
Chris Wyman

EXPLORING AND EXPANDING THE

CONTINUUM OF OIT ALGORITHMS

High Performance Graphics 2016; June 20, 2016; Dublin, Ireland

2

WHAT’S THIS PAPER ABOUT?^

3

WHAT’S THIS PAPER ABOUT?

Not a “survey paper,” at least in the traditional sense

You will not identify “the right” OIT algorithm for you

^

4

WHAT’S THIS PAPER ABOUT?

Not a “survey paper,” at least in the traditional sense

You will not identify “the right” OIT algorithm for you

Not an “algorithms paper,” at least in the traditional sense

Do present two new algorithms

Do not intend to claim these algorithms are right for you

^

5

WHAT’S THIS PAPER ABOUT?

6

WHAT’S THIS PAPER ABOUT?

Story following my thoughts on order-independent transparency

Spurred by discussions w/developers

E.g., Johan Andersson’s SIGGRAPH 2015 talk

7

WHAT’S THIS PAPER ABOUT?

Story following my thoughts on order-independent transparency

Spurred by discussions w/developers

Started with re-exploration of space

Placed on multi-dimensional continuum

8

WHAT’S THIS PAPER ABOUT?

Story following my thoughts on order-independent transparency

Spurred by discussions w/developers

Started with re-exploration of space

Placed on multi-dimensional continuum

Develop algorithms exploring new spaces

Will talk about one today: Stochastic Layered Alpha Blending

Provides continuous transition between stochastic transparency & k-buffering

Stochastic
transparency K-buffer variant

Continuous knob transitioning between these techniques

9

Why is OIT hard?

10

WHY BOTHER AT ALL?
[Porter and Duff 84] outlined numerous common compositing operations

The “over” operator, using multiplicative blending, describes most real interactions:

For streaming compute, you need to sort geometry or keep all αi and ci around

Incorrect Order Correct Order

Merge two fragments then later try to insert one in between?

11

WHY BOTHER AT ALL?
Sorting geometry in advance can fail

May be no “correct” order for triangles

Keep a list of fragments per pixel (i.e., A-Buffers [Carpenter 84])

Virtually unbounded** GPU memory

Still need to sort fragments to apply over operator in correctly

Not just a raster problem; affects ray tracing, too

Unless it guarantees ray hits returned perfectly ordered

** You can define a very conservative upper bound, but it’s quite unhelpful.

12

Building an OIT continuum

13

HOW DO OIT ALGORITHMS WORK?

new triangle
fragment

contributes
to pixel?

14

HOW DO OIT ALGORITHMS WORK?

new triangle
fragment

contributes
to pixel?

Different answers, including:

Only if closest fragment [Depth peeling]

Closest & passes α-threshold [Alpha testing]

Randomly decide [Stochastic transparency]

Always use new fragments [Most algorithms]

15

HOW DO OIT ALGORITHMS WORK?

new triangle
fragment

contributes
to pixel?

no

yes per-pixel
storage
format?

16

HOW DO OIT ALGORITHMS WORK?

new triangle
fragment

contributes
to pixel?

Different answers, including:

Store 1 layer per pass [Depth peeling]

Store k layers [K-buffer, alpha blending (k=1), many other algorithms]

Store k samples [Stochastic transparency]

Store k nodes [Deep shadow maps]

Store k coefficients [Fourier opacity maps]

no

yes per-pixel
storage
format?

17

HOW DO OIT ALGORITHMS WORK?

new triangle
fragment

contributes
to pixel?

no

yes per-pixel
storage
format?

combine k+1
items into storage

for only k?

18

HOW DO OIT ALGORITHMS WORK?

new triangle
fragment

contributes
to pixel?

Different answers, including:

Discard furthest [Depth peeling, hybrid transparency]

Merge frags w / closest depth [Z3]

Merge 2 most distant frags [Multi-layer alpha blend]

Merge 2 most near frags [Original k-buffer]

Sum coefs in Fourier space [Fourier opacity maps]

no

yes per-pixel
storage
format?

combine k+1
items into storage

for only k?

19

HOW DO OIT ALGORITHMS WORK?

new triangle
fragment

contributes
to pixel?

no

yes per-pixel
storage
format?

combine k+1
items into storage

for only k?

merged

discarded

done

what to do
with discarded

fragments?

Discarding introduces bias or noise

20

HOW DO OIT ALGORITHMS WORK?

new triangle
fragment

contributes
to pixel?

Discarding introduces bias or noise

That’s OK; discard [Depth peeling, screen-door transparency]

Sum α-weighted contribs of discarded frags
[Stochastic transparency, hybrid transparency, phenomenological models]

no

yes per-pixel
storage
format?

combine k+1
items into storage

for only k?

merged

discarded

done

what to do
with discarded

fragments?

21

CONTINUUM SUMMARY

22

CONTINUUM SUMMARY

Notice: Normalization only occurs
when algorithms “discard” fragments

23

CONTINUUM SUMMARY

Notice: Normalization only occurs
when algorithms “discard” fragments

Normalization can be viewed as
“storing k+1 layers,” using α-weighted

merge on the furthest layer

24

So what?

(Or: Let’s look at an example of how this is useful)

25

CONTINUUM SUMMARY
Interesting note

26

WHAT IS STOCHASTIC TRANSPARENCY?

When rasterizing frag into k-sample buffer:

Stochastically cover α • k samples

27

WHAT IS STOCHASTIC TRANSPARENCY?

When rasterizing frag into k-sample buffer:

Stochastically cover α • k samples

Let’s look at an example pixel with 16x MSAA

(MSAA pattern simplified for display)

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

Values represent current depth sample

28

WHAT IS STOCHASTIC TRANSPARENCY?

When rasterizing frag into k-sample buffer:

Stochastically cover α • k samples

Let’s look at an example pixel with 16x MSAA

(MSAA pattern simplified for display)

First: draw red fragment, z = 0.5, α = 0.5

0.5 1.0 1.0 0.5

1.0 0.5 0.5 1.0

0.5 1.0 0.5 0.5

1.0 0.5 1.0 1.0

Values represent current depth sample

Set 8 samples to red; depth test each

29

WHAT IS STOCHASTIC TRANSPARENCY?

When rasterizing frag into k-sample buffer:

Stochastically cover α • k samples

Let’s look at an example pixel with 16x MSAA

(MSAA pattern simplified for display)

First: draw red fragment, z = 0.5, α = 0.5

Second: draw blue fragment, z = 0.7, α = 0.5

0.5 1.0 0.7 0.5

0.7 0.5 0.5 0.7

0.5 0.7 0.5 0.5

1.0 0.5 0.7 1.0

Values represent current depth sample

Set 8 samples to blue; depth test each

30

WHAT IS STOCHASTIC TRANSPARENCY?

When rasterizing frag into k-sample buffer:

Stochastically cover α • k samples

Let’s look at an example pixel with 16x MSAA

(MSAA pattern simplified for display)

First: draw red fragment, z = 0.5, α = 0.5

Second: draw blue fragment, z = 0.7, α = 0.5

Third: draw green fragment, z = 0.3, α = 0.5

0.5 0.3 0.7 0.3

0.7 0.5 0.5 0.3

0.5 0.3 0.3 0.5

0.3 0.3 0.7 0.3

Values represent current depth sample

Set 8 samples to green; depth test each

31

WHAT IS STOCHASTIC TRANSPARENCY?

When rasterizing frag into k-sample buffer:

Stochastically cover α • k samples

Let’s look at an example pixel with 16x MSAA

(MSAA pattern simplified for display)

First: draw red fragment, z = 0.5, α = 0.5

Second: draw blue fragment, z = 0.7, α = 0.5

Third: draw green fragment, z = 0.3, α = 0.5

Fourth: draw yellow fragment, z = 0.9, α = 1.0

0.5 0.3 0.7 0.3

0.7 0.5 0.5 0.3

0.5 0.3 0.3 0.5

0.3 0.3 0.7 0.3

Values represent current depth sample

Set 16 samples to yellow; depth test each

32

WHAT IS STOCHASTIC TRANSPARENCY?

When rasterizing frag into k-sample buffer:

Stochastically cover α • k samples

Let’s look at an example pixel with 16x MSAA

(MSAA pattern simplified for display)

First: draw red fragment, z = 0.5, α = 0.5

Second: draw blue fragment, z = 0.7, α = 0.5

Third: draw green fragment, z = 0.3, α = 0.5

Fourth: draw yellow fragment, z = 0.9, α = 1.0

2nd pass accum. color using this as depth oracle

0.5 0.3 0.7 0.3

0.7 0.5 0.5 0.3

0.5 0.3 0.3 0.5

0.3 0.3 0.7 0.3

Values represent current depth sample

33

OBSERVATIONS

Can lose surfaces (like yellow one)

But it still converges; surface loss is stochastic

0.5 0.3 0.7 0.3

0.7 0.5 0.5 0.3

0.5 0.3 0.3 0.5

0.3 0.3 0.7 0.3

34

OBSERVATIONS

Can lose surfaces (like yellow one)

But it still converges; surface loss is stochastic

Loss worse if nearby surfaces almost opaque

Could easily lose blue surface

0.5 0.3 0.7 0.3

0.7 0.5 0.5 0.3

0.5 0.3 0.3 0.5

0.3 0.3 0.7 0.3

35

OBSERVATIONS

Can lose surfaces (like yellow one)

But it still converges; surface loss is stochastic

Loss worse if nearby surfaces almost opaque

Could easily lose blue surface

Also noticed in my experiments

Dashboard and seat noisier with high alpha than low!

α = 0.4, 8 spp

α = 0.98, 8 spp

Note: Even uses stratified sampling!

36

OBSERVATIONS

Can lose surfaces (like yellow one)

But it still converges; surface loss is stochastic

Loss worse if nearby surfaces almost opaque

Could easily lose blue surface

Also noticed in my experiments

Dashboard and seat noisier with high alpha than low!

Seems wasteful to store 8 copies of z = 0.3 **

Why not store one copy of z = 0.3 and a coverage mask?

0.5 0.3 0.7 0.3

0.7 0.5 0.5 0.3

0.5 0.3 0.3 0.5

0.3 0.3 0.7 0.3

** Glossing over some details here; feel free to ask later.

37

OBSERVATIONS

Can lose surfaces (like yellow one)

But it still converges; surface loss is stochastic

Loss worse if nearby surfaces almost opaque

Could easily lose blue surface

Also noticed in my experiments

Dashboard and seat noisier with high alpha than low!

Seems wasteful to store 8 copies of z = 0.3 **

Why not store one copy of z = 0.3 and a coverage mask?

Implicitly layered − stores (up to) 16 surfaces per pixel (for 16x MSAA)

Also wasteful to store just 3 layers in a structure that can hold 16

0.5 0.3 0.7 0.3

0.7 0.5 0.5 0.3

0.5 0.3 0.3 0.5

0.3 0.3 0.7 0.3

38

Stochastic Layered Alpha Blending (SLAB)

39

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

An explicit k-layered algorithm with stoc. transparency’s characteristics

40

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

An explicit k-layered algorithm with stoc. transparency’s characteristics

Memory: store k layers, each with depth and b-bit coverage mask

Insertion: probabilistically insert fragments into per-pixel lists

Merging: if > k layers, simply discard the furthest

41

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

An explicit k-layered algorithm with stoc. transparency’s characteristics

Memory: store k layers, each with depth and b-bit coverage mask

Insertion: probabilistically insert fragments into per-pixel lists

Merging: if > k layers, simply discard the furthest

Identical results to k spp stoc. transparency, if k ≥ b

But can independently change values of k and b

42

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

An explicit k-layered algorithm with stoc. transparency’s characteristics

Memory: store k layers, each with depth and b-bit coverage mask

Insertion: probabilistically insert fragments into per-pixel lists

Merging: if > k layers, simply discard the furthest

Identical results to k spp stoc. transparency, if k ≥ b

But can independently change values of k and b

Useful since stoc. transp. rarely stores k surfaces in a k-sample buffer

Also can explicitly increase b much further → reduce noise on existing layers

43

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Our same example from before:

First: draw red fragment, z = 0.5, α = 0.5

Coverage Mask Depth

0.5

L
a

y
e

rs

44

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Our same example from before:

First: draw red fragment, z = 0.5, α = 0.5

Second: draw blue fragment, z = 0.7, α = 0.5

Coverage Mask Depth

0.5

0.7

L
a

y
e

rs

45

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Our same example from before:

First: draw red fragment, z = 0.5, α = 0.5

Second: draw blue fragment, z = 0.7, α = 0.5

Third: draw green fragment, z = 0.3, α = 0.5

Coverage Mask Depth

0.3

0.5

0.7

L
a

y
e

rs

46

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Our same example from before:

First: draw red fragment, z = 0.5, α = 0.5

Second: draw blue fragment, z = 0.7, α = 0.5

Third: draw green fragment, z = 0.3, α = 0.5

Fourth: draw yellow fragment, z = 0.9, α = 1.0

Coverage Mask Depth

0.3

0.5

0.7

0.9

L
a

y
e

rs

47

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Our same example from before:

First: draw red fragment, z = 0.5, α = 0.5

Second: draw blue fragment, z = 0.7, α = 0.5

Third: draw green fragment, z = 0.3, α = 0.5

Fourth: draw yellow fragment, z = 0.9, α = 1.0

Layers get inserted only if not occluded

Adds stochasm, if masks randomly chosen

Different random masks might keep this layer

Coverage Mask Depth

0.3

0.5

0.7

0.9

L
a

y
e

rs

48

WHAT IS STOCHASTIC LAYERED ALPHA BLEND?

Our same example from before:

First: draw red fragment, z = 0.5, α = 0.5

Second: draw blue fragment, z = 0.7, α = 0.5

Third: draw green fragment, z = 0.3, α = 0.5

Fourth: draw yellow fragment, z = 0.9, α = 1.0

Layers get inserted only if not occluded

Adds stochasm, if masks randomly chosen

Different random masks might keep this layer

If k = 2, layers beyond 2nd get discarded

Coverage Mask Depth

0.3

0.5

0.7

0.9

L
a

y
e

rs

49

ADJUSTING PARAMETERS

Aim to reduce noise

One way: avoid discarding layers that impact color

Coverage Mask Depth

0.3

0.5

0.7

0.9

L
a

y
e

rs

50

ADJUSTING PARAMETERS

Aim to reduce noise

One way: avoid discarding layers that impact color

How to increase chance to store yellow frag?

Coverage Mask Depth

0.3

0.5

0.7

0.9

L
a

y
e

rs

51

ADJUSTING PARAMETERS

Aim to reduce noise

One way: avoid discarding layers that impact color

How to increase chance to store yellow frag?

Increase number of bits in coverage mask

Coverage Mask Depth

0.3

0.5

0.7

0.9

L
a

y
e

rs

52

ADJUSTING PARAMETERS

Aim to reduce noise

One way: avoid discarding layers that impact color

How to increase chance to store yellow frag?

Increase number of bits in coverage mask

Larger coverage masks → lower noise

What happens as # coverage bits increases?

Coverage Mask Depth

0.3

0.5

0.7

0.9

L
a

y
e

rs

53

ADJUSTING PARAMETERS

Aim to reduce noise

One way: avoid discarding layers that impact color

How to increase chance to store yellow frag?

Increase number of bits in coverage mask

Larger coverage masks → lower noise

What happens as # coverage bits increases?

Starts to behave as alpha

Interesting to ask:

Can we stochastically insert fragments using alpha?

Coverage Mask Depth

0.3

0.5

0.7

0.9

L
a

y
e

rs

54

SLAB USING IMPLICIT COVERAGE

Let’s compute an insertion probability

Q: What’s the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B0 Bitmask B1

Visible Hidden

55

SLAB USING IMPLICIT COVERAGE

Let’s compute an insertion probability

Q: What’s the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B0

Hidden if none of these get
covered by bits in bitmask B

56

SLAB USING IMPLICIT COVERAGE

Let’s compute an insertion probability

Q: What’s the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B0

Naïve random sampling:

Covered with probability αB

Uncovered with prob (1 – αB)

57

SLAB USING IMPLICIT COVERAGE

Let’s compute an insertion probability

Q: What’s the chance random bitmask B is visible behind random bitmask A?

Bitmask A Bitmask B0

All uncovered with prob: (1–αB)
6

Bitmask B visible with prob: 1-(1–αB)
6

Naïve random sampling:

Covered with probability αB

Uncovered with prob (1 – αB)

58

SLAB USING IMPLICIT COVERAGE

Let’s compute an insertion probability

Q: What’s the chance random bitmask B is visible behind random bitmask A?

𝑃𝑏 𝛽𝐴, 𝛽𝐵 = 1 − 1 −
𝛽𝐵
𝑏

(𝑏−𝛽𝐴)

Or

𝑃𝑏 𝛽𝐴, 𝛼𝐵 = 1 − 1 − 𝛼𝐵
(𝑏−𝛽𝐴)

Bitmask A

𝛽A ≡ # bits covered

𝛽A= 𝛼A𝑏 or 𝛼A𝑏

for b bits in bitmask

59

SLAB USING IMPLICIT COVERAGE

Let’s compute an insertion probability

Q: What’s the chance random bitmask B is visible behind random bitmask A?

𝑃𝑏 𝛽𝐴, 𝛽𝐵 = 1 − 1 −
𝛽𝐵
𝑏

(𝑏−𝛽𝐴)

Or

𝑃𝑏 𝛽𝐴, 𝛼𝐵 = 1 − 1 − 𝛼𝐵
(𝑏−𝛽𝐴)

Bitmask A

𝛽A ≡ # bits covered

𝛽A= 𝛼A𝑏 or 𝛼A𝑏

for b bits in bitmask

prob of leaving
1 bit uncovered

number of bits that
must be uncovered

60

SLAB USING IMPLICIT COVERAGE

Let’s compute an insertion probability

Q: How about for random masks using stratified samples?

𝑃𝑏 𝛽𝐴, 𝛽𝐵 =
1 −

𝛽𝐴! 𝑏−𝛽𝐵 !

𝑏! 𝛽𝐴−𝛽𝐵 !
if 𝛽𝐵 ≤ 𝛽𝐴

1 if 𝛽𝐵 > 𝛽𝐴

Bitmask A

𝛽A ≡ # bits covered

Based on combinatorics

Choosing dependent probabilities so all mask bits in B are covered by A

61

WAIT! NOT USING INFINITE # BITS?

Both equations require a number of bits b in the coverage mask

𝑃𝑏 𝛽𝐴, 𝛽𝐵 =
1 −

𝛽𝐴! 𝑏−𝛽𝐵 !

𝑏! 𝛽𝐴−𝛽𝐵 !
if 𝛽𝐵 ≤ 𝛽𝐴

1 if 𝛽𝐵 > 𝛽𝐴
using stratified random samples

𝑃𝑏 𝛽𝐴, 𝛽𝐵 = 1 − 1 −
𝛽𝐵

𝑏

(𝑏−𝛽𝐴)
using naïve random samples

62

WAIT! NOT USING INFINITE # BITS?

Both equations require a number of bits b in the coverage mask

Can ask what happens to Pb as b → ∞

Turns out as b → ∞, Pb → 1

Instead of stochastic insertion of fragments, they’re always inserted

𝑃𝑏 𝛽𝐴, 𝛽𝐵 =
1 −

𝛽𝐴! 𝑏−𝛽𝐵 !

𝑏! 𝛽𝐴−𝛽𝐵 !
if 𝛽𝐵 ≤ 𝛽𝐴

1 if 𝛽𝐵 > 𝛽𝐴
using stratified random samples

𝑃𝑏 𝛽𝐴, 𝛽𝐵 = 1 − 1 −
𝛽𝐵

𝑏

(𝑏−𝛽𝐴)
using naïve random samples

63

WAIT! NOT USING INFINITE # BITS?

Both equations require a number of bits b in the coverage mask

Can ask what happens to Pb as b → ∞

Turns out as b → ∞, Pb → 1

Instead of stochastic insertion of fragments, they’re always inserted

Going back to our continuum

When b = k, SLAB is equivalent to stochastic transparency

When b → ∞, SLAB is equivalent to hybrid transparency (a variant of k-buffer)

64

WAIT! NOT USING INFINITE # BITS?

To get something between k-buffers and stoc. transp.

Need to use k ≤ b < ∞

65

WAIT! NOT USING INFINITE # BITS?

To get something between k-buffers and stoc. transp.

Need to use k ≤ b < ∞

Can do this with an explicit coverage mask with b random bits

Using deterministic insertion based on random coverage masks

66

WAIT! NOT USING INFINITE # BITS?

To get something between k-buffers and stoc. transp.

Need to use k ≤ b < ∞

Can do this with an explicit coverage mask with b random bits

Using deterministic insertion based on random coverage masks

Can do this with an implicit coverage (i.e., alpha) using b virtual bits

Using stochastic insertion using probability functions

b only controls distance along the k-buffer ↔ stoc transp continuum

67

Let’s demonstrate

68

FOLIAGE MAP

All surfaces α = 0.5

(From Epic’s Unreal SDK)

69

FOLIAGE MAP

All surfaces α = 0.5

Stoc transp, 8 spp SLAB, k = b = 8 SLAB, k = 8, b = 32 SLAB, k = 8, b = 128 SLAB, k = 8, b = 32 Hybrid Transparency

using alpha

(From Epic’s Unreal SDK)

70

FOLIAGE MAP

All surfaces α = 0.5

Stoc transp, 8 spp SLAB, k = b = 8 SLAB, k = 8, b = 32 SLAB, k = 8, b = 128 SLAB, k = 8, b = 32 Hybrid Transparency

using alpha

(From Epic’s Unreal SDK)

71

FOLIAGE MAP

All surfaces α = 0.5

Stoc transp, 8 spp SLAB, k = b = 8 SLAB, k = 8, b = 32 SLAB, k = 8, b = 128 SLAB, k = 8, b = 32 Hybrid Transparency

using alpha

(From Epic’s Unreal SDK)

72

STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=b=4 Stochastic Transparency, 4 spp

73

STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=4, b=32 Stochastic Transparency, 4 spp

74

STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=4, b=8
(using alpha rather than coverage)

Stochastic Transparency, 4 spp

75

STOCHASTIC TRANSPARENCY TO K-BUFFERS

Stochastic Layered Alpha Blending, k=4, b=32
(using alpha rather than coverage)

Hybrid Transparency, 4 layers

76

Summary

77

SUMMARY

Introduced an OIT continuum

More detailed discussion in the paper

My key takeaways

All OIT algorithms limit memory by using k “layers” (k=0,1,4,8,32 common)

Biggest difference is merge heuristic

Some algorithm do renormalization; just a fancy merge heuristic

Insertion via stochastic processes is underexplored

Algorithms using coverage masks are underexplored

78

SUMMARY

Proposed two new algorithms

Stochastic layered alpha blending (SLAB)

Multi-layer coverage blending (MLCB)

Not discussed today, see paper for details

Explored combining OIT + MSAA sampling

79

SUMMARY

Proposed two new algorithms

Stochastic layered alpha blending (SLAB)

Key takeaways:

K-buffers need not be deterministic

Stochastic transparency and k-buffering are similar; transition via bit count

“Stochastic” need not mean random bitmask generation

Algorithms connecting others useful; here, allow trading noise for bias

SLAB with alpha values can stratify samples in z (between layers)

 (Not really discussed in this talk)

80

QUESTIONS?

E-mail: cwyman@nvidia.com, Twitter: _cwyman_

Stochastic
transparency

4 spp

SLAB
k = 4, b = 4

Hybrid
transparency

4 layers

SLAB
k = 4, b = 16
using alpha

Multi-layer
alpha blending

4 layers

Ground truth
(A-buffer)

8x MSAA,
alpha-to-coverage

Blacksmith building, from Unity’s “The Blacksmith” demo

