
Hardware-Accelerated
Colored Stochastic Shadow Maps

Morgan McGuire∗

NVIDIA Research and Williams College

Abstract

This paper extends the stochastic transparency algorithm that mod-
els partial coverage to also model wavelength-varying transmission.
It then applies this to the problem of casting shadows between any
combination of opaque, colored transmissive, and partially cov-
ered (i.e., α-matted) surfaces in a manner compatible with existing
hardware shadow mapping techniques. Colored Stochastic Shadow
Maps have a similar resolution and performance profile to tradi-
tional shadow maps, however they require a wider filter in colored
areas to reduce hue variation.

1 Introduction

Translucent materials are visually appealing. Yet designers of inter-
active programs tend to avoid them because of a lack of rendering
algorithms compatible with translucency. This paper presents an
efficient and practical method for rendering correct shadows in the
presence of colored translucency. It is motivated by a desire to solve
the problem of translucent shadowing in a general way that fits the
architecture and performance constraints of typical real-time sys-
tems like games.

This paper introduces the novel Colored Stochastic Shadow Map
(CSSM) data structure, which is named both for the fact that it
produces the phenomena of colored shadows and for its appear-
ance when visualized (figure 1). It packs into as few as 32 bits per
texel, renders at about the same rate as a traditional shadow map,
and can accurately simulate shadows between any combination of
colored1 opaque, non-refractive transmissive, and partial coverage
(i.e., α-matted) surfaces, including single-scattering particle sys-
tems. CSSM requires only one order-independent pass over ge-
ometry to generate and has no limit on the number of overlapping
translucent layers. It has the nice theoretical property that the pri-
mary artifact, stochastic color noise, can be driven arbitrarily low by
increasing the resolution, filter radius, and filter shape—practices
already in use to mitigate aliasing in traditional shadow maps.

As is often the case in real-time rendering, the competing con-
straints of space, time, bias, variance, artistic control and general-
ity make it impossible to declare one technique strictly better than
another. CSSM is good for cases where multiple colored translu-
cent surfaces may be present in a scene and for which realistic and
consistent results are considered important. However, shadowing
through translucent surfaces is a complex phenomenon and render-
ing it correctly is not necessary for all applications. This argument
holds for even opaque shadowing—the dark blob under an object is
the significant perceptual cue, not the precise shape or shade. In the
extreme, simple colored-disk drop shadows may be the best choice
for some applications. In others, limiting translucency to a single
surface may be appropriate. For example, StarCraft II is a real-time
strategy game currently in development by Blizzard. In this game,

∗e-mail: morgan@cs.williams.edu

NVIDIA Technical Report NVR-2010-003, May 5, 2010.
c© 2010 NVIDIA Corporation. All rights reserved.

1“Color” is technically a perception, not a physical property. We follow
the common substitution of “colored” for “wavelength-dependent.”

Figure 1: Left) Williams 1978 shadow map and right) new Colored
Stochastic Shadow Map for the scene shown in figure 4

Figure 2: Game scene with 1M triangles rendered at 1920×1080,
60 Hz with a 20482 shadow map on a GeForce GT 280 GPU. CSSM
adds 0.1 to 0.9 ms to the opaque shadow render time for this scene,
depending on view.

the camera is nearly orthographic and is always above the action,
which is primarily lit by a nearly-white directional light represent-
ing the sun. Overlapping translucent shadows are infrequent in this
kind of scene, so the developers invented an appropriate shadowing
method limited to the first translucent surface from the light [Filion
and McNaughton 2009]. CSSM could provide shadowing at about
the same performance as that method, but it is not needed here.

In contrast to StarCraft II, consider Marvel Ultimate Alliance II
(MUA2), which was developed by Vicarious Visions and published
by Activision in 2009. MUA2 contains translucent characters like

Iceman and the Invisible Woman, water, colored smoke particle
effects, mad science labs with colored glass tanks and fluids, and
battles set in science-fiction techno-castles and crystal caves. Pri-
mary and shadow translucency were therefore a major challenge
in this game. They could never be resolved under previous algo-
rithms to match the artistic vision, so ultimately the developers fell
back to scene-specific workarounds and design changes to deliver
the game’s compelling visuals [Murphy 2009]. This is the kind of
application that requires a general method like CSSM for correct
simulation of multiple shadow casters.

Beyond games, film micro-polygon renderers like RenderMan of-
ten employ shadow maps and already rely on filtering to reduce
sampling noise. So that is another domain for which CSSM is ap-
propriate.

This paper contributes:

1. Analysis of the different translucency phenomena and their
relation to shadows and blending (section 2)

2. Unification of the contributions of partial coverage and trans-
mission models into a probabilistic colored translucency
model (section 4.1)

3. The CSSM1 algorithm, which directly samples the shadow-
ing of colored translucent surfaces for arbitrary wavelengths
(section 4.2)

4. An optimized CSSM2 algorithm for RGB rendering, which
has comparable time and space performance to traditional
opaque shadow maps (section 4.3)

2 Translucency Phenomena
Multiple distinct light transport phenomena can produce the com-
mon perceptual phenomenon of “translucency.” All result in mul-
tiple objects along a ray contributing to the radiant flux through a
pixel. Real-time approximations of these phenomena are typically
built on blending modes in the raster operation stage of the graph-
ics pipeline, which are selected by glBlendFunc and glBlendEq in
the OpenGL API. That commonality leads to a frequent source of
error, in that many renderers conflate phenomena with different un-
derlying causes and attempt to use one blending mode to simulate
all of them. That source of error has in turn made it challenging to
implement correct translucency and translucent shadowing in such
renderers.

The following paragraphs describe five distinct phenomena and ef-
ficient methods for coarsely approximating them along eye rays in
OpenGL. This clarifies the scope and terminology of the remain-
der of the paper, which is concerned with applying these ideas to
the related problem of approximating translucent phenomena along
shadow rays.

Transmission (e.g., by glass) occurs when light is modulated by
the transmission spectrum of a material that it intersects. For ex-
ample, this causes the back of a white label on a green wine bottle
to appear green when viewed through the bottle. For a transmis-
sive object with uniform material properties, the fraction of light
at wavelength λ transmitted through distance d of material is given
by exp(−4πdκλ/λ), where extinction coefficient κλ is the imag-
inary part of its complex index of refraction [Hecht 2002, 128].
The transmission is non-refractive if the exitant ray has the same
direction as the incident ray, which occurs when the real part, η,
of the index of refraction is the same for both the intersected and
surrounding media.

One method for approximating non-refractive transmission for
scenes with strict depth ordering is as follows. Render surfaces

from farthest to nearest. At each, first modulate the previously
sampled radiance at each pixel (e.g., using glBlendFunc(GL ZERO,

GL SRC COLOR)) by the transmission spectrum of the surface, which
is all zero for opaque surfaces. Second, add the reflected and emit-
ted radiance from the surface (glBlendFunc(GL ONE, GL ONE)).

A thin surface has fixed thickness d (at normal incidence), so it
is common practice to precompute the net transmission through
that thickness at several wavelengths, which we call ~t, e.g., with
named components ~t = (~tr,~tg,~tb). This is the “source color”
for the OpenGL command. For thick transmitters, more sophis-
ticated methods have been developed for efficiently sampling the
background color from an offset location to approximate refrac-
tion (e.g., [Wyman 2005]), and for computing the varying transmis-
sion levels (e.g., [Bavoil et al. 2007]). Note that in the real world,
physics constrains all transmissive surfaces to also be specularly re-
flective to some extent. Transmission always falls off with the angle
of incidence according to the Fresnel equations.

Partial coverage (e.g., by a window screen) occurs when a sub-
set of the rays within one pixel’s bundle of samples are occluded
by a perforated foreground surface or particle set. The fraction of
rays that are occluded is denoted by α. Note that at the highest
resolution of a model (i.e., level 0 MIP-map) α is ideally either
1 or 0 at every sample. Fractional α arises from taking multiple
binary samples per pixel. This is the case for higher MIP levels,
GL ALPHA TO COVERAGE, and GL POLYGON SMOOTH rendering.

The observed spectrum of multiple uncorrelated partial coverage
layers is given by repeated application of Porter and Duff’s [Porter
and Duff 1984] linear over operator: αF + (1 − α)B. In this
equation, F andB are the radiance that would be transported to the
viewer from a foreground layer and a background layer in isolation.
One method for approximating partial coverage is rendering objects
from farthest to nearest with linear radiance interpolation (e.g., us-
ing glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA)). Note
that a surface can be both transmissive and partially covering. In
that case, the observed foreground spectrum contains a term that is
a modulated version of the background spectrum.

Emission by a translucent surface occurs when a partial or
transmissive surface or medium also emits light. Phosphorescent
algae clouds, neon bulbs, and lightning are real-world cases. Sci-
ence fiction force fields and fantasy magical effects are imaginary
ones. One method for simulating this is simple accumulation of
radiance at a pixel (e.g., by glBlendFunc(GL ONE, GL ONE).)

Bloom and lens flare occur when dispersion and internal reflec-
tions within a lens objective cause bright scene points to affect pix-
els other than those dictated by pinhole projection. Direct simula-
tion of a compound lens as in-scene surfaces tends to be inefficient,
so these effects are commonly approximated by post-processing
with additive blending (e.g., glBlendFunc(GL ONE, GL ONE).)

Motion blur, defocus blur, and antialiasing are cases where
samples over multiple dimensions allow multiple scene points to
contribute to a sample and therefore can create translucency. Be-
cause net radiant flux is the sum over the contribution of each ray, it
is mathematically equivalent to the weighted sum provided by par-
tial coverage. These phenomena can therefore be accurately mod-
eled by extending partial coverage by α′ = α ∗ w, where weight
w is an estimate of the product of the fractional of exposure time,
projected solid angle, and projected area that the surface covers rel-
ative for a pixel, and α is the original partial coverage of the surface.
This is an area of significant current research and product develop-
ment. See Sung et al. [2002] and Barskey and Kosloff [2008] for

surveys of various blurring approximations for eye rays, most of
which cannot be directly applied to the shadowing.

Our algorithm addresses shadows from non-refractive transmissive
and partially covering surfaces, as well as surfaces that are simulta-
neously transmissive and partially covering. Emission, bloom, and
lens flare do not involve an obscuring surface, so they are indepen-
dent of our algorithm. Our algorithm depends on antialiasing to
reduce the variance in stochastic samples, so it naturally supports
antialiasing of both eye and shadow rays. We do not address mo-
tion and defocus blur, for which there do not yet exist high-quality
algorithms for eye rays.

Note that wavelength-independent, non-refractive transmission can
be modeled as partial coverage, and some renderers do so. Yet there
are very good reasons for modeling partial coverage and transmis-
sion with separate parameters, which is why other renderers use that
model. These reasons include:

• It is often desirable to model colored transmission, which can-
not be done in a system where transmission is modeled by a
single coverage α.

• Unlike coverage, transmission is independent of other mate-
rial parameters. One can tune transmission without affecting
the specular highlight or diffuse response, for example. In
contrast, partial coverage makes parts of the surface disap-
pear, so if you reduce α, all scattered lighting falls off pro-
portionally. For example, glass modeled with no transmission
and α = 0.1 cannot produce a strong specular highlight.

• The α-test is used to avoid setting depth buffer values for low-
α areas, e.g., cutouts around vegetation and billboards. Yet a
100% transmissive surface is still present, because it may still
have emissive and other non-transmissive terms. A α = 0
location really is a hole and should not be considered part of
the scene.

• For a thin surface, α is independent of viewing angle, but the
amount of transmitted light changes significantly due to Fres-
nel effects.

• For surfaces with partial coverage only, storing α takes 1/3
the space of the equivalent encoding as transmission, and spe-
cific texture compression formats are available efficiently for
packing α with the diffuse reflectance.

A third alternative is to represent both transmission and coverage
using a wavelength-varying α and no separate transmission term.
RenderMan uses this representation, which is simple and elegant,
but may be better suited to offline than real-time rendering. For
surfaces with partial coverage but no translucency, storing three
α values sacrifices some performance benefits, such as stochastic
transparency with a single test and packing all parameters into an
optimized diffuse-plus-coverage compressed RGBA format. It also
makes it hard to model the aforementioned Fresnel and specular
highlight effects, which affect transmission but not coverage. The
CSSM algorithm discussed in this paper can be applied to either the
RenderMan representation, or a representation with scalar coverage
and a separate colored transmission texture map.

3 Related Work

Enderton et al. [2010] introduced several methods for increasing
the effectiveness of screen-door translucency for partial coverage
for both eye and shadow rays. This is the inspiration for CSSM.
We extend their single-pass, partial-coverage shadowing method to
colored translucency and then optimize it for RGB wavelengths and
low sampling rates. We focus on shadowing instead of eye rays for
two reasons. Viewers are more tolerant of blurry shadows than a

blurry view, so one can do more filtering there. Shadow translu-
cency is a more significant problem than eye ray translucency for
games because far-to-near rendering of convex parts is inconvenient
but sufficient for correct translucency in the camera’s view but does
not solve translucent shadowing.

Lokovic and Veach [2000] created a deep shadow map that stores
every translucent fragment overlapping a pixel as a linked list or
array. This can be used to produce ideal shadowing. Various meth-
ods have since been developed for constructing and applying this
data structure for real-time rasterization rendering. These use clever
GPGPU methods but are ultimately limited by the fact that the
structure inherently requires unpredictable space and time per pixel.
CSSM can be viewed as a stochastic equivalent of a deep shadow
map that fits within the existing rendering pipeline.

Gosselin et al. [2004] basically computes a projective texture for
the light based on transmissive surfaces in the scene. A closely
related technique was used in the Starcraft II video game [Filion and
McNaughton 2009]. That technique augments a traditional shadow
map with a color buffer. The shadow depth map is computed solely
from opaque surfaces. The shadow color buffer is the product of
all transmissive surfaces closer to the light than the opaque depth,
as seen by the light. The limitations of these methods are that they
cannot cast shadows on transmissive surfaces, cannot cast proper
shadows on participating media like fog and smoke, are incorrect
for more than one layer of transmission, and cannot model partial
coverage receivers or casters.

Dachsbacher and Stamminger’s [2003] similary-named translucent
shadow maps (TSM) are unrelated to CSSM. TSM are primarily for
modeling subsurface scattering, not transmission and partial cover-
age of discrete surfaces.

Opacity shadow maps [Kim and Neumann 2001], Occu-
pancy maps [Sintorn and Assarsson 2009] and Fourier opacity
maps [Jansen and Bavoil 2010] both form low-frequency represen-
tations of a transmissive volume. These are well-suited to hair and
dense participating media (like smoke), with uniform spectral re-
sponse and no discrete surfaces. CSSM produces more noise and
is inefficient for such materials, but can more accurately and effi-
ciently represent layered discrete surfaces. Figure 7 contains depth-
slicing artifacts from directly applying CSSM to particle-system
smoke. This is a case where one would prefer some new extension
of Fourier opacity maps to colored translucency.

Mitchell [2004] describes an extremely practical method based on
work by Dobashi et al. [2002] that is today employed by games
for simulating single-scattering in participating media. His method
renders a traditional shadow map from opaque objects only and then
fills the scene with hundreds of translucent fog planes that receive
the shadowing. This produces compelling light shafts, which can
have color if the light has a projective texture or the fog planes have
colored texture. Under Mitchell’s original method, translucent ob-
jects (and the fog itself) cannot cast shadows, however, his method
can be trivially extended to use the new CSSM as shown in figures 3
and 6.

4 Algorithms

4.1 Combining Coverage and Transmission

Let the following probabilistic events be defined at the incidence of
a photon of wavelength λ and a surface that lies within a triangle:

A = “The photon hits the triangle surrounding the surface”
S = “The photon hits the surface itself”
T = “The photon is transmitted through the surface”

Figure 3: Light shafts rendered by combining CSSM with
Mitchell’s method [2004]. The light source is a distant white spot-
light representing the sun; colors arise from the translucent shad-
ows cast by the stained glass windows.

An example of the distinction between a surface and a triangle is
an object like a tree leaf modeled with a triangle larger than the leaf
and the exterior region trimmed away with a region of α = 0, that
should be considered “not present.” Partial coverage is a statistical
representation of this for surfaces like window screens where the
holes are spread throughout the triangles.

Let the probability that a photon strikes the surface, given that the
photon hit the triangle bounding the area spanned by the surface, be
P(S | A) = α.

Let the probability that a photon at wavelength λ is transmitted
through a surface, given that it hit the surface, be P(T | S) = ~tλ.
For example, the some surfaces might be modeled as:

Material α ~tr ~tg ~tb
Green glass 1.00 0.1 0.9 0.1
“Clear” nylon screen 0.25 0.5 0.5 0.5
Brick 1.00 0.0 0.0 0.0
Black nylon screen 0.25 0.0 0.0 0.0

Both ~t and α can be texture mapped across a mesh.

The net probability of a photon incident on the triangle being ab-
sorbed or reflected conveniently reduces to:

~ρλ = P(T̄ | A) = 1− P
`ˆ

(S ∩ T) ∪ S̄
˜
| A

´
~ρλ = (1− ~tλ)α (1)

In other words, ~ρλ is the fraction of light at each wavelength that
hits the surface and is not transmitted, which is the constant we
require for colored stochastic shadow casting.

4.2 General Algorithm (CSSM1)

Given the derivation from section 4.1, we simply extend stochastic
transparency shadow maps [Enderton et al. 2010] to include non-
refractive colored transmission. We call this algorithm CSSM1. It
requires an array of shadow maps, one for each wavelength (e.g.,
three for RGB.)

The algorithm has two parts: colored shadow map generation (for
shadow rays) based on ρ, and the net illumination ~X based on that

shadow map (for eye rays) and light color ~L to be applied at each
fragment. We call the second shadowedLightColor; it is what PCF
sampling does for traditional opaque shadow maps. For the CSM1
algorithm, these parts are:

CSSM1 ALGORITHM

generateShadowMap():
1. For each wavelength λ:

(a) Bind and clear depth texture shadow[λ]
(b) Set the projection matrix from the light’s viewpoint
(c) Render all surfaces; discard fragments with ~ξλ < ~ρλ

2. Return the shadow array

shadowedLightColor():
1. Let ~sxyz be the projected shadow map texture coordinate

and depth value (as specified by GLSL shadow2D)
2. For each wavelength λ:

(a) Let Xλ = 0
(b) For each sample offset ∆ (of n total):

i. ~Xλ += (texture2D(shadow[λ], ~sxy+~∆).r> ~sz)
(c) ~Xλ = ~Lλ ~Xλ/n

3. Return ~X

In this pseudocode, ~ξ is a vector of uniformly distributed ran-
dom numbers on [0, 1], which we compute by a hash of the
fragment’s world-space position, following Enderton et al. Let
the boolean→real mapping of the greater-than comparison be:
false→0, true→1. The texture2D function corresponds to the
GLSL 1.50 texture sampling function. The sample and compare
can be replaced with the shadow2D function, which is incorporated
into the overloaded texture function for sampler2DShadow argu-
ments under GLSL 3.30. We present an explicit depth comparison
here to set up the later derivation of the CSSM2 algorithm.

ShadowedLightColor must be applied in the context of some other
algorithm for rendering translucent surfaces with correct eye ray
visibility, e.g., the painter’s algorithm, depth peeling, or an order-
independent transparency method.

There are three drawbacks to the CSSM1 algorithm. The first is that
it must render and sample multiple shadow maps. This increases
the shadow map generation time, memory space, and shadow band-
width required when shading proportionally. The multiple passes
during shadow map generation are particularly troubling because
for texture-mapped transmission and partial coverage, the same tex-
els must be fetched for each wavelength.

The second drawback is that it may require more shadow samples
when shading than a traditional shadow map to produce pleasingly
smooth results. This is because of the variance inherent in the
stochastic sampling during shadow map generation and is inherited
from stochastic transparency, which also requires many samples
per pixel. The third drawback is that because each wavelength’s
stochastic samples are independent, there can be color noise as well
as intensity noise. In practice, we observe that in practice this is no
worse than the intensity noise and is ameliorated by the same level
of sampling during shading.

4.3 Efficient Algorithm for the RGB Case (CSSM2)

The CSSM2 algorithm is a time and space optimization of CSSM1
for the common case of RGB wavelength samples. To avoid ren-
dering three shadow maps, the CSSM2 algorithm packs three depth
buffers into a single color texture. This immediately yields a 3x

performance increase for shadow map generation. It also saves
bandwidth and instructions, increases coherence, and allows vec-
torization in both shadow map generation and fragment shading.

The challenge is encoding depth values in color channels without
losing the hierarchical and early-z tests and basic depth-test func-
tionality, which are tied to depth textures under current GPUs and
APIs. Our approach is to retain a temporary depth buffer for opaque
surfaces and use min-blending of color channels to simulate a depth
test for translucent surfaces. Many real-time systems render all
shadow maps to textures before all visible surfaces to allow mul-
tiple lights in each shading pass. The downside of this approach is
that all shadow maps must be resident simultaneously, and on con-
soles texture memory is fairly limited. Fortunately, the CSSM2 data
structure is just the color texture; the depth texture is only needed
to construct the color texture. Thus the memory for single depth
texture may be shared among all lights.

The CSSM2 algorithm is:

CSSM2 ALGORITHM

generateShadowMap():
1. Set the projection matrix from the light’s viewpoint
2. Bind and clear the depth buffer and shadow color buffer

3. Disable color write, enable depth write
4. Render all opaque surfaces

5. Enable color write, disable depth write
6. Copy depth to all color channels by rendering a large quad

7. Set MIN blending
(i.e., glBlendEq(BLEND MIN); glBlendFunc(ONE, ONE))

8. Render all translucent surfaces; let each fragment’s color be
max(z, (~ξ > ~ρ)), where z is the fragment’s depth value
(i.e., glFragCoord.z)

9. Return the shadow color buffer texture

shadowedLightColor():
1. Let ~sxyz be the projected shadow map texture coordinate

and depth value
2. Let ~X = ~0
3. For each sample offset ~∆ (of n total):

(a) ~X += (texture2D(shadow, ~sxy + ~∆).rgb > ~sz)
4. Return ~X~L/n

CSSM2 addresses the primary drawback of CSSM1 because it
eliminates the triple-shadow map and per-wavelength loops. For
scenes that can be rendered with 10-bit shadow map depth pre-
cision, the CSSM2 algorithm requires only 2/3 the memory of
CSSM1 because it packs into 30 bits per pixel using the OpenGL
GL RGB10 texture format, versus three GL DEPTH16 textures. That is
fairly limited depth precision, although it is reasonable for scenes
with limited vertical range and overhead lights (e.g., both the Star-
Craft II and Marvel Ultimate Alliance games previously men-
tioned). We rendered all results in this paper with GL RGB16F tex-
tures, which we recommend for general scenes, and observed no
performance difference from the 50% higher bandwidth.

4.4 Choosing the ~∆s

As with traditional shadow maps, a regular block of ~∆-offsets is
inferior to a distributed pattern [Reeves et al. 1987]. A regular block
makes adjacent pixels statistically dependent, which leads to low-

frequency noise in light space. In the case of CSSM, that noise
manifests as color splotches in shadows.

Designing a shadow reconstructions filter for a very low sample
count is something of a black art because theoretical signal pro-
cessing considerations become swamped by the particulars of hu-
man perception, the scene texture, artifacts from other effects, and
the characteristics of specific noise functions. We informally inves-
tigated n-rooks, box, disk, and random striated filters, then selected
and tuned a box-plus-cross-shaped filter for its empirical perfor-
mance and aliasing characteristics. We report that filter here and ob-
serve that it gives a reasonably low variance and consistent shadow
term estimate at high performance, but make no quantitative claims
about its variance reduction properties. We suggest as future work
that a better filter could further improve image quality.

The CSSM2 filter contains 13 single taps placed relative to the cen-
ter, in texels, at

~∆ =~x+ ~δ(~sxy) (2)
~x ∈{(0, 0), (±3,±3), (±4, 0), (0,±4), (±7, 0), (0,±7)} (3)

The micro-offset ~δ provides jittering. It ensures that single-pixel
noise appears instead of large texel blocks when a shadow map texel
projects to multiple screen pixels. This is a commonly observed
technique in games that is an alternative to bilinear interpolation as
a texture magnification method for shadows. We sought to mimic
a similar effect from the Futuremark Games Studio title Shattered
Horizon, and chose the particular jitter function

~δ(~sxy) =
[(5~sxy) mod (2, 2)]− (1, 1)

6
“˛̨̨˛̨̨

∂~sxy

∂x

˛̨̨˛̨̨
1
,
˛̨̨˛̨̨
∂~sxy

∂y

˛̨̨˛̨̨
1

” , (4)

in which || · ||1 denotes Manhattan distance. The strange denomi-
nator arises because the Manhattan distance of a spatial derivative
is supported by specific OpenGL/DirectX API calls and GPU hard-
ware that provide derivative estimates by finite differences across
sets of four pixels. This noise function is a simplified version of a
more sophisticated one described by Mittring [2007] that was used
on Crytek’s Crysis 2. The filter gave results roughly comparable to
a 9-tap bilinear filter of diameter five texels for traditional shadow
maps. The CSSM2 filter needs to be wider than the bilinear filter
to reduce stochastic variance because it cannot average four values
per tap using hardware PCF sampling.

5 Graphics API Considerations

Like traditional shadow maps, the CSSM algorithm only depends
on some high-level features of a renderer and is therefore largely
independent of the implementation API. Nonetheless, the design
of a specific API can affect the implementation complexity and
constant-factor performance.

5.1 Hardware Anti-Aliasing

Many renderers use multi-sample antialiasing (MSAA) to shade
only once per fragment but sample visibility at multiple locations,
which improves the quality of antialiasing without incurring a pro-
portional cost. Compared to traditional shadow maps, there is no
new interaction with MSAA when shading visible surfaces. How-
ever, when generating the shadow map one could theoretically
leverage MSAA to increase performance. For example, the CSSM
can be rendered at 1/16 resolution with 16 MSAA samples per
pixel, which yields equivalent coverage at reduced rendering cost.
To ensure that the stochastic masking is performed per sample and

Figure 4: Left) Photograph and right) image rendered by our algorithm, demonstrating target transmissive shadowing phenomena it cor-
rectly simulates, including: a) directly illuminated transmissive surfaces receive no shadowing; b) surfaces indirectly illuminated by trans-
mitted light exhibit shadows matching the product of the transmitter’s and receiver’s spectra, which also leads to c) colored highlights; and
d) the shadows of multiple transmitters are the product of all the transmitters’ spectra with the receiver’s spectrum.

not per pixel, replace the per-fragment discard decision with a per-
coverage-mask element decision (by writing to gl SampleMask[] in
OpenGL 4.0/DirectX 10.1).

5.2 Percentage Closer Filtering Optimizations

Using percentage-closer filtering (PCF) [Reeves et al. 1987; Fer-
nando 2005], NVIDIA GPUs will average the result of four depth
tests if a single shadow comparison (shadow2D) is made to the point
between four texels in a depth map. This allows those GPUs to issue
fewer texture fetch instructions in the high-level shading language,
which may lead to performance gains depending on the low-level
architecture. Because shadow2D is only defined for the red chan-
nel of a depth texture, CSSM2 cannot use this instruction. Thus
its memory performance may be lower per filter tap on pre-2010
NVIDIA cards, including the Playstation 3.

GPUs by other vendors, including the Xbox 360 ATI GPU, do not
support PCF and thus CSSM2 has the same memory behavior as a
traditional shadow map on them. Newer GPUs support the DirectX
11 and OpenGL 3.3 four-texel fetch instruction, which allows the
texture fetch for percentage-closer style filtering to be issued effi-
ciently across all vendors. CSSM2 should have the same memory
performance as a traditional shadow map if implemented with this
instruction. The CSSM2 results in this paper were rendered under
OpenGL 3.0 with one fetch per instruction, i.e., equivalent to the
Xbox 360’s limitations, and are thus are a conservative performance
estimate.

For programmer convenience and potential extended architectural
support, I propose an extension to GLSL that (1) defines shadow2D

for sampler2D as well as sampler2DShadow types, and (2) defines
PCF filtering for all color channels.

6 Results

6.1 Quality

The side-by-side comparisons of real photographs and images ren-
dered with CSSM in figures 4 and 5 demonstrate that the algorithm
is able to simulate the kinds of colored translucency phenomena
observed in the real world. (All result images were rendered with
CSSM2, which produces identical results to CSSM1 with the same
filter.) The rendered images are not intended to match the pho-
tographs exactly, since the model geometry and materials are only

Figure 5: Left) Photograph of a red scarf and red theatre gel
demonstrating different colored translucency shadow phenomena
that can be simulated by our method. The scarf’s appearance arises
from partial coverage (α) by opaque “red” threads. The gel’s ap-
pearance is due to preferential transmission of “red” light. Note the
difference in shadow color. Right) A similar virtual scene rendered
with a Colored Stochastic Shadow Map.

rough approximations and the bottles in figure 4 create some caus-
tics that CSSM does not simulate.

We note one interesting artifact in the photographs: despite being
captured with a midrange (Cannon S90) camera under about 40W
of incident illumination and filtered down to HD resolution, they
exhibit about as much noise as the rendered images.

Figure 6 demonstrates the correctness of CSSM in comparison to
previous algorithms, which are denoted by abbreviated citations.
The scene contains a blue crystal statue, pierced by a beam of light
from a high window. The scene is filled with low-coverage, highly
reflective particles that do not cast shadows themselves. These are
rendered as full-screen textured quads that fill the view frustum,
following Mitchell [Mitchell 2004]. This causes the light shaft to
be visible. The shaft should be white before it strikes the statue and
blue afterward. Note that the first transmissive surface seen by the
light is the window glass, not the statue. Image (a) shows the result
produced by End10 [Enderton et al. 2010], in which the shaft re-
mains colorless despite the blue transmitter because that algorithm
cannot represent colored transparency. The Fil09 [Filion and Mc-
Naughton 2009] result (not shown) has the same artifact for this
scene because it samples the window color and not the statue color.
Image (b) shows that Gos04 [Gosselin et al. 2004] incorrectly col-
ors the entire shaft blue. That is because that algorithm propagates
transmissive colors all of the way back to the light, as if there were
a colored gobo in front of it. Image (c) is the CSSM result. CSSM
can represent spectrum varying with distance from the light, so the
shaft is correctly blue on the lower-left and white in the upper right.

a) End10/Fil09: no color b) Gos04: wrong color c) CSSM: correct distance-varying color

Figure 6: A blue crystal angel (Stanford’s low-polygon “Lucy”) statue in a shaft of light in the Sibenik cathedral.

Figure 7 shows a scene containing dense fog, for which translucent
self-shadowing is important. (This image is an homage to a similar
figure without colored translucency by Lokovic and Veach [Lokovic
and Veach 2000].) This scene is modeled as two opaque verti-
cal white pipes, two transmissive orange pipes, three opaque cyan
pipes, and a particle system of opaque, partially-covering fog mod-
eled with texture-mapped billboards. Note the colored and opaque
shadows cast through the smoke. Also note the self-shadowing of
the smoke, causing it to darken near the bottom. The white vertical
pipes are also darker near the ground because of shadowing from
the smoke. Banding artifacts on the cyan pipes occur because the
particles are billboards. The soft particle method is one algorithm
(that we did not implement) that can be used to conceal this artifact.

6.2 Performance

We intentionally selected simple scenes for quality evaluation so
that noise and color interactions would be visible. For performance
evaluation we selected four scenes with varying levels of complex-
ity: the game scene shown in figure 2, from both a typical viewpoint
and the worse viewpoint we could find for CSSM2, the Sibenik
and Sponza benchmark models by Marko Dabrovic, and the
Postsparkasse model (figure 8) by Christian Bauer that contains a
two-layer glass ceiling and glass floor. The latter three models were
downloaded from http://hdri.cgtechniques.com/∼sibenik2/.
The worst case viewpoint for CSSM2 overhead on the game scene
was where the camera was located so that all surfaces were in
shadow.

We evaluated five algorithms. We consider the Wil78 [Williams
1978] algorithm for opaque shadows a baseline, since most game
developers use some variation of it for opaque shadows today. Any
practical translucent shadow algorithm must not be significantly
more expensive than this for deployment on current hardware for
interactive applications. The Gos04 and End10 algorithms generate
incorrect results for overlapping and colored surface, as previously
demonstrated. However they are known to have good performance
characteristics and are therefore algorithms one would consider in
practice, especially for an application that generally could work
within their limitations. CSSM1 and CSSM2 are the new algo-
rithms presented in this paper.

Figure 7: Particle-system smoke casting and receiving shadows
with CSSM. The orange pipes are transmissive, the smoke has par-
tial coverage.

We used the same reconstruction filter for Wil78, Gos04, End10,
and CSSM1. This circle-plus-point-shaped filter contained 9 bilin-
ear taps placed at the center of and at 45◦ intervals around a 2-texel
radius disk. For CSSM2 we used the filter described in section 4.4.
This is because CSSM2 is unable to perform bilinear filtering, so it

requires more filter taps than the other algorithms to produce good
results. CSSM2 with the 9-tap filter is faster and produces noisier
results; the other algorithms on the CSSM2 filter are slower and
give slightly blurrier results. All depth values maps were encoded
in 16-bit floating point (per channel, for CSSM2) and the Gos04
color map was at 8-bits per channel.

Table 1 summarizes the render time, in milliseconds, of shadow
map generation and actual shading for each algorithm when run
on an NVIDIA GeForce GT 280 GPU under Windows Vista using
OpenGL 2.0. All timings were computed with the GL TIMER QUERY

extension, which enables accurate and asynchronous evaluation of
the time for commands to propagate through the GPU pipeline. The
right-most column of the table lists the overhead in milliseconds for
CSSM2 compared to Wil78. This is the per-frame cost of adding
colored translucent shadows to a typical existing rendering engine.

Beware that render times for complex scenes are affected by many
factors beyond per-texel computation. These factors include mem-
ory and branch coherence, cache hit rate, the pipeline impact of
texture and shader changes, and the sharing of units between vertex
and pixel processing. Thus in some cases an algorithm that per-
forms strictly more computation may still have higher performance,
e.g., Gos04 compared to Wil78 on the game scene.

Camera and light viewpoints also can affect performance by about
10%, as demonstrated by the game/typical vs. game/worst results.
We observed similar behavior for all scenes; this is a representative
result. Note that the worst case viewpoint yielded higher net per-
formance for CSSM2 than the typical case. It is the “worst case”
because Wil78 was disproportionally faster for that viewpoint.

In general, CSSM2 maintains performance close to that of the pre-
vious algorithms, yet it is able to also correctly model the col-
ored translucent shadows. CSSM2 is two to three times faster
than CSSM1, which demonstrates that the optimizations in its de-
sign successfully reduced most of the overhead of managing three
shadow maps simultaneously.

Opaque CSSM2 -
Wil78 Gos04* End10* CSSM1 CSSM2 Wil78

Game (typical) Generate 7.6 7.0 7.4 27.4 7.7
1096 kTri Apply 8.4 8.6 7.1 9.8 8.4

Total 16.0 15.6 14.5 37.2 16.1 0.1

Game (worst) Generate 6.6 6.8 6.5 28.2 6.5
1096 kTri Apply 7.6 7.5 6.0 8.4 8.6

Total 14.2 14.3 12.5 36.6 15.1 0.9

Sibenik Generate 2.6 2.3 3.1 22.9 3.2
80 kTri Apply 4.6 4.0 4.7 4.7 4.6

Total 7.2 6.3 7.8 27.6 7.8 0.6

Sponza Generate 3.3 4.1 3.3 13.5 4.2
66 kTri Apply 4.3 3.2 3.1 6.4 4.1

Total 7.6 7.3 6.4 19.9 8.3 0.7

Postsparkasse Generate 2.6 4.8 3.4 21.1 4.3
267 kTri Apply 6.8 7.1 6.8 8.9 8.3

Total 9.4 11.9 10.2 30.0 12.6 3.2

Translucent

Table 1: Rendering time in milliseconds for the shadow map
generation and lighting application for various algorithms at
1920×1080 for scenes containing four unshadowed lights, hemi-
sphere ambient, and one shadow casting light. The right col-
umn shows the overhead of CSSM2 over traditional shadow maps.
* Gos04 and End10 generate incorrect results for these scenes.

7 Discussion

We expect that developers would like accurate colored shadows,
but are only willing to add them if the incremental cost over opaque

shadows is fairly low. We have shown that at the same resolution
as a traditional shadow map, CSSM adds at most a few millisec-
onds to a high-resolution frame render time. However, the CSSM
shadows are slightly blurrier than opaque ones because they use a
wider filter to reduce the hue variance in colored shadows. This
can be addressed by increasing shadow map resolution. The cost
of a shadowing algorithm is subjective because the impact of blur,
noise, lack of color, render time, and texture map space depend on
the viewer and the application.

Note that the tradeoff of noise versus blur versus resolution is less
significant for shadow rays than for eye rays. This is why CSSM
looks reasonable with many fewer samples than one would need for
stochastic transparency of eye rays. For static lights and objects,
shadow noise is in world-space, so it blends with texture noise.
For dynamic lights and objects the shadows are in motion, so noise
is less perceptible. Overblurring shadows to reduce variance and
aliasing is often acceptable because that also approximates shad-
owing from an area source or diffusion inside a translucent surface
(at least, viewers often interpret the images that way). We cannot
apply the CSSM reconstruction filter directly to colored stochas-
tic transparency for eye rays because they would blur edges in the
image itself, which is not an acceptable artifact.

Today, CSSM just manages to hold the stochastic noise to an ac-
ceptable level with low overhead compared to traditional shadow
maps. Assuming that GPUs continue to increase in raw processing
power and bandwidth, in the near future this will likely be so neg-
ligible that it will make sense to always use stochastic shadowing.
In general, we suspect that stochastic techniques for rasterization
like stochastic transparency and CSSM offer so many advantages
that they will become widespread. Stochastic methods have long
dominated ray tracing because they allow phenomena to combine
naturally, rather than requiring special purpose “effects.” This re-
duces the software engineering burden and artifacts of combining
phenomena. Motion blur, defocus, and translucency are three phe-
nomena that are currently hard to simulate well under rasterization,
yet they are all trivial when implemented stochastically. Of these,
translucency for shadows offers the best performance because it can
undersample visibility, but we believe that the others will also be vi-
able in the near future as well.

Acknowledgements

Thanks to Eric Enderton (NVIDIA) for his input on the algorithm
design and its presentation in this paper.

References

BARSKY, B. A., AND KOSLOFF, T. J. 2008. Algorithms
for rendering depth of field effects in computer graphics. In
ICCOMP’08: Proceedings of the 12th WSEAS international
conference on Computers, World Scientific and Engineering
Academy and Society (WSEAS), Stevens Point, Wisconsin,
USA, 999–1010.

BAVOIL, L., CALLAHAN, S. P., LEFOHN, A., COMBA, JO A.
L. D., AND SILVA, C. T. 2007. Multi-fragment effects on the
gpu using the k-buffer. In I3D ’07: Proceedings of the 2007
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, 97–104.

DACHSBACHER, C., AND STAMMINGER, M. 2003. Translu-
cent shadow maps. In EGRW ’03: Proceedings of the 14th Eu-
rographics workshop on Rendering, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 197–201.

Figure 8: The Austrian Postsparkasse building contains two layered glass roofs, a glass floor, and multiple windows. All surfaces are thus
within two or three translucent shadows. The inset shows stochastic sampling noise scaled up 10x. This is a worst-case scene for noise
because there is no surface texture.

DOBASHI, Y., YAMAMOTO, T., AND NISHITA, T. 2002. Inter-
active rendering of atmospheric scattering effects using graph-
ics hardware. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
Eurographics Association, Aire-la-Ville, Switzerland, Switzer-
land, 99–107.

ENDERTON, E., SINTORN, E., SHIRLEY, P., AND LUEBKE, D.
2010. Stochastic transparency. In I3D ’10: Proceedings of the
2010 symposium on Interactive 3D graphics and games, ACM,
New York, NY, USA.

FERNANDO, R. 2005. Percentage-closer soft shadows. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Sketches, ACM, New
York, NY, USA, 35.

FILION, D., AND MCNAUGHTON, R., 2009. StarCraft II effects
and techniques. SIGGRAPH 2009 Real-Time Rendering Course,
Natalya Tatarchuk, moderator.

GOSSELIN, D., SANDER, P. V., AND MITCHELL, J. L. 2004.
Real-Time Texture-Space Skin Rendering. Charles River Media,
Inc., Rockland, MA, USA, ch. 2.8, 171.

HECHT, E. 2002. Optics. Addison-Wesley. 4th Edition.

JANSEN, J., AND BAVOIL, L. 2010. Fourier opacity mapping. In
I3D ’10: Proceedings of the 2010 ACM SIGGRAPH symposium
on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, 165–172.

KIM, T.-Y., AND NEUMANN, U. 2001. Opacity shadow maps. In
Proceedings of the 12th Eurographics Workshop on Rendering
Techniques, Springer-Verlag, London, UK, 177–182.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps.
In SIGGRAPH ’00: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
385–392.

MITCHELL, J. L. 2004. Light Shaft Rendering. Charles River
Media, ch. 8.1, 573–588.

MITTRING, M. 2007. Finding next gen: Cryengine 2. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, New York,
NY, USA, 97–121.

MURPHY, S., 2009, September. Personal communication with the
Senior Lead Artist, Vicarious Visions.

PORTER, T., AND DUFF, T. 1984. Compositing digital images. In
Computer Graphics (Proceedings of SIGGRAPH 84), 253–259.

REEVES, W. T., SALESIN, D. H., AND COOK, R. L. 1987. Ren-
dering antialiased shadows with depth maps. In SIGGRAPH ’87:
Proceedings of the 14th annual conference on Computer graph-
ics and interactive techniques, ACM, New York, NY, USA, 283–
291.

SINTORN, E., AND ASSARSSON, U. 2009. Hair self shadow-
ing and transparency depth ordering using occupancy maps. In
I3D ’09: Proceedings of the 2009 symposium on Interactive 3D
graphics and games, 67–74.

SUNG, K., PEARCE, A., AND WANG, C. 2002. Spatial-temporal
antialiasing. IEEE Transactions on Visualization and Computer
Graphics 8, 2, 144–153.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
In SIGGRAPH ’78: Proceedings of the 5th annual conference
on Computer graphics and interactive techniques, ACM, New
York, NY, USA, 270–274.

WYMAN, C. 2005. Interactive image-space refraction of nearby ge-
ometry. In GRAPHITE ’05: Proceedings of the 3rd international
conference on Computer graphics and interactive techniques in
Australasia and South East Asia, ACM, New York, NY, USA,
205–211.

