EXPLORING ANC
CONTINUUA

Chris Wyman

une 20, 2016; Dublin, Ireland

O\
WHAT’S THIS PAPER S ABOUT?

O\
WHAT’S THIS PAPER S ABOUT?

> Not a “survey paper,” at least in the traditional sense

> You will not identify “the right” OIT algorithm for you

SANVIDIA.

O\
WHAT’S THIS PAPER S ABOUT?

> Not a “survey paper,” at least in the traditional sense

> You will not identify “the right” OIT algorithm for you

> Not an “algorithms paper,” at least in the traditional sense
> Do present two new algorithms

> Do not intend to claim these algorithms are right for you

SANVIDIA.

WHAT’S THIS PAPER ABOUT?

WHAT’S THIS PAPER ABOUT?

> Story following my thoughts on order-independent transparency

R [y e
J | AN

> Spurred by discussions w/developers e

> E.g., Johan Andersson’s SIGGRAPH 2015 talk

WHAT’S THIS PAPER ABOUT?

> Story following my thoughts on order-independent transparency
> Spurred by discussions w/developers
» Started with re-exploration of space

> Placed on multi-dimensional continuum

SANVIDIA.

WHAT’S THIS PAPER ABOUT?

» Story following my thoughts on order-independent transparency
> Spurred by discussions w/developers
> Started with re-exploration of space
> Placed on multi-dimensional continuum
> Develop algorithms exploring new spaces
> Will talk about one today: Stochastic Layered Alpha Blending

> Provides continuous transition between stochastic transparency & k-buffering

Why is OIT hard?

WHY BOTHER AT ALL?

> [Porter and Duff 84] outlined numerous common compositing operations

> The “over” operator, using multiplicative blending, describes most real interactions:

Cresult = QpCo + (1 — OCO)OCICI

> For streaming compute, you need to sort geometry or keep all a; and ¢, around

Merge two fragments then later try to insert one in between?

WHY BOTHER AT ALL?

» Sorting geometry in advance can fail

> May be no “correct” order for triangles \

> Keep a list of fragments per pixel (i.e., A-Buffers [Carpenter 84])
> Virtually unbounded** GPU memory

» Still need to sort fragments to apply over operator in correctly

> Not just a raster problem; affects ray tracing, too

> Unless it guarantees ray hits returned perfectly ordered

** You can define a very conservative upper bound, but it’s quite unhelpful. <NVIDIA.

Building an OIT continuum

HOW DO OIT ALGORITHMS WORK?

o

HOW DO OIT ALGORITHMS WORK?

@& —D

> Different answers, including:
> Only if closest fragment [Depth peeling]
> Closest & passes a-threshold [Alpha testing]
> Randomly decide [Stochastic transparency]

> Always use new fragments [Most algorithms]

SANVIDIA.

HOW DO OIT ALGORITHMS WORK?

yes
> . ¢
lno

HOW DO OIT ALGORITHMS WORK?

> Different answers, including:

» Store 1 layer per pass [Depth peeling]

» Store k layers [K-buffer, alpha blending (k=1), many other algorithms]
» Store k samples [Stochastic transparency]

> Store k nodes [Deep shadow maps]

» Store k coefficients [Fourier opacity maps]

SANVIDIA.

HOW DO OIT ALGORITHMS WORK?

-5

HOW DO OIT ALGORITHMS WORK?

-5

» Different answers, including:
> Discard furthest [Depth peeling, hybrid transparency]
» Merge frags w / closest depth [Z3]
> Merge 2 most distant frags [Multi-layer alpha blend]
> Merge 2 most near frags [Original k-buffer]

> Sum coefs in Fourier space [Fourier opacity maps]

SANVIDIA.

HOW DO OIT ALGORITHMS WORK?

yes merged
> _— > _— > —_—>
no ldiscarded
> ‘

» Discarding introduces bias or noise

HOW DO OIT ALGORITHMS WORK?

merged
—) _— >

dlscarded

> Discarding introduces bias or noise
» That’s OK; discard [Depth peeling, screen-door transparency]

> Sum a-weighted contribs of discarded frags
[Stochastic transparency, hybrid transparency, phenomenological models]

SANVIDIA.

CONTINUUM SUMMARY

Memory Insertion Use Alpha

Algorithm Limit Heuristic Merge Heuristic Normalize? or Coverage?
A-buffer [Car84] none always no merging no either!
Alpha Testing 1 layer if o0 > thresh discard furthest no alpha
Alpha Compositing [PD84] 1 layer always over operator no alpha
Screen-Door Transparency [FGH™ 85] k z-samples always z-test, discard occluded no coverage
73 [1C99] k layers always merge w/closest depths no alpha
Deep Shadow Maps [LLV0O] k line segments always merge w/smallest error no alpha
Depth Peeling [EveOl] 1 layer if closest discard furthest no either’
Opacity Shadow Maps [KNO1] k bins always o-weighted sum no alpha
Density Clustering [MKBVRO04] k bins always k-means clustering no alpha
k-Buffers [BCL*07] k layers always merge closest to camera no alpha
Sort-Independent Alpha Blending [Mes07] 1 layer always weighted sum no alpha
Deep Opacity Maps [YKOS] k bins always a-weighted sum no alpha
Multi-Layer Depth Peeling [LHLWO09] k layers if in k closest discard furthest no either’
Occupancy Maps [SA09] k bins always discard if bin occupied renormalize alpha alpha
Stochastic Transparency [ESSL10] k samples stochastic z-test, discard occluded | o-weighted average coverage
Fourier Opacity Maps [JB10] k Fourier coefs always sum in Fourier domain no alpha
Adaptive Volumetric Shadow Maps [SVLL10] k layers always merge w/smallest error no alpha
Transmittance Function Maps [DGMF11] k DCT coefs always sum in DCT basis no alpha
Adaptive Transparency [SMLI11] k layers always merge w/smallest error no alpha
Hybrid Transparency [MCTB13] k layers always discard furthest o-weighted average alpha
Weighted Blended OIT [MB13] empirical func never discard all a-weighted average alpha
Multi-Layer Alpha Blending [SV 14] k layers always merge furthest no alpha
Phenomenological OIT [MM16] empirical func never discard all a-weighted average alpha

CONTINUUM SUMMARY

Memory Insertion Use Alpha

Algorithm Limit Heuristic Merge Heuristic Normalize? or Coverage?
ﬁibﬁff?rf [Eafg‘” e Notice: Normalization only occurs eiih‘;”

pha 1estng ayer : [P ” alpna
Alpha Compositing [PD84] layer whep algorithms ldlscard fragments alpha
Screen-Door Transparency [FGH™ 85] k z-samples always z-test, discard occluded no coverage
73 [1C99] k layers always merge w/closest depths no alpha
Deep Shadow Maps [LLV0O] k line segments always merge w/smallest error no alpha
Depth Peeling [EveOl] 1 layer if closest discard furthest no either’
Opacity Shadow Maps [KNO1] k bins always o-weighted sum no alpha
Density Clustering [MKBVRO04] k bins always k-means clustering no alpha
k-Buffers [BCL*07] k layers always merge closest to camera no alpha
Sort-Independent Alpha Blending [Mes07] 1 layer always weighted sum no alpha
Deep Opacity Maps [YKOS] k bins always a-weighted sum no alpha
Multi-Layer Depth Peeling [LHLWO09] k layers if in k closest discard furthest no either’
Occupancy Maps [SA09] k bins always discard if bin occupied renormalize alpha alpha
Stochastic Transparency [ESSL10] k samples stochastic z-test, discard occluded || o--weighted averagg coverage
Fourier Opacity Maps [JB10] k Fourier coefs always sum in Fourier domain no alpha
Adaptive Volumetric Shadow Maps [SVLL10] k layers always merge w/smallest error no alpha
Transmittance Function Maps [DGMF11] k DCT coefs always sum in DCT basis alpha
Adaptive Transparency [SMLI11] k layers always merge w/smallest error alpha
Hybrid Transparency [MCTB13] k layers always discard furthest alpha
Weighted Blended OIT [MB13] empirical func never discard all alpha
Multi-Layer Alpha Blending [SV 14] k layers always merge furthest alpha
Phenomenological OIT [MM16] empirical func never discard all verage alpha

CONTINUUM SUMMARY

Memory Insertion Use Alpha

Algorithm Limit Heuristic Merge Heuristic Normalize? or Coverage?
ﬁibﬁff?rf [Eafg‘” e Notice: Normalization only occurs eiih‘;”

pha 1estng ayer : [P ” alpna
Alpha Compositing [PD84] layer whep algorithms ldlscard fragments alpha
Screen-Door Transparency [FGH™ 85] k z-samples always z-test, discard occluded no coverage
73 [1C99] k layers always merge w/closest depths no alpha
Deep Shadow Maps [LLV0O] k line segments always merge w/smallest error no alpha
Depth Peeling [EveOl] 1 layer if close 1]) either’
Opacity Shadow Maps [KNO1] k bins alway Normalization can be viewed as alpha
Density Clustering [MKBVR04] k bins alway| “storing k+1 layers,” using a-weighted alpha
k-Buffers [BCL*07] k layers alway merge on the furthest layer alpha
Sort-Independent Alpha Blending [Mes07] 1 layer always WelIgned sum o alpha
Deep Opacity Maps [YKOS] k bins always a-weighted sum no alpha
Multi-Layer Depth Peeling [LHLWO09] k layers if in k closest discard furthest no either’
Occupancy Maps [SA09] k bins always discard if bin occupied renormalize alpha alpha
Stochastic Transparency [ESSL10] k samples stochastic z-test, discard occluded || o--weighted averagg coverage
Fourier Opacity Maps [JB10] k Fourier coefs always sum in Fourier domain no alpha
Adaptive Volumetric Shadow Maps [SVLL10] k layers always merge w/smallest error no alpha
Transmittance Function Maps [DGMF11] k DCT coefs always sum in DCT basis alpha
Adaptive Transparency [SMLI11] | QEVE always merge w/smallest error alpha
Hybrid Transparency [MCTB13] k layers always discard furthest alpha
Weighted Blended OIT [MB13] empirical func never discard all alpha
Multi-Layer Alpha Blending [SV 14] k layers always merge furthest alpha
Phenomenological OIT [MM16] empirical func never discard all verage alpha

So what?

(Or: Let’s look at an example of how this is useful)

CONTINUUM SUMMARY

Interesting note

Memory Insertion Use Alpha

Algorithm \ Limit Heuristic Merge Heuristic Normalize? or Coverage?
A-buffer [Car84] none always no merging no either!
Alpha Testing 1 layer if o0 > thresh discard furthest no alpha
Alpha Compositing [PD84] 1 layer always over operator no alpha
Screen-Door Transparency [FGH™ 85] k z-samples always z-test, discard occluded no coverage
73 [1C99] k layers always merge w/closest depths no alpha
Deep Shadow Maps [LLV0O] k line segments always merge w/smallest error no alpha
Depth Peeling [EveOl] 1 layer if closest discard furthest no either’
Opacity Shadow Maps [KNO1] always o-weighted sum no alpha
Density Clustering [MKBVRO04] always k-means clustering no alpha
k-Buffers [BCL*07] always merge closest to camera no alpha
Sort-Independent Alpha Blending [Mes07] always weighted sum no alpha
Deep Opacity Maps [YKOS] always a-weighted sum no alpha
Multi-Layer Depth Peeling [LHLWO09] k layers if in k closest discard furthest no either’
Occupancy Maps [SA09] k bins \ always discard if bin occupied renormalize alpha alpha
Stochastic Transparency [ESSL10] k samples z-test, discard occluded | o-weighted average coverage
Fourier Opacity Maps [JB10] k Fourier coefs always sum in Fourier domain no alpha
Adaptive Volumetric Shadow Maps [SVLL10] k layers always merge w/smallest error no alpha
Transmittance Function Maps [DGMF11] k DCT coefs always sum in DCT basis no alpha
Adaptive Transparency [SMLI11] k layers always merge w/smallest error no alpha
Hybrid Transparency [MCTB13] k layers always discard furthest o-weighted average alpha
Weighted Blended OIT [MB13] empirical func never discard all a-weighted average alpha
Multi-Layer Alpha Blending [SV 14] k layers always merge furthest no alpha
Phenomenological OIT [MM16] empirical func never discard all a-weighted average alpha

WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

» Stochastically cover a « k samples

WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample
» Stochastically cover a « k samples

> Let’s look at an example pixel with 16x MSAA

SANVIDIA.

WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample
> Stochastically cover a « k samples
1.0 | 1.0
> Let’s look at an example pixel with 16x MSAA

> First: draw red fragment, z = 0.5, a = 0.5

Set 8 samples to red; depth test each

SANVIDIA.

WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample
> Stochastically cover a « k samples
1.0 PN
> Let’s look at an example pixel with 16x MSAA

0.7 0.7

0.7

> First: draw red fragment, z = 0.5, a = 0.5
0.7
> Second: draw blue fragment, z=0.7,a = 0.5

Set 8 samples to blue; depth test each

SANVIDIA.

WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:
Values represent current depth sample
» Stochastically cover a « k samples
> Let’s look at an example pixel with 16x MSAA
» (MSAA pattern simplified for display)
> First: draw red fragment, z = 0.5, a = 0.5
» Second: draw blue fragment, z=0.7,a=0.5

> Third: draw green fragment, z = 0.3, a = 0.5

Set 8 samples to green; depth test each

30 <ANVIDIA.

WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample

» Stochastically cover a « k samples

> Let’s look at an example pixel with 16x MSAA
» (MSAA pattern simplified for display)

> First: draw red fragment, z = 0.5, a = 0.5

» Second: draw blue fragment, z=0.7,a=0.5

> Third: draw green fragment, = 0.3, a = 0.5

> Fourth: draw yellow fragment, z=0.9, a = 1.0 Set 16 samples to yellow; depth test each

31 <ANVIDIA.

WHAT IS STOCHASTIC TRANSPARENCY?

> When rasterizing frag into k-sample buffer:

Values represent current depth sample

» Stochastically cover a « k samples

> Let’s look at an example pixel with 16x MSAA
» (MSAA pattern simplified for display)

> First: draw red fragment, z = 0.5, a = 0.5

» Second: draw blue fragment, z=0.7,a=0.5

> Third: draw green fragment, = 0.3, a = 0.5

> Fourth: draw yellow fragment, z=0.9, a = 1.0

» 2"d pass accum. color using this as depth oracle

32 <ANVIDIA.

OBSERVATIONS

» Can lose surfaces (like yellow one)

> But it still converges; surface loss is stochastic

33 <ANVIDIA.

OBSERVATIONS

» Can lose surfaces (like yellow one)

> But it still converges; surface loss is stochastic

» Loss worse if nearby surfaces almost opaque

> Could easily lose blue surface

34 <INVIDIA.

OBSERVATION

> Can lose surfaces (like yellow one)

But it still converges; surface loss is stochastic

Loss worse if nearby surfaces almost opaque
Could easily lose blue surface

Also noticed in my experiments

» Dashboard and seat noisier with high alpha than low!

7

Note: Even uses stratified sampling! m

OBSERVATIONS

> Can lose surfaces (like yellow one)

> But it still converges; surface loss is stochastic

» Loss worse if nearby surfaces almost opaque
> Could easily lose blue surface
> Also noticed in my experiments

» Dashboard and seat noisier with high alpha than low!
> Seems wasteful to store 8 copies of z = 0.3 **

> Why not store one copy of z = 0.3 and a coverage mask?

** Glossing over some details here; feel free to ask later. *° SAVOLE

OBSERVATIONS

> Can lose surfaces (like yellow one)

> But it still converges; surface loss is stochastic

» Loss worse if nearby surfaces almost opaque
> Could easily lose blue surface

> Also noticed in my experiments

» Dashboard and seat noisier with high alpha than low!

» Seems wasteful to store 8 copies of z = 0.3 **

> Why not store one copy of z = 0.3 and a coverage mask?

> Implicitly layered — stores (up to) 16 surfaces per pixel (for 16x MSAA)

> Also wasteful to store just 3 layers in a structure that can hold 16

37 <ANVIDIA.

Stochastic Layered Alpha Blending (SLAB)

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

> An explicit k-layered algorithm with stoc. transparency’s characteristics

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

> An explicit k-layered algorithm with stoc. transparency’s characteristics

> Memory: store k layers, each with depth and b-bit coverage mask
> Insertion: probabilistically insert fragments into per-pixel lists

> Merging: if >k layers, simply discard the furthest

SANVIDIA.

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

> An explicit k-layered algorithm with stoc. transparency’s characteristics

> Memory: store k layers, each with depth and b-bit coverage mask
> Insertion: probabilistically insert fragments into per-pixel lists

> Merging: if > k layers, simply discard the furthest

> |dentical results to k spp stoc. transparency, ifk =2 b

> But can independently change values of k and b

SANVIDIA.

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

> An explicit k-layered algorithm with stoc. transparency’s characteristics

> Memory: store k layers, each with depth and b-bit coverage mask
> Insertion: probabilistically insert fragments into per-pixel lists

> Merging: if > k layers, simply discard the furthest

> |dentical results to k spp stoc. transparency, ifk =2 b

» But can independently change values of k and b
> Useful since stoc. transp. rarely stores k surfaces in a k-sample buffer

> Also can explicitly increase b much further — reduce noise on existing layers

SANVIDIA.

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Coverage Mask Depth
> Our same example from before:

> First: draw red fragment, z = 0.5, a=0.5 - -
-- Ay
A

0.5

slakeT

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Depth

Coverage Mask

> Our same example from before:
> First: draw red fragment, z = 0.5, a = 0.5

» Second: draw blue fragment, z = 0.7, a=0.5

slakeT

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Depth

Coverage Mask

> Our same example from before:
> First: draw red fragment, z = 0.5, a = 0.5

» Second: draw blue fragment, z = 0.7, a=0.5

slakeT

> Third: draw green fragment, z=0.3,a = 0.5

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Coverage Mask Depth
> Our same example from before:
> First: draw red fragment, z = 0.5, a = 0.5 0.3
» Second: draw blue fragment, z = 0.7, a=0.5
> Third: draw green fragment, z = 0.3, a = 0.5 L _
> Fourth: draw yellow fragment, z = 0.9, a = 1.0. %
0.7
0.9
v

SANVIDIA.

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Coverage Mask

> Our same example from before:

> First: draw red fragment, z = 0.5, a = 0.5

» Second: draw blue fragment, z = 0.7, a=0.5
> Third: draw green fragment, z=0.3,a = 0.5
> Fourth: draw yellow fragment, z = 0.9, a = 1.0
» Layers get inserted only if not occluded

> Adds stochasm, if masks randomly chosen

Depth

0.3
0.5

8

®
0.7 |~
0.9

v

SANVIDIA.

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Coverage Mask Depth

> Our same example from before:

> First: draw red fragment, z = 0.5, a = 0.5 0.3

» Second: draw blue fragment, z = 0.7, a=0.5

0.5

slakeT

» Third: draw green fragment, z=0.3, a = 0.5 I -
> Fourth: draw yellow fragment, z=0.9, a = 1.0 7 T
> Layers get inserted only if not occluded ‘Y 4 >
> Adds stochasm, if masks randomly chosen
> Different random masks might keep this layer &
v

~ If k = 2, layers beyond 2" get discarded

SANVIDIA.

ADJUSTING PARAMETERS

_ _ Coverage Mask Depth
> Aim to reduce noise
One way: avoid discarding layers that impact color 0.3
0.5
-
%
@
wn
0.7
0.9
v

ADJUSTING PARAMETERS

| | Coverage Mask Depth
> Aim to reduce noise
> One way: avoid discarding layers that impact color 0.3
> How to increase chance to store yellow frag?
0.5
_
£
@
wn
0.7
0.9
A\ 4

SANVIDIA.

ADJUSTING PARAMETERS

Coverage Mask

> Aim to reduce noise
> One way: avoid discarding layers that impact color
» How to increase chance to store yellow frag?™

> Increase number of bits in coverage mask

slakeT

SANVIDIA.

ADJUSTING PARAMETERS

Coverage Mask Depth
> Aim to reduce noise
> One way: avoid discarding layers that impact color - 0.3
> How to increase chance to store yellow frag?
> Increase number of bits in coverage mask 0.5
» Larger coverage masks — lower noise %
%
> What happens as # coverage bits increases? £or
ey 0.9

SANVIDIA.

ADJUSTING PARAMETERS

Coverage Mask

> Aim to reduce noise
> One way: avoid discarding layers that impact color
> How to increase chance to store yellow frag?™

> Increase number of bits in coverage mask

» Larger coverage masks — lower noise
= >
= <

N A
> What happens as # coverage bits mcreases?/,
-.
» Starts to behave as alpha

> Interesting to ask:
Can we stochastically insert fragments using alpha?

slakeT

SANVIDIA.

SLAB USING IMPLICIT COVERAGE

» Let's compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B, Bitmask B,

SANVIDIA.

SLAB USING IMPLICIT COVERAGE

» Let's compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B,

Hidden if none of these get
covered by bits in bitmask B

SANVIDIA.

SLAB USING IMPLICIT COVERAGE

» Let's compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B,

.. L Naive random sampling:
. . Covered with probability ag
. . . Uncovered with prob (1 - a)

SANVIDIA.

SLAB USING IMPLICIT COVERAGE

» Let's compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B,

Naive random sampling:

Covered with probability ag
Uncovered with prob (1 - ag)

All uncovered with prob: (1-ag)°

Bitmask B visible with prob: 1-(1-ag)?

SANVIDIA.

SLAB USING IMPLICIT COVERAGE

» Let's compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

ﬁ (b—ﬁA) Bitmask A
Py (BarBe) = 1 - (1 : f) .ll
Or .

Py(Ba,ag) =1 — (1 — ap)b=Fa)

A = # bits covered

A= la,b] or [a,b]
for b bits in bitmask

SANVIDIA.

SLAB USING IMPLICIT COVERAGE

» Let's compute an insertion probability

> Q: What's the chance random bitmask B is visible behind random bitmask A?

IB (b—La) Bitmask A
Py (BarBe) = 1 - (1 : f) .ll
Or _

Py(Ba,ag) =1 — (1 — ap)P~Fa) . .
b (Baap C B')‘) A = # bits covered

prob of leaving number of bits that ﬁA = lCZAbJ or [C(Ab]
1 bit uncovered must be uncovered . .)
for b bits in bitmask

SANVIDIA.

SLAB U

SING IMPLICIT COVERAGE

> Let's compute an insertion probability

> Q: How about for random masks using stratified samples?

Pb(IBA' :BB) = 9

(Bitmask A
Ba!(b—BB)! :
. <
L @agey M FPs=Fa .--
1 if Bp > Pa B

[= # bits covered

» Based on combinatorics

» Choosing dependent probabilities so all mask bits in B are covered by A

SANVIDIA.

WAIT! NOT USING INFINITE # BITS?

> Both equations require a number of bits b in the coverage mask

Py (B4, Bg) = b'(Ba—BB)! using stratified random samples
1 if Bg > B4

)(b—ﬂA)

Py(Ba,Bg) =1— (1 — %B using naive random samples

SANVIDIA.

WAIT! NOT USING INFINITE # BITS?

» Both equations require a number of bits b in the coverage mask
» Can ask what happens to P, as b — o
> Turnsoutas b — oo, P, — 1

> Instead of stochastic insertion of fragments, they’re always inserted

Py (B4, Bg) = b'(Ba—BB)! using stratified random samples
1 if Bg > B4

)(b—ﬂA)

Py(Ba,Bg) =1— (1 — %B using naive random samples

SANVIDIA.

WAIT! NOT USING INFINITE # BITS?

» Both equations require a number of bits b in the coverage mask
» Can ask what happens to P, as b — o
> Turnsoutas b — oo, P, — 1

> Instead of stochastic insertion of fragments, they’re always inserted

» Going back to our continuum
> When b = k, SLAB is equivalent to stochastic transparency

> When b — oo, SLAB is equivalent to hybrid transparency (a variant of k-buffer)

Stochastic Transparency [ESSL10] k samples stochastic z-test, discard occluded | o-weighted average coverage
Hybrid Transparency [MCTB13] k layers always discard furthest a-weighted average alpha
| (NEW) Stochastic Layered Alpha Blending || k layers | stochastic | discard furthest | o-weighted average | either* |

WAIT! NOT USING INFINITE # BITS?

> To get something between k-buffers and stoc. transp.

» Needtouse k< b< o

SANVIDIA.

WAIT! NOT USING INFINITE # BITS?

» To get something between k-buffers and stoc. transp.
> Needtouse k< b< o

> Can do this with an explicit coverage mask with b random bits

SANVIDIA.

WAIT! NOT USING INFINITE # BITS?

» To get something between k-buffers and stoc. transp.
> Needtouse k< b< o

> Can do this with an explicit coverage mask with b random bits

> Can do this with an implicit coverage (i.e., alpha) using b virtual bits

SANVIDIA.

Let’s demonstrate

FOLIAGE MAP

(From Epic’s Unreal SDK)

X L R S 3 ? PO
- o o= X

..-'-t —

63 <ANVIDIA.

FOLIAGE MAP

(From Epic’s Unreal SDK)

:l _ & e 1? _‘:- - ‘."

- &

59 <ANVIDIA.

FOLIAGE MAP

(From Ep]C S Unreal SDK)

7' . C'P L} 4:‘ .L‘

SRR ORP =0 SLAB,k=8,b=32 SLAB,k=8,b=128 SLAB, k=8 Db=32 Hybrid Transparency <y nvioia.
using alpha

FOLIAGE MAP

#

' U] ¥ X o 3 . a - . .‘ e
! 1 . L “m L 1 " L

= = . D - " 2 | "= d T o

s -l . B . : A o ' " -

SLAB,k=b=8 SLAB,k=8,b=32 SLAB,k=8,b =128 SLAB,k=8,b =32 Hybrid Transparencysynvibia.
using alpha

i, Ty
v

Stoc transp, 8 spp

STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=b=4 Stochastic Transparency, 4 spp

SANVIDIA.

STOCHASTIC TRANSPARENCY TO K-BUFFE

Stochastic Layered Alpha Blending, k=4, b=32 Stochastic Transparency, 4 spp

SANVIDIA.

STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=4, b=8
(using alpha rather than coverage)

Stochastic Transparency, 4 spp

SANVIDIA.

STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=4, b=32
(using alpha rather than coverage)

Hybrid Transparency, 4 layers

SANVIDIA.

Summary

SUMMARY

> Introduced an OIT continuum
» More detailed discussion in the paper
> My key takeaways
> All OIT algorithms limit memory by using k “layers”
> Biggest difference is merge heuristic
> Some algorithm do renormalization; just a fancy merge heuristic
> Insertion via stochastic processes is underexplored

> Algorithms using coverage masks are underexplored

SANVIDIA.

SUMMARY

> Proposed two new algorithms
> Stochastic layered alpha blending (SLAB)
> Multi-layer coverage blending (MLCB)

SANVIDIA.

SUMMARY

> Proposed two new algorithms
» Stochastic layered alpha blending (SLAB)
> Key takeaways:
> K-buffers need not be deterministic
» Stochastic transparency and k-buffering are similar; transition via bit count
» “Stochastic” need not mean random bitmask generation
> Algorithms connecting others useful; here, allow trading noise for bias

> SLAB with alpha values can stratify samples in z (between layers)

SANVIDIA.

QUESTIONS?

E-mail: cwyman@nvidia.com, Twitter: _cwyman_

Blacksmith building, from Unity’s “The Blacksmith” demo

&

T o " p
+ ol
ATV = = TS
LI B 5
= e
Al
A) P

Stochastic SLAB Hybrid | Multi-layer Ground truth 8x MSAA,
transparency k=4,b=16 transparency alpha blending (A-buffer) alpha-to-coverage
4 spp using alpha 4 layers 4 layers 50 SINVIDIA.

