DESIGNCON[®] 2015

HIGH-SPEEDLOW-POWER ON-CHIP GLOBAL SIGNALING DESIGN OVERVIEW

Xi Chen, John Wilson, John Poulton, Rizwan Bashirullah, Tom Gray

Agenda

- Problems of On-chip Global Signaling
- Channel Design Considerations
- Multi-hop Serial-links: Repeater and Clocking
- Power Supply Noise Impact
- Circuit Design Considerations
- Conclusion

Problems of Process Shrinking

- When transistors shrink, so do the routing wires...
 - Wire resistance increases exponentially over every process node.
 - Surface scattering & grain boundary scattering are causing wire resistance to increase further for wires < 100nm thick.
- However, communication distances continue to increase...
 - Chip size is staying about constant, but it is more units of 'lambda'.

Impact on Global Signaling

- Consequences to global signaling:
 - Need larger metal area for the same bandwidth, counteracting the benefit we got from process shrinking...usually solved by adding more routing layers.
 - Energy wise, communication is already more expensive than computation;
 - Latency in global signaling increases dramatically, even with more repeaters.

On-chip Data Link Techniques

- Bundled-data wiring channels (Fabrics)
 - ~1-2X system clock, Custom designed repeater/re-timer placement, Fully reserved channels for routing, Push the performance of CMOS signaling to its limit.
 - Cannot stop the trend of increasing area & latency, consumes too much resources.
- High-speed Serial-link
 - 8-10X system clock, Low-swing signaling with equalization, Custom designed highspeed channel based on "thick metal".
 - Unlike off-chip data link, on-chip high-speed serial-link has to work within a digital environment...

Challenges of On-chip Serial-link

- Channel
 - On-chip metal has much higher resistance compared to package/PCB.
- Power Supply
 - When only logic VDD is available: very limited voltage headroom, large variation.
- Circuit
 - Power efficiency: need about 10s of fJ/bit/mm...for everything
 - Robustness: process variation is significant, and calibration could be expensive.

On-chip Channels: Metallization

- Building channels on thick metal layers
 - Thicker metal of the upper layers enables longer distances between repeaters.
 - Routing within the framework of existing power delivery network, which can be used as return-paths and cross-talk shields.

Channel Design Considerations

- Performance of different metal layer options:
 - Bandwidth of RC-dominated channel decreases quadratically with channel length.
 - Thicker metal layer provides longer distance-per-hop @ certain bandwidth, and lower energy & delay per-mm.
 - Therefore, thicker is usually better if available...until Cross-talk hurts.

Metal Layer Options	Thickness (normalized)	Signal Width/Space	P/G Shield Width	Signal Pitch	Max Length @ 16Gbps
Ма	1x	0.5µm	3.0µm	4.5µm	2mm
Mb	1.7x	0.8µm	3.6µm	6.0µm	5mm
Мс	2.5x	1.2µm	3.6µm	7.2µm	6.5mm

(100mV signal swing, 0.9V power supply)

Channel Design Considerations (cont.)

- Experimental results:
 - Longer channel needs more energy for equalization, but the total efficiency increases because the circuit energy is averaged out.
 - Circuit energy overhead can be reduced by shifting to smaller node (ex. 16nm)

(16 data lanes + 2 clock lanes, 7 hops, 28nm technology, 16Gbps, 900mV supply)

Multi-hop Serial-link Structure

- Serial-link with repeaters
 - Re-driving: Edge-Rate and Signal-Swing attenuate rapidly on high-resistivity wire, needs re-driving every several mms.
 - Re-timing: Align to reference clock periodically to reduce jitter accumulation.
- Source-synchronous clocking
 - Uses intrinsic delay matching between clock and data lanes;
 - Provides much higher data rates compared to fully synchronous clocking.

Repeater Structure

- Amplifier
 - Linear amplifier is preferred for best delay matching between data and clock lanes
- Sampler
 - Two latch chains with DDR clocks
- Driver
 - Pre-emphasis driver + DC driver
 - Simplest way to equalize the channel

Quadrature Clocking

- Alternating I/Q clocks
 - Sampling clocks in all repeaters come from the same clock source at the transmitter (TX).
 - Alternate I clock and Q clock in each repeater.
 - Timing margin is guaranteed for all repeaters, as long as the quadrature clocking quality is still reliable.

Cross-talk Accumulation in Clocks

- Clock distribution is the key factor
 - Variations in clock signals will accumulate through the link.
 - Data lanes Cross-talk is the source of major interference to clocks.
 - There's a limit to the maximum distribution distance (i.e. channel length & number of repeaters) when Iand Q-clocks are not re-synthesized after the TX.

Eye diagrams of data and clock inputs at different repeater stages

Other Clocking Methods

- I-clock only structure
 - Generate the ~0.5UI sampling margin locally, suffer local variations but will not accumulate, higher risk over process corners
- Pseudo-differential clocking

Power Supply Noise Impacts

- Noise locality
 - For single-ended signaling, different voltage variations at neighboring repeaters may cause common-mode mismatch and increase jitter.
- Noise amplitude
 - Supply noise with large amplitude will cause offset accumulation, especially in clocks.
 Higher noise amplitude reduces the distance the global signaling can reach.
- Noise frequency
 - Normally, the frequency of noise caused by logic circuits is obviously slower than data rate in high-speed serial-link. If it's not the case, we will start to lose the delay matching capability of source-synchronous clocking, and get higher BER.

Power Supply Noise Impacts (cont.)

- Experimental results
 - Example: 510MHz sinusoidal supply noise
 - Higher noise amplitude causes the data link to fail earlier
 - More noise patterns are explored in real applications

Vnpp/Rate	13Gb/s	14Gb/s	15Gb/s	16Gb/s	17Gb/s	18Gb/s	19Gb/s	20Gb/s
150mV	Pass							
200mV	Pass	Pass	Pass	Pass	Pass	Pass	6	4
250mV	Pass	Pass	Pass	Pass	Pass	6	3	3
300mV	Pass	Pass	Pass	Pass	4	3	1	1
350mV	Pass	6	3	3	3	1	1	1
400mV	6	3	3	1	1	0	0	0

On-chip data link performance at various data rates and VDD noise amplitudes (Totally 7 hops, 28nm technology, 900mV supply)

Circuit Design Considerations

- Requirements: simple and reliable!
 - The tight power budget demands the simplest circuit solutions. But the circuit still needs to survive all process-voltage-temperature (PVT) variations.
- Some challenges and recent solutions:
 - Low swing signal generation and DC de-coupling: Charge-pump style driver [J.Poulton, ISSCC & JSSC 2013]
 - PVT variations: Amplifier with offset tuning (i.e. voltage mismatch compensation)
 - Design delay-matched clock & data paths at Tx & Rx ... include delay-trim for each data lane to align them with clocks (i.e. timing mismatch compensation).

Circuit Design Considerations (cont.)

- Another method: Pulse-mode signaling
 - AC drivers only, return to common-mode voltage after the 1st transition bit.
 - Pros: Intrinsically DC de-coupled, Saves overhead of DC driver, No offset calibration needed, and VDD adaptive common-mode
 - Cons: risk of error propagation... better for "busy" data

Other Possibilities

- Current mode signaling
 - The given examples in this talk are all based on voltage mode (because it's simple).
 But some studies for current mode have also been done.
 - Current mode signaling tends to have lower cross-talk at about same driving capability, however, it requires higher voltage headroom for current source.
- Differential signaling
 - When space margin among power grid is larger, differential signaling could be a better choice, because the cross-talk is much lower with twisted diff-channels.
 - Concerns: power and offset tuning

Conclusion

- High-speed low-power serial-link can be a good solution for on-chip global signaling in future SoC products.
- Techniques for multi-hop serial-link, source-synchronous clocking, high-level thick metal channels and low-energy equalization show promising potential.

