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Abstract
We present HLBVH and SAH-optimized HLBVH, two high performance BVH construction algorithms targeting
real-time ray tracing of dynamic geometry. HLBVH provides a novel hierarchical formulation of the LBVH al-
gorithm [LGS∗09] and SAH-optimized HLBVH uses a new combination of HLBVH and the greedy surface area
heuristic algorithm. These algorithms minimize work and memory bandwidth usage by extracting and exploiting
coarse-grained spatial coherence already available in the input meshes. As such, they are well-suited for sorting
dynamic geometry, in which the mesh to be sorted at a given time step can be defined as a transformation of a
mesh that has been already sorted at the previous time step. Our algorithms always perform full resorting, unlike
previous approaches based on refitting. As a result they remain efficient even during chaotic and discontinuous
transformations, such as fracture or explosion.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

1. Introduction

Interactive ray tracing makes wide use of axis-aligned
bounding volume hierarchies (BVH) as spatial indexing
structures [AL09, WMG∗07]. Considerable research has in-
vestigated fast construction of acceleration structures for
dynamic geometry. Much of that literature deals with se-
rial or moderately parallel computation [WK06, CHCH06,
WBS07], but some recent work targets efficient parallel al-
gorithms for multicore [PGSS06,SSK07,Wal07] and many-
core architectures [LGS∗09, ZHWG08]. We wish to explore
massively parallel algorithms suited for real-time ray tracing
of complex, fully dynamic datasets such as those in games.

Inspired by the recent work of Garanzha and Loop
[GL10], we extend the approach of Lauterbach et al.
[LGS∗09] by introducing a novel hierarchical algorithm that
reduces substantially both the amount of computations and
the memory traffic required to build a Linear Bounding Vol-
ume Hierarchy (LBVH), while still exposing a data-parallel
structure. As our algorithm is based on extracting and ex-
ploiting coarse-grained spatial coherence already present in
the input meshes, it is particularly efficient for sorting dy-
namic geometry, where the mesh to be sorted at a given time
step is defined as a transformation of a mesh which has been

already sorted at the previous time step. Unlike much pre-
vious work based on refitting an existing BVH to new ver-
tex positions, our algorithm performs a full sorting operation
each frame. This suppports dynamic geometry well, since
the algorithm output does not use and is not sensitive to the
quality of the BVH constructed at the previous frame. More-
over, it produces efficient hierarchies even for chaotic or dis-
continuous transformations, as in fracture or explosion.

We make three main contributions. First we introduce
a more efficient reformulation of the Morton curve-based
primitive sorting step required by the original LBVH build-
ing procedure, in which we employ a hierarchical grid de-
composition to exploit spatial coherence present in the input
mesh. We significantly reduce both work and memory traffic
by coupling a compress-sort-decompress (CSD) algorithm
[GL10] to sort the Morton codes according to their most
significant bits with the use of an in-core block-based algo-
rithm to complete the sorting with respect to the remaining
bits. Second, we describe a novel node hierarchy emission
procedure that improves on the technique of Lauterbach et
al. [LGS∗09] in computational and memory efficiency, and
solves some memory usage and tree layout issues present in
the original algorithm. Third, we propose a new hybrid algo-
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rithm that uses the surface area heuristic (SAH) [Hav00] to
build the top BVH levels on the coarse clusters produced by
our HLBVH scheme, and uses our fast Morton curve-based
partitioning within cluster subtrees.

We have implemented our algorithm in CUDA
[NBGS08], relying on Thrust (http://code.google.
com/p/thrust/) for all standard algorithms such as
global memory sorting, reduction and scan opera-
tions [GGKM06, SHZO07, SHG09], and benchmarked
it on an NVIDIA GeForce 280 GTX GPU. The resulting
system can handle fully dynamic geometry containing one
million triangles at real-time rates, constructing the BVH in
less than 35ms on average using the HLBVH algorithm and
in about 100ms using our SAH-based hybrid. We believe
this approach will enable future games to use real-time ray
tracing on complex dynamic geometry.

2. Background

Researchers have investigated fast construction of bounding
volume hierarchies on both multicore CPUs [WK06,Wal07,
WBS07] and massively parallel GPUs [LGS∗09]. We sum-
marize here the most directly relevant results.

2.1. LBVH

Lauterbach et al. [LGS∗09] introduced a BVH construction
algorithm based on sorting the primitives along a space-
filling Morton curve running inside the scene bounding box.
Space-filling curves have long been used for improving spa-
tial algorithms [Bia69]. The coordinate of a three dimen-
sional point along a Morton curve of order n, also called its
Morton code, can be computed discretizing its coordinates to
n bits and interleaving their binary digits, thus obtaining a 3n
bit index. As the algorithm transforms the problem of build-
ing a hierarchy into the problem of sorting a set of points
along a curve, Lauterbach et al. call this the Linear Bound-
ing Volume Hierarchy (LBVH) algorithm. We extend their
work by solving the same problem - sorting the primitives
along a global Morton curve - with a novel, more efficient
hierarchical algorithm.

2.2. Refitting

Fast updates to BVHs for deformable models are generally
obtained through refitting, which keeps the BVH topology
while recomputing the extent of the bounding volumes af-
ter vertex motion. This operation is very efficient and runs
in linear time, but the resulting hierarchies can be poorly
suited to high performance ray tracing. However, a pure re-
fitting algorithm can produce arbitrarily bad trees as vertices
move from their original positions: large deformations tend
to cause significant inflation and overlap of the bounding
volumes, significantly reducing ray traversal performance.
Researchers have also proposed hybrid algorithms to track

which subtrees need a rebuild and which can just be re-
fit after a deformation [Gar08], introducing a tradeoff be-
tween hierarchy quality and construction speed; such sys-
tems need to reconstruct the entire BVH after significant
degradation [LeYM06, WBS07, IWP07]. In contrast, our al-
gorithm always performs a full rebuild, but exploits coarse-
grained spatial coherence available in the input ordering of
the primitives. This in turn exploits “almost sorted” input: if
after a deformation the algorithm processes the primitives in
the order induced by a BVH before the deformation occurred
(e.g. the BVH from the previous frame), the BVH construc-
tion of the deformed mesh will automatically take less time.
In other words, by rebuilding from scratch each frame we
put a lower bound on the quality of the trees we produce and
an upper bound on the generation time.

2.3. Compress-Sort-Decompress

Recently Garanzha and Loop [GL10] introduced an effi-
cient GPU ray sorting method based on hashing rays to in-
teger keys, applying a run-length encoding compression to
the keys array, sorting the obtained key-index run-length
descriptors, and decompressing the ordered array to obtain
the full sorted sequence of hash key-ray index pairs. This
compress-sort-decompress (CSD) scheme exploits spatial
coherence already available in the input sequence by en-
coding blocks of contiguous elements which can be consid-
ered already sorted as single items, and unpacking them after
the sorting is done. As future work, the authors suggest the
possibility of exploiting this scheme in the context of BVH
construction by sorting the primitives along a Morton curve,
compressing the obtained array of Morton codes, construct-
ing a BVH and decompressing the result. This scheme forms
the basis for some of our contributions.

3. HLBVH

Our contribution starts with the observation that each value
assumed by a Morton code identifies a voxel of a regular grid
spanning the scene’s bounding box (see Figure 2), and that
the higher bits represent the parent voxels in a hypothetical
hierarchy of such grids: the highest order 3 bits represent the
coarsest grid of 8 voxels, the next 3 bits represent a subdi-
vision of each voxel of the coarsest grid in 8 octants, and so
on. Each additional bit splits the parent in two. The original
LBVH algorithm was implemented using a Morton curve of
order n = 10, resulting in a 30 bit grid.

Our algorithm splits the original LBVH algorithm into a
2-level hierarchical problem, where the first level of the hi-
erarchy consists in sorting the primitives into a coarse 3m bit
grid according to an m-bit Morton curve (with m < n), and
the second level consists in sorting all primitives within each
voxel of the coarse grid according to the remaining 3(n−m)
bits.

If m is relatively small (e.g. 5 or 6), two consecutive primi-
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tives in the input mesh will likely fall in the same voxel of the
coarse grid. In other words, the higher the spatial coherence
of the input mesh, the higher the probability that the most
significant 3m bits of the Morton codes of two consecutive
primitives will be the same. We exploit this fact by using a
CSD scheme to perform this top level sorting operation and
build the corresponding BVH tree. Once the top level tree
is built, we proceed with sorting according to the remain-
ing bits and creating the missing levels of the BVH tree. In
practice, primitive sorting and hierarchy emission can be de-
coupled, and we describe them separately.

3.1. Primitive Sorting

Figure 1 summarizes the top level primitive sorting algo-
rithm. Initially, we compute and store the 30-bit Morton
codes of each of the N input primitives with a simple fore-
ach data-parallel construct. The top level primitive sorting
step starts run-length encoding the codes by their high 3m
bits, applying a compaction kernel to extract a list of in-
dices pointing to the beginning of each run, obtaining an ar-
ray with M ≤ N items called run_heads. We then construct
two more arrays using one more foreach loop, where the first
contains the M unique 3m-bit values corresponding to each
run and the second assigns them an increasing id from 0 to
M−1. Next, we invoke a key-value pair 3m-bit radix sorting
algorithm using the run values as keys and the run ids as val-
ues. The first stage is then completed by decoding the sorted
runs: an operation which involves computing an exclusive
scan on the sorted run lengths to determine the new offsets
for each run, and another foreach loop to expand the runs.

At this point, the Morton codes are sorted by their coarse-
grid index: the array can be thought of as if it was composed
by sorted segments, where each segment corresponds to all
points contained in a given 3m-bit voxel. The least signifi-
cant 3(n−m) bits in each segment are yet to be sorted. In
order to complete the sorting, we proceed by grouping con-
secutive segments in small blocks, containing up to 2000 el-
ements each, and we launch a single CUDA kernel perform-
ing an individual sorting operation per block, where each
block is assigned to a single concurrent thread array (CTA),
and the entire sorting is performed within shared memory us-
ing an odd-even sorting algorithm [Knu68]. The maximum
block size is determined by the amount of shared memory
available per processor. Here, we assume that each voxel
contains less than 2000 elements, which is reasonable if the
coarse grid is fine enough (in practice, on all meshes we
tested containing up to 1M triangles we have found this to
be the case with m = 6, while for 10M triangles we needed
to raise the coarse grid resolution to m = 7).

Compared to a global radix sort, the advantages of our
approach are three-fold:

• Reduced work and global memory traffic: due to the
use of an O(M)-complexity CSD for the most significant

top_level_sorting()

1 // compute n bit Morton codes
2 foreach i in [0,N)
3 codes[i] = morton_code( prim[i], n );
4
5 int d = 3 * (n - m);
6
7 // run-length encode the Morton codes
8 // based on their high order 3m bits
9 run_heads = compact i such that (cr 6= cl), with:
10 cr = codes[i] >> d;
11 cl = codes[i-1] >> d;
12
13 int M = run_heads.size();
14
15 foreach i in [0,M)
16 run_codes[i] = codes[run_heads[i]] >> d;
17 run_indices[i] = i;
18
19 // sort the compressed Morton code runs
20 radix_sort( run_codes, run_indices, 3 * m );
21
22 // compute offsets for the sorted run-lengths
23 offsets = ex_scan( run_length(i) ) with:
24 run_length(i) =
25 run_heads[run_indices[i]+1] -
26 run_heads[run_indices[i]];
27
28 // decode the sorted indices
29 foreach i in [0,M)
30 foreach j in [0,run_length(i))
31 out_indices[offset[i] + j] =
32 run_heads[run_indices[i]] + j;
33
34 // decode the sorted Morton codes
35 foreach i in [0,N)
36 out_codes[i] = codes[out_indices[i]];

Figure 1: Pseudocode for the top level primitive sorting
step. Keywords in bold represent data-parallel constructs.

bits, and fast shared memory sorting for the least signifi-
cant ones;

• Reduced global synchronization points: by using a 3m
bit radix sort in the first phase, rather than a 3n bit one,
we reduce the number of global synchronization points.
The second phase of our algorithm is performed entirely
within a single kernel call;

• Greater efficiency: our intra-CTA odd-even sorting algo-
rithm is up to 8× more efficient than the state-of-the-art
global radix sorting procedure.
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Figure 2: Morton curve ordering and the corresponding
Morton codes.

3.2. Hierarchy Emission

The original hierarchy emission algorithm employed by
LBVH proceeded as follows: given the sorted list of Morton
codes, a kernel proceeded extracting the most important bit,
or level, at which each key differed from its neighbour. This
level represents the highest level at which the key and its di-
rect neighbour are separated by a split in the final node hier-
archy. Each such split was then used to generate 3n− l more
splits, i.e. one for each level below the first split. In order to
do so, an exclusive scan counted the number of splits which
needed to be generated, and a separate kernel produced two
paired arrays of split levels and split positions. A stable radix
sort was then used to sort this list of key-value pairs by split
level, so as to collect first all splits happening at level 0, then
all splits happening at level 1, and so on, ordered by split
position within each level. Finally, these arrays were used
to generate the node hierarchy, which required to perform
an additional sorting pass to order the ranges of primitives
spanned by each node by their end index, so as to easily de-
termine parent-child relantionships between all nodes (when
this ordering is used, a node is a leaf when its ending Mor-
ton code differs from the one of its right neighbour, whereas
otherwise its neighbour is its rightmost child).

While all these passes could be performed with data-
parallel algorithms, it is important to notice that the two
additional sorting operations were performed on arrays sig-
nificantly larger than N, as each Morton code would of-
ten contribute several splits. Moreover, the algorithm had
the negative side-effect of producing several singletons, i.e.
nodes with a single child, and thus required to operate on a
very large memory arena, potentially 3n times larger than N.
Those singletons were later removed skipping all pointers to
individual children, but the memory layout of the tree was
left unmodified, potentially leaving many holes and harming
cache performance during traversal.
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Figure 3: Treelet emission process. A small block descrip-
tor is extracted from an example segment of Morton codes
(with the bit planes shown in different tints of green and the
splits highlighted in blue), and the block descriptor is used
to generate the corresponding treelet. The internal nodes of
the treelet report their split index, while leaves report their
spanned range of primitive indices.

We propose a novel algorithm which proceeds in several
passes, where each pass analyzes p consecutive bit planes
of the sorted Morton codes from most to least significant
bit, similarly to an MSD radix sort, and emits all the corre-
sponding depth p treelets. The overall idea is shown in Fig-
ure 3 and can be summarized as follows: at the beginning
of each pass the primitive array is conceptually split in seg-
ments corresponding to each leaf in the currently emitted hi-
erarchy. Each of these segments will generate a small treelet
of depth p. These treelets can be fully described by the list
of split planes in each segment, i.e. the list of indices where
each Morton code differs from its predecessor. As we are an-
alyzing only p bits at a time, there are only 2p− 1 possible
split planes in each segment, which can hence be organized
in small block descriptors: short integer arrays with 2p− 1
entries, organized as follows (assuming p = 3):

• entry 0 represents the position of the highest level split
plane (corresponding to the most important bit) in the seg-
ment, i.e. the first element whose current p bit planes are
of the form 1xx.

• entries 1 and 2 represent the position of the 2 splits cor-
responding to the second bit, i.e. the position of the first
element whose current p bit planes start by 01x or 11x.

• entries 3 to 6 represent the position of the 4 splits corre-
sponding to the third bit, i.e. the position of the first ele-
ment whose current p bit planes start by 001, 011, 101 or
111 respectively.

Pseudocode for the body of the loop is given in Figure 4,
and the whole algorithm is described here in more detail.
Initially, there is a single leaf node containing all primitives.
Throughout the outermost loop on all groups of p bit planes,
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we will need a way to compute the mapping between any
arbitrary primitive index i and the leaf that contains it. We
break down this problem in that of mantaining three separate
tables:

• an array head_to_node of N integers is kept to indicate
the mapping between the beginning of each leaf interval,
or segment, and the corresponding node index: if index i
is the beginning of a leaf, head_to_node[i] will point to
the corresponding node, otherwise it will be flagged with
an invalid number, e.g. −1. Initially, head_to_node[0] is
set to 0 (the index of the root node), and all other indices
are set to −1.
• a list of segment heads, where segment_head[segment]

identifies the index of the first primitive in a segment.
• a segment_id array of the form {1,1,1,1,2,2,2,3, ...},

mapping each primitive index i to the segment it belongs
to. This is obtained performing a scan on a vector contain-
ing a 1 for each index i such that head_to_node[i] 6=−1,
and 0 otherwise.

Given these three arrays, we can trivially compute the
mapping between any arbitrary primitive index i and its
leaf by dereferencing head_to_node[segment_id[i]-1]. Sim-
ilarly, we get the first primitive of the leaf containing primi-
tive i as segment_head[segment_id[i]-1].

The algorithm then proceeds as follows: A foreach loop
through all the Morton codes determines the highest level
split generated by each primitive, writing it in the corre-
sponding position of the corresponding block descriptor. Not
all split planes in a block might actually be present: a given
bit plane of a node might contain only zeros (or ones), in
which case all objects would be left (or right) of the hypotet-
ical split. Again, we handle these situations by marking the
corresponding slots with special ids. The number of nodes
emitted for each block will be equal to twice the number of
actual split planes in each block descriptor, as each split will
generate two nodes. We can thus use an exclusive scan to
compute the offset at which we will output each treelet. Fi-
nally, another foreach loop through all the blocks emits the
corresponding treelet based on the block descriptor and up-
dates the auxiliary head_to_node and segment_head vectors.

This algorithm, easily written as a series of data-parallel
operations, has two main advantages over the original LBVH
hierarchy emission procedure:

• reduced work and global memory traffic: by not requir-
ing any additional sorting operation on larger than input
arrays, it is a lower complexity algorithm.
• better memory layout: by not producing any singletons

which must later be eliminated, it outputs a 2-4x smaller
node arena without any holes.

3.3. SAH-Optimized HLBVH

While our HLBVH algorithm is capable of producing LBVH
hierarchies in a fraction of the time and with a superior mem-

hierarchy_emission(codes, N_prims, n_bits)

1 int segment_heads[]
2 int head_to_node[ N_prims ] = {-1}
3 head_to_node[0] = segment_heads[0] = 0
7
4 for (level = 0; level < n_bits; level += p)
5 // compute segment ids
6 segment_id[i] = scan (head_to_node[i] 6=−1)
7
8 // get the number of segments
9 int N_segments = segment_id[N_prims-1]
10
11 int P = (1 << p) - 1
12
13 // compute block descriptors
14 int block_splits[ N_segments * P ] = {-1}
15 foreach i in [0,N_prims)
16 emit_block_splits(
17 i, [in] primitive index to process
18 codes, [in] primitive Morton codes
19 [level, level + p), [in] bit planes to process
20 segment_id, [in] segment ids
21 head_to_node, [in] head to node map
22 segment_heads, [in] segment heads
23 block_splits ) [out] block descriptors
24
25 // compute the block offsets summing
26 // the number of splits in each block
27 int block_offsets[ N_segments + 1 ]
28 block_offsets[s] = ex_scan (count_splits(s))
29 int N_splits = block_offsets[N_segments]
30
31 // emit treelets and update
32 // segment_heads and head_to_node
33 foreach segment in [0,N_segments)
34 emit_treelets(
35 segment, [in] block to process
36 block_splits, [in] block descriptors
37 block_offsets, [in] block offsets
38 segment_id, [in] segment ids
39 head_to_node, [in/out] head to node map
40 segment_heads ) [in/out] segment heads
41
42 node_count += N_splits * 2

Figure 4: Pseudocode for our hierarchy emission loop.
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Scene # of Triangles LBVH HLBVH HLBVH + SAH
max min max min

Armadillo 345k 61 ms 27 ms 18 ms 72 ms 65 ms
Stanford Dragon 871k 98 ms 36 ms 28 ms 111 ms 95 ms
Happy Buddha 1.08M 117 ms 43 ms 32 ms 150 ms 137 ms
Turbine Blade 1.76M 167 ms 54 ms 42 ms 162 ms 158 ms
Hair Ball 2.88M 241 ms 95 ms 83 ms 460 ms 456 ms

Table 1: Build time statistics for various scenes. For the first five static scenes, the HLBVH building times are reported both for
sorting the original model from scratch, and for resorting it once it has already been sorted.

ory layout, the topology of the generated trees is equiva-
lent to that obtained with the original algorithm. As such, in
some situations HLBVH trees can present highly suboptimal
traversal quality, with considerable spatial overlap between
different subtrees.

In this section we show how to produce high quality SAH-
optimized trees at a modest cost. The idea is to consider the
bins, or clusters, produced by the coarse Morton curve sort-
ing step in the HLBVH algorithm and feed them to a stan-
dard SAH sweep builder [Hav00, WBS07] to construct the
top level tree. The only slight but important modification to
the original SAH sweep builder comes from the observation
that rather than assuming that all primitives have the same
intersection cost, we can use the actual SAH cost [GS87]
of the cluster subtrees (see Section 4.2 for a more detailed
explanation). The rest of the algorithm remains unchanged:
we still perform the same exact primitive sorting procedure
and we build the bottom level hierarchy (that is to say the hi-
erarchy corresponding to the least significant 3(n−m) bits
of the Morton codes) using the data-parallel algorithm de-
scribed in the previous section. While SAH-optimized con-
struction is generally many orders of magnitude slower than
our fast HLBVH algorithm, by applying it to the already
formed clusters in our coarse grid we keep its overhead at
a minimum: typically, a mesh containing one million trian-
gles will be subdivided in about 15k - 30k clusters when a
Morton curve of order 6 is used (equivalent to a regular grid
subdivision with 218 bins). This procedure can be seen as
another instance of the CSD scheme: the primitives are first
compressed to a small set of clusters defined as the bins of
a coarse grid, sorted by a SAH-based builder in their com-
pressed representation, and finally decompressed.

Note that this approach is the exact opposite of the hy-
brid algorithms proposed by Lauterbach et al. [LGS∗09] and
Wald et al. [Wal07], which essentially built the top level hi-
erarchy by a regular grid subdivision (respectively through
Morton curve sorting and direct binning) and its subtrees by
a SAH-optimized procedure. We believe our choice to be
largely superior in the context of ray tracing, as the most im-
portant part of the hierarchy where spatial overlap needs to
be minimal is the top of the tree, which is touched by almost
all rays.

Figure 5: Rebuilding times for the Bending Armadillo and
the Exploding Turbine Blade (milliseconds).

4. Results

We have implemented all our algorithms using Thrust, a high
level library of parallel primitives based on CUDA. The re-
sulting source code is very terse and concise and will be
freely available at http://code.google.com/p/hlbvh/.

We have run our algorithms on a variety of typical ray
tracing scenes with various complexity: the Armadillo, the
Stanford Dragon, the Happy Buddha, the Turbine Blade and
the Hair Ball (Figure 6). In order to test dynamic geometry
we have built two small animations, the Bending Armadillo
and the Exploding Turbine Blade (Figure 7). Our benchmark
system uses a GeForce 280 GTX GPU with 1GB of GPU
memory, and an Intel Core i7 860 @ 2.8GHz CPU with 4GB
of main memory.

In Table 1 we report absolute build times for HLBVH and
our SAH-optimized HLBVH algorithm, as well as those of
a reference LBVH implementation. For the static scenes, we
report both the time needed to sort the original model and
that to do a resorting step once the model is already perfectly
sorted. For the two animated scenes we report the worst and
average build times. Table 2 provides a more detailed break-
down of the timings of the individual components of our
builders on some of the same scenes.

We have also run preliminary benchmarks on an early pre-
release sample of the upcoming NVIDIA GF100 GPU, ob-
taining roughly 1.5-2x speedups. By optimizing our algo-
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Scene HLBVH (LBVH) HLBVH + SAH SAH
nodes cost nodes cost nodes cost

Armadillo 586 k (2.02 M) 69.6 (125%) 586 k 60.8 (109%) 691 k 55.7 (100%)
Stanford Dragon 1.66 M (4.69 M) 119.0 (126%) 1.66 M 106.5 (112%) 1.74 M 95.1 (100%)
Happy Buddha 2.04 M (5.73 M) 143.6 (133%) 2.04 M 123.8 (114%) 2.17 M 108.0 (100%)
Turbine Blade 2.40 M (7.39 M) 149.0 (120%) 2.40 M 135.9 (109%) 3.53 M 124.4 (100%)
Hair Ball 4.20 M (11.3 M) 923.9 (104%) 4.20 M 902.7 (101%) 5.75 M 888.6 (100%)

Table 3: Tree quality statistics for the various builders. The first item in each column is the number of emitted nodes while the
second is the SAH cost of the tree. The number in brackets in the first column represents the size of the node arena generated
by the original LBVH building procedure. The percentages represent the ratio to the best SAH cost resulting from a full SAH
sweep build.

Scene HLBVH HLBVH + SAH
Morton code setup 0.04 ms same
run-length encoding 2.1 ms same
top level sorting 1.3 ms same
run-length decoding 0.7 ms same
voxel sorting 2.5 ms same
top level hierarchy 4.5 ms 70.0 ms
voxel hierarchy 9.3 ms same
bbox computation 0.9 ms same
other costs 6.4 ms 7.5 ms

Table 2: Timing breakdown for the Stanford Dragon. The
entry called other costs refers to overhead due to data layout
transformations needed between the various passes of the
algorithm.

Scene LBVH HLBVH reduction
Armadillo 7.8 GB 390 MB 20x
Stanford Dragon 10.1 GB 728 MB 13.9x
Happy Buddha 13.7 GB 918 MB 14.9x
Turbine Blade 14.0 GB 1.2 GB 11.7x
Hair Ball 19.7 GB 1.8 GB 10.9x

Table 4: Bandwidth usage statistics for LBVH and our novel
HLBVH algorithm. In both cases, over 90% of the bandwidth
is consumed by hierarchy emission.

rithms for the richer features of this architecture (e.g. larger
shared memory, new cache), we believe we could obtain still
higher performance.

4.1. Bandwidth Usage

Table 4 reports the amout of external memory bandwidth
consumed by LBVH and HLBVH on all static test scenes.
In both cases, up to 90% of the bandwidth is actually con-
sumed by the hierarchy emission procedure. As can be no-
ticed, HLBVH reduces bandwidth by a factor of 10-20x. In
both cases, the tests have been carried out on the unsorted
models: in the case of resorting the bandwidth reduction
achieved by HLBVH is improved even further.

4.2. Tree Quality

Besides measuring building performance, we measured the
quality of the trees produced by all our algorithms. Table 3
shows the SAH cost [GS87] of the hierarchies produced by
LBVH and HLBVH (generating equivalent trees), the SAH-
optimized HLBVH, and a reference SAH sweep build imple-
mentation as described in [WBS07]. This metric represents
a probabilistic measure of the number of operations required
to traverse the tree to find all intersections with random rays,
and can be computed as the cost of its root node according
to the recursive formulas:

C(node) = T1 ·Nchildren +
Nchildren

∑
i

C(childi) ·Phit(childi)

C(lea f ) = T2 ·Nchildren

Phit(node) =
area(node)

area(parent)
(1)

where T1 and T2 are control parameters representing the
cost of intersecting a bounding box and that of intersecting
a primitive respectively (both set to 1 in our implementa-
tion). We believe this metric to be a fairly representative
measure of the general ray tracing performance of a given
bounding volume hierarchy: in fact, while it is only a heuris-
tic, it provides a very good indicator of the amount of spa-
tial overlap between all subtrees in a hierarchy, and at the
same time it is not unnecessarily coupled with any of the
many specific ray tracing algorithms with different perfor-
mance characteristics available today (e.g. while-while or if-
if GPU traversal [AL09], CPU or GPU packet tracing al-
gorithms [WBS07, GPSS07], ray sorting methods [GL10]
just to name a few). In all our experiments the SAH cost
of LBVH and HLBVH trees is at most 135% higher than
that obtained by a full SAH sweep build. Furthermore, our
SAH-optimized HLBVH algorithm reduces the cost by an
additional 10-20%.

5. Summary and Discussion

We have presented two novel BVH building algorithms. The
first is HLBVH, a new hierarchical LBVH formulation run-
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Figure 6: Our static test scenes. From left to right: Armadillo, Stanford Dragon, Happy Buddha, Turbine Blade and Hair Ball.

Figure 7: Exploding Turbine Blade and Bending Armadillo. Frames 0, 3 and 15. The Armadillo is subject to a simple defor-
mation, while the Turbine Blade is blasted into 1.7 million particles (its constituent triangles) moving with random velocities.

ning at 2-3x the speed of the original algorithm, consuming
10-20x less bandwidth and producing a considerably more
compact tree memory layout (2-4x). This algorithm is capa-
ble of building the spatial index for models with one million
triangles in less than 35ms on consumer GPUs available to-
day, and less than 25ms on early samples of the next gen-
eration of NVIDIA GPUs. This is the fastest BVH builder
available to date. We believe this algorithm will allow fu-
ture games to use real time ray tracing on dynamic geometry
and possibly find applications in other fields, such as physics
simulation.

Our second contribution is a SAH-optimized HLBVH
building procedure, utilizing the greedy SAH sweep build
algorithm to build the top level tree of our HLBVH hier-

archies. This is the fastest SAH-based builder available to
date, and we believe it will prove superior to other hybrid
algorithms which use the surface area heuristic to optimize
the bottom levels of the hierarchies only.

Both algorithms rely on a combination of the CSD scheme
introduced in [GL10] and a hierarchical problem decompo-
sition to heavily reduce the amount of work needed for the
top level Morton curve ordering and SAH sweep build re-
spectively. The hierarchical decomposition enables us to ex-
tract and exploit coarse spatial coherence available in the
input meshes and greatly accelerates BVH construction on
dynamic geometry.

Both algorithms have been implemented in CUDA using
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Thrust, a collection of general purpose parallel primitives,
bypassing the need to write CUDA code directly except for
the case of the odd-even intra-CTA sorting kernel. The re-
sulting source code is simple and terse, showing that high
performance parallel computing can be made easy by using
the proper abstractions.

5.1. Future Work

We plan to optimize all our algorithms for the NVIDIA
GF100 architecture, making use of its new instructions,
larger shared memory and new cache hierarchy to reduce
the amount of work and bandwidth to external memory. In
particular, we believe that our top level SAH building pro-
cedure contains many opportunities for further optimization.
Further on, we plan to integrate more hierarchical steps for
larger models and to explore lazy builds for on-demand BVH
construction.
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