figure 15, this overhead

was 4.9 ms for Bistro, 4.2 ms for Zero Day, 11.1 ms for Emerald

Sqare, 4.1 ms for Sidewalk, and 4.7 ms for Bistro Interior. This

accounts for most overheadmoving from our fast to our robust reuse.

As correct MIS weights ensure unbiasedness, cheaper alternatives

may exist for renderers willing to accept some bias.

Figure 15 includes the Crown scene, using a pinhole camera and

thus only antialiasing. Zoom in on the insets to see our antialiasing

quality (particularly the robust reuse). In this scene, our fast reuse

produces higher total error than the baseline due to failures to find

prior-frame samples inside the backprojected filter. This reduces

quality in the large in-focus, easy-to-sample areas, but the fewer

high-frequency areas are sampled better.

4
We do not yet use opacity micromaps to improve alpha testing performance.
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7 LIMITATIONS AND FUTURE WORK
Overall, using area reservoirs and integrating over additional lens

and subpixel dimensions greatly improves quality, both in static

images and under motion. However, there are limitations and inter-

esting future directions.

We expect area reservoirs can be extended one more dimension

to handle motion blur. But motion blur interacts with the ray ac-

celeration structure in complex ways, especially when aiming to

reuse temporal samples. We aimed to solve the challenges of area

reservoirs in a simpler domain before adding complex engineering

challenges.

As most prior work, we resample a scalar target function. This

means we do not importance sample variations between RGB chan-

nels; this causes color noise, especially in scenes with many multi-

color lights (e.g., the Bistro).

Our assumption that pixels simplistically translate between frames

limits reuse quality when zooming or in scenes with more complex

motion. Clearly, we miss some relevant samples in integration do-

mains of interest. But it is unclear if the cost of more complex

projections and querying arbitrary footprints leads to sufficient

reuse benefits. This is worth exploring.

We apply area sampling only during temporal reuse, as spatial

neighbors’ 1 × 1 box filters do not have overlapping domains. But

for pixel filters with larger domains (e.g., Mitchell-Netravali or Sinc),

spatial neighbors may have overlapping footprints. While such

filters are typically too costly for real time, future work might find

these costs can overlap with better sample reuse.

8 CONCLUSION
We introduced Area ReSTIR, a real-time algorithm extending spatio-

temporal path reuse to importance sample pixel and aperture foot-

prints. Prior work reuses discretely sampled paths from an image;

this misses reusable neighbor paths near high frequencies. By ex-

plicitly integrating over image-space, our work finds better reuse

candidates. This allows building real-time path tracers that handle

bokeh, foliage, hair, and detailed normal maps all with only one

shaded sample per pixel (per frame).

While the curse of dimensionality is real, our work shows inte-

grating in higher-dimensional domains gives benefits if it permits

more effective reuse than lower dimensions. If ReSTIR better reuses

samples, it greatly improves quality.
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A JACOBIAN OF PRIMARY HIT RECONNECTION
Consider shifting path sample (u, s, x̂) to (u′, s′, x̂′) with our pri-

mary hit reconnection, copying x′
1
= x1 . We first acquire u′ as a

translation by the locally constant motion vector, so the Jacobian of

that part is 1. Next, we want to shift s to s′, producing some Jaco-

bian |𝜕s′/𝜕s|, given u′. Camera vertex x0 comes from s by a uniform

𝐱𝐱𝐱0
𝐱𝐱1𝐮𝐮𝐱

𝐮𝐮

Lens Focal plane

Δ𝐱𝐱𝟏𝟏

𝐱𝐱0

Δ𝜔𝜔
Δ𝜔𝜔

Δ𝐱𝐱𝟎𝟎

𝑛𝑛(𝐱𝐱1)

Fig. 14. Important parameters for deriving the primary hit recon-

nection shift’s Jacobian in Appendix A.

lens sampler, so we have |𝜕x0/𝜕s| = (
��𝜕s′/𝜕x′

0

��)−1 = lens area. As a

result, |𝜕s′/𝜕s| =
��𝜕x′

0
/𝜕x0

��
. Thus, we must just find

��𝜕x′
0
/𝜕x0

��
.

With u′ acquired, reusing x1 gives a new x′
0
≠ x0 (Figure 14), and���� 𝜕x′0𝜕x0

���� = ���� 𝜕x′0𝜕x1

���� ���� 𝜕x1

𝜕x0

���� . (14)

We must figure how x0 and x′
0
change with x1, given fixed u and

u′. Figure 14 shows a solid angle change Δ𝝎 at the focal plane

(corresponding to u) changes Δx0 and Δx1 differently. We can apply

the solid-angle to area measure Jacobian to get���� 𝜕x1

𝜕x0

���� = 𝑑2

1

|𝝎 · 𝑛(x1) |
|𝝎 · 𝑛(x0) |

𝑑2

0

, (15)

given the direction 𝝎 along x0x1, lens and surface normals 𝑛, and

distances 𝑑0 and 𝑑1 between the focal plane and x0, x1. Similarly,���� 𝜕x′0𝜕x1

���� = ���� 𝜕x′0𝜕𝝎′

���� ���� 𝜕𝝎′

𝜕x1

���� = 𝑑′2
0��𝝎′ · 𝑛(x′

0
)
�� |𝝎′ · 𝑛(x1) |

𝑑′2
1

, (16)

where 𝝎′
, 𝑑′

0
, 𝑑′

1
are similarly defined with x1, x′

0
, and u′. Note that

𝑛(x′
0
) can vary from 𝑛(x0) if the lens moves.

Given u′ and s′, we can now finish the full shift by acquiring

x̂′ from x̂ by any existing path shift, such as Lin et al.’s [2022]

hybrid shift. The full (u, s, x̂) is shifted by concatenating the three

partial shifts, and hence the full Jacobian is the product of the three

Jacobians.
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Fig. 15. Comparing our Area ReSTIR with prior ReSTIR baselines. Starred (★) scenes use global illumination and a ReSTIR PT baseline [Lin et al.

2022], other scenes use only direct lighting and compare to Bitterli et al. [2020]. Except the second column, we use the same number of independent

samples within each comparison. In the second column, we try to match baseline ReSTIR’s rendering time to our robust version by running multiple

independent copies of ReSTIR and averaging their results. All scenes were captured under camera motion. Performance numbers are averaged over

a 10 second animation.
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