
1

Currently in UE4, the best out-of-the-box experience you can get for anti-aliasing is by
using “Temporal Anti-Aliasing”, applied on a super-sampled color buffer, typically
rendered using 4x supersampling.

It’s the same for other major game engines. Supersampling plus TAA is an option
which is exposed and already shipping in major AAA games from Frostbite, some UE4
titles and probably others.

2

This is the result we get doing only 4x SSAA, without TAA…

3

And this is also 4x SSAA, but running the lighting pass 1.7x faster using Aggregate G-
Buffer Anti-Aliasing.

4

TAA is a massive improvement in anti-aliasing quality in games. However, there is
some issues when used without super sampling:
There can be some ghosting, some flickering or some over-blurring of visual features.

In general, it greatly benefits from providing more screen-space and temporal
coherence. That’s why it is usually combined with supersampling for best image
quality.
The problem is that super-sampled rendering is quite costly….

5

Given that AGAA makes supersampling less expensive, you can imagine pushing to
higher sampling rates, maybe high enough that you can turn off TAA. In this example
we do 8x AGAA without TAA. Running lighting 2.6x faster than 8x supersampling.

This gives us image quality close to 8x SSAA, at a similar cost to 4x SSAA.

6

So last year at I3D we introduced AGAA. And there is now an extended version with
more details we published at TVCG.

The high-level idea of this technique is to decouple the shading rate, from the
geometry and materials sampling rates, in the context of deferred shading pipelines.
For that, we use some form of dynamic pre-filtering in screen-space.

This allows us to greatly reduce the cost of lighting.

What we want to do in this talk, it to give you an overview of the current state of our
exploration around taking these research ideas into a game engine.
We will talk about some of the algorithmic changes, and the challenges we faced.

7

Let’s take a step back and look at the most common options that we have for anti-
aliased rendering in real-time applications:
- Most simple: Supersampled rasterization (SSAA), and its optimization Multi-

sampled rasterization (MSAA). MSAA allows capturing actual triangle details, with
a maximum of 8 samples per-pixel on current GPUs.

- Even when using supersampling, the number of samples that can be evaluated for
each pixel is necessarily bounded, and higher-frequency details will not be
captured and filtered properly. That’s why pre-filtering tools are also needed. Real-
time renderers typically represent micro details in texture-maps instead of actual
geometry, and those maps are pre-filtered using MIP-mapping.

- Finally, post-filtering techniques operate post-lighting, on the final shaded color
values of the pixels/samples, and reconstruct or hallucinate sub-pixel details by
taking advantage of spatial coherence with neighboring pixels (for FXAA/MLAA…),
or also temporal coherence by re-projecting samples from previous-frames.

All those tools are generally combined in order to obtain the best possible quality
within a given time budget.
AGAA proposes a new kind of pre-filtering in the context of deferred shading
pipelines, which is performed in image-space and computed on the fly from
dynamically sampled shading attributed.

8

Now, let’ see how AGAA works in UE4:
- # The starting point of AGAA is a supersampled G-buffer, which uses the exact

same layout as the standard UE4 G-buffer.

- # Then, instead of shading each sub-sample individually, as we would normally do,
we combine those sub-samples together inside what we call the “aggregates”.
The aggregates contain pre-filtered shading attributes averaged from the sample
values.
From our experience, using two aggregates is generally enough with up to 8x
MSAA.

- # Finally, after generating the aggregates, we will light each of them once,
regardless of what rate we sampled the g-buffer at.

Before digging a little bit more inside the details of this pipeline, let’s take a look at
the pre-filtering.

9

The goal of the pre-filtering scheme is to allow approximating the average reflectance
over the footprint of an aggregate, by linearly and independently pre-filtering all the
inputs of the shading function.

For that, we take inspiration from texture-space and voxel-space pre-filtering
schemes for analytic microfacet BRDFs.

In practice, we average most of the shading parameters, and we build a normal
distribution function used to filter the microfacet BRDF model.

Among other details, it’s interesting to note here that we also pre-filter shadowing
from UE’s attenuation buffer.

10

So far, we have focused only on pre-filtering the “standard” shading model in UE4. It s
based on a simple Lambertian diffuse BRDF, and a GGX specular BRDF.

The specular GGX BRDF is the most important one to filter. For that, we experimented
both with Toksvig, which only encodes an isotropic variance.
SGGX generalizes the GGX definition and allows encoding microfacets spread
spatially, and encodes anisotropic variance.

We have also experimented with the Lambertian analytic approximation from [Baker
and Hill 2012] and found that it made subtle differences on certain diffuse objects,
and almost made no visual difference on the SciFiHallway scene. All our results in this
presentation were generated without it.

11

12

This diagram gives an example of some visible geometry within the frustum of a given
pixel.

Once we have generated the full supersampled g-buffer, the first step is to associate
each sub-sample to one of the two aggregates.

We use a clustering pass for that.

In contrast to texture-space pre-filtering schemes, aggregates can contain samples
from totally different surfaces that can be spread spatially.
What we want to do here with the clustering is basically to optimize the quality of the
pre-filtering, and minimize the shading errors.

The first important thing is to separate samples with different shading models, given
that pre-filtered shading schemes assume a unique shading model per-aggregate.
Then, we built a simple distance metric which maximizes spatial locality while
avoiding aggregating together very divergent normal directions.

13

Once we have this sample to aggregate mapping, the remaining step is to actually
performs the filtering of the shading attributes per-aggregate,
using the data from the super-sampled G-buffer.

To recap, we average most of the shading attributes, and we transform the per-
sample normal and roughness information into the Normal Distribution
representation associated to our BRDF model, which allows us to linearly combine
them, and approximate their variance over an aggregate’s footprint.

14

In UE4, there are multiple possible render paths to perform shading. One of them is
Tiled Deferred shading.
We have configured the engine to use the Tiled Deferred path whenever possible and
implemented the AGAA aggregation and lighting in the Tiled Deferred Shading
compute shader.

For getting best performance, we have implemented the G-Buffer aggregation step at
the beginning of the shading phase of this compute shader, which lets us re-use the
aggregated attributes for all processed lights for the current tile.

15

The clustering pass fetches all of the ShadingModel ID, depths and normals for each
pixel and computes the mapping from sample ID to aggregate ID. Because there are
only 2 aggregates per pixel, the per-sample aggregate IDs can be stored with one bit
per sample. We store these bits in a R16_UINT render target.
We also store the per-aggregate ShadingModel IDs in the same render target.

Next for each GBuffer sample, we reconstruct the shading parameters (in the format
used for aggregate shading) based on the GBuffer data.
And we average these shading parameters across all samples within each aggregate.
There is one exception though: for the world-space positions, we have found that it is
much faster to first calculate the average view-space depth per aggregate, and then
reconstruct a world-space position by assuming that the screen-space XY coordinate
for this position is at the pixel center.
This approximation does not introduce any visible artifacts in our tests.

16

After doing all that, we were still seeing aliasing & flickering on specular highlights on
certain objects:
- The door on this screenshot is a flat surface, and there was aliasing on the bumps

from the normal map
- The vertical chrome pipe also had aliasing artifacts

At this point, we realized that we were just using a super-sampled GBuffer but not
doing any NDF pre-filtering at the GBuffer sample level.

17

In addition to pre-filtering the shading attributes at the scale of the aggregates,
AGAA also needs sample values to be filtered as best as possible

18

When fetching the normal of a given GBuffer sample, we want to be able to not only
fetch a normal vector, but also reconstruct some information on its variance.

We use Toksvig normal-map pre-filtering, assuming that the material fetches a single
normal map and plugs it directly into the GBuffer.
We will see later that material graphs can be arbitrarily complex.

In addition, we also filter the geometric curvature, coming from the actual triangle
mesh, using Kaplanyan’s analytic algorithm which operates during geometry
rendering.

19

The first step of the algorithm calculates the average normal for the current 2x2 pixel
quad in the Gbuffer Fill pass.
This is done using ddx/ddy instructions on the geometric normal (with no normal
maps applied).

20

This average pixel-quad normal is then used together with the normal of the current
fragment to estimate curvature variance information.

21

Finally, the curvature variance information is converted to an isotropic roughness bias
and the original roughness is modified.

So regions that have a high curvature get an increased roughness, which removes
specular shading aliasing.

For the record, we use:
AgaaKaplanyanRoughnessMaxFootprint=0.3
AgaaKaplanyanRoughnessBoost=2.0

22

23

By adding Toksvig’s and Kaplanyan’s pre-filtering methods to the screen-space pre-
filtering of AGAA, we were able to get rid of the specular shading aliasing artifacts in
this scene.

24

Let’s recap the passes of our AGAA implementation and their impact on video
memory usage.

During lighting we light the 2 aggregates in the same pass, which produces 2
R11G11B10F colors per pixel.

We then merge the per-sample emissive colors with the per-aggregate non-emissive
lit colors, and write the per-sample results in a super-sampled color buffer.

Translucency passes & post processing passes are then performed with super-
sampling (could also be MSAA).

25

To avoid HDR firefly artifacts, it is important to:
- keep the HDR emissive colors per-sample (do not include the emissive in the per-
aggregate lit colors)
- perform the final Resolve (average of the per-sample colors) on tone-mapped
colors.

26

27

28

29

30

31

32

33

34

35

36

37

38

The reason is that the shading function needs to be super-sampled.
Even though UE4 mostly relies on texture maps for storing material’s input
parameters, which can be pre-filtered,
artists control the material definitions using potentially complex material graphs like
this one.

Those graphs can contain lots of non-linear operations, such as discard calls, power
functions, clamps, masks, conditions, and various combinations of those, which
breaks texture-space pre-filtering.

39

A solution would be to selectively super-sampler certain GBuffer attributes
automatically based on a static analysis of the material graph.

We think that MSAA could still be used if artists were made aware that using masked
materials and/or non-linear material nodes can slow down performance due to the
incurred super-sampling at runtime.

40

Although the original paper proposed a solution to speedup the Gbuffer Fill using
Maxwell features, it raises more issues in the context of UE4 and we decided not to
do it.

Tiled-deferred shading is the only light pass that is optimized so far in our UE4
implementation.

41

42

43

44

45

