
Chris Wyman, Rama Hoetzlein, Aaron Lefohn

2015 Symposium on Interactive 3D Graphics & Games

FRUSTUM-TRACED RASTER SHADOWS:

REVISITING IRREGULAR Z-BUFFERS

2

CONTRIBUTIONS

Full scene, fully dynamic alias-free hard shadows

Show 32 spp shadows are under 2x cost of 1 spp shadows

Evolution of irregular z-buffering

For modern game-quality and CAD-quality assets

Builds on existing graphics hardware & pipeline

Demonstrate efficient frustum intersection for 32 spp

frustum-triangle tests competitive with ray tracer

We build our data structure in ~2 ms per frame

3

Frustum-traced shadows

8k filtered shadow map

WHY?

610k polys
8.9 ms @ 1080p

Still don’t have robust, high quality
interactive hard shadow algorithm

4

WHY?
Filtering may be a harder problem than
correctly sampling shadow

610k polys
8.9 ms @ 1080p

5

WHAT’S WRONG WITH EXISTING SHADOWS?

Consider a very simple scene w/ 3x3 image

6

WHAT’S WRONG WITH EXISTING SHADOWS?

Consider a very simple scene w/ 3x3 image

Samples in shadow map do not match 1:1

Requires filter to reconstruct shadow signal

May be from different surfaces

Can miss geometry entirely

7

PRIOR WORK ON SHADOW MAPS

Does one of two things:

Filter better (e.g., [Peters15], [Donnelly06], [Fernando05])

Filtering is very hard; we still have problem antialiasing other signals

Better match eye & light-space samples (e.g., [Fernando01], [Stamminger02], [Lloyd08])

Perfect match impossible if requiring regular sampling in both eye & light space

8

OUR GOAL: ALIAS-FREE SHADOWS

Want to light only at eye-space samples!

Will be irregular in light-space

Ideally with sub-pixel accuracy!

9

HOW TO DO THIS?

Test triangle occlusion at these irregular sample points

Ray trace (e.g., [Whitted80], [Parker10], [Mittring14])

Query visibility at each ray, march through acceleration structure

Shadow volumes (e.g., [Crow77], [Sintorn14], [Gerhards15])

Test shadow quads to query if samples are in shadow

Irregular z-buffer (e.g., [Johnson05], [Sintorn08], [Pan09])

Rasterize over irregular sample points

We converged on irregular z-buffering

Why? Allows us to leverage aspects of graphics pipe (e.g., culling)

10

WHAT IS AN IRREGULAR Z-BUFFER?

Insert pixel samples (white dots) into
light space grid at yellow samples

A standard shadow
map projection

matrix

11

WHAT IS AN IRREGULAR Z-BUFFER?

Insert pixel samples (white dots) into
light space grid at yellow samples

Creates grid-of-lists data structure

12

HOW DO YOU USE AN IZB?

Rasterize from light view

For each texel (partially) covered

Walk through list of eye-space pixels Pi

Test ray from Pi to the light

Update visibility at Pi

We use eye-space buffer to store
visibility for all pixels Pi

13

HOW DO YOU USE AN IZB?

In my simple example

When rendering top of box to light space

Partially covers texel containing a sample

Analytically test visibility for list of samples

Our sample ends up unshadowed

14

ADDING MULTIPLE SAMPLES PER PIXEL

Each sample represents a pixel

Pixel projects to some footprint on geometry

When testing visibility

Create frusta from light to pixel footprint

Test if rasterized geometry intersects frusta

I call pixel projection onto geometry
a “micro-quad” aka μQuad

15

ADDING MULTIPLE SAMPLES PER PIXEL

Each sample represents a pixel

Pixel projects to some footprint on geometry

When testing visibility

Create frusta from light to pixel footprint

Test if rasterized geometry intersects frusta

Discretize visibility sampling on μQuad

We use pattern with 32 samples

Can be developer specified (currently a lookup table)

Each sample stores binary visibility

Partially occludes
footprint, giving

¾ lit

16

Problem with Irregular Z-Buffering

17

IRREGULARITY: BAD FOR GPU UTILIZATION

By construction:

Introduce irregular workloads

As variable-length light-space lists

When rasterizing in light space

Some frags test visibility of no pixels

Some frags test at 1000’s of pixels

Naïve implementation

Leads to 100:1 variation in frame time

Light-space visualization

Intensity represents number
of list elements per light
space texel

18

IZB Complexity Considerations

19

WHAT WORK ARE WE DOING?

Complexity is simple: O(N)

N = # of frusta-triangle visibility tests

More usefully, complexity is: O(fls* Lavg)

fls = # of light-space fragments from rasterizer

Lavg = average list length (i.e., # of pixels tested)

For poorly utilized GPU, complexity is roughly: O(fls* Lmax)

Lmax = # of pixels tested by slowest thread

20

HOW DO WE REDUCE COST?

Either:

Reduce the number of fragments, fls.

Reduce the list length, Lavg.

Reduce the variance, to reduce gap between Lmax and Lavg.

21

REDUCING WORK

How to reduce # fragments fls?

Reduce number of occluder triangles

Front/back face culling (we do this)

Z-culling (we do this, partially)

Frustum culling (we do not do this)

Artistic direction (we do not do this)

22

REDUCING WORK

How to reduce # fragments fls?

Reduce number of occluder triangles

Front/back face culling (we do this)

Z-culling (we do this, partially)

Frustum culling (we do not do this)

Artistic direction (we do not do this)

Reduce rasterized size of occluder triangles (i.e., change grid size)

But this increases Lavg, Lmax, and other overheads

A broad resolution “sweet spot” per scene for optimal performance

23

REDUCING WORK

How to reduce Lavg and Lmax?

Reduce # of pixels inserted into IZB

Use z-prepass to insert only visible pixels (we do this)

Skip known shadowed pixels (N•L < 0) (we do this)

Skip known lit pixels (e.g., artistic direction) (we do not do this)

Avoid duplicates nodes (e.g., when using 32spp) (we do this)

For 32spp, use approximate insertion (we do this; see paper)

24

REDUCING WORK

How to reduce Lavg and Lmax?

Reduce # of pixels inserted into IZB

Use z-prepass to insert only visible pixels (we do this)

Skip known shadowed pixels (N•L < 0) (we do this)

Skip known lit pixels (e.g., artistic direction) (we do not do this)

Avoid duplicates nodes (e.g., when using 32spp) (we do this)

For 32spp, use approximate insertion (we do this; see paper)

Remove fully shadowed pixels from IZB

Gradually reduces Lavg and Lmax over the frame (we do this)

25

REDUCING WORK

Reducing variance in L? (i.e., cause Lmax → Lavg)

Match sampling rate between eye- & light-space (ideally 1:1)

Same goal as perspective, logarithm, adaptive, and cascaded shadow maps

The key goal for fast GPU implementation

26

REDUCING WORK

Reducing variance in L? (i.e., cause Lmax → Lavg)

Match sampling rate between eye- & light-space (ideally 1:1)

Same goal as perspective, logarithm, adaptive, and cascaded shadow maps

The key goal for fast GPU implementation

Use these shadow map techniques (we use cascades)

Tightly bound light frustum to visible scene (we do this)

27

Miscellaneous
Optimizations

28

GENERAL GPU OPTIMIZATIONS

IZBs require conservative rasterization

Hardware conservative raster: up to 3x faster

Samples may be anywhere
in texel; triangles covering

any part of texel may shadow

29

GENERAL GPU OPTIMIZATIONS

IZBs require conservative rasterization

Hardware conservative raster: up to 3x faster

Memory contention / atomics are slower

Only update visibility mask if change occurs

Use implicit indices; skip global memory pools

Structure traversal to avoid atomics

30

GENERAL GPU OPTIMIZATIONS

List traversal induces long dependency chains

Hide latency via software pipelining

Avoid long latency operations (e.g., int divide, modulo)

31

GENERAL GPU OPTIMIZATIONS

List traversal induces long dependency chains

Hide latency via software pipelining

Avoid long latency operations (e.g., int divide, modulo)

Reduce SIMD divergence

Flatten control flow as much as possible

32

Results
(All numbers at 1080p on a GeForce GTX 980)

33

Chalmers Villa
89k polys

HW Raster SW Raster

32 spp 4.5 ms 5.7 ms

1 spp 2.5 ms 3.2 ms

1 sample per pixel

32 samples per pixel

34

Epic Citadel
374k polys

HW Raster SW Raster

32 spp 6.8 ms 9.6 ms

1 spp 4.0 ms 6.4 ms

35

Bungie Terrain
1.5M polys

HW Raster SW Raster

32 spp 13.3 ms 21.6 ms

1 spp 8.4 ms 15.5 ms

36

UNC Powerplant
12M polys

HW Raster SW Raster

32 spp 38.2 ms 129 ms

1 spp 24.3 ms 85.5 ms

37

UNC Powerplant
12M polys

HW Raster SW Raster

32 spp 38.2 ms 129 ms

1 spp 24.3 ms 85.5 ms

38

LIMITATIONS

Requires an epsilon

In world space, to avoid self shadows; roughly same as ray tracing

Performance still variable (around 2x)

We’re still working on this

Approximate 32 spp IZB insertion can break

Causes slight light leaking, esp. for finely tessellated models in distance

Some sub-pixel robustness tricks needed for 32 spp

To avoid shadow leaks at interpenetrating triangle boundaries

39

QUESTIONS?
cwyman@nvidia.com http://chriswyman.org @_cwyman_

Demo? Find me during poster / demo session!

49.3 ms
11.7M tris

34.9 ms
5.2M tris

mailto:cwyman@nvidia.com
http://chriswyman.org/

