
High Performance Graphics (2016)
Ulf Assarsson and Warren Hunt (Editors)

Deep G-Buffers for Stable Global Illumination Approximation

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke

Direct + AmbientDirect + Ambient Direct + (1-AO) × Ambient + Radiosity + Mirror RaysDirect + (1-AO) × Ambient + Radiosity + Mirror Rays

Figure 1: Left: Direct and hemispherical ambient illumination in San Miguel (6.5M triangles, 968 draw calls). Right: Direct lighting, ap-
proximate radiosity, mirror reflections, and AO computed from a two-layer Deep G-buffer in 5 ms at 1080p on NVIDIA GeForce 980. The
G-buffer was generated in a single 5.8ms geometry pass. See our evaluation section for faster results on more game-like scenes.

Abstract

We introduce a new hardware-accelerated method for constructing Deep G-buffers that is 2x-8x faster than the previous depth
peeling method and produces more stable results. We then build several high-performance shading algorithms atop our repre-
sentation, including dynamic diffuse interreflection, ambient occlusion (AO), and mirror reflection effects.
Our construction method s order-independent, guarantees a minimum separation between layers, operates in a (small)
bounded memory footprint, and does not require per-pixel sorting. Moreover, addressing the increasingly expensive cost of pre-
rasterization, our approach requires only a single pass over the scene geometry. Our global illumination algorithms approach
the speed of the fastest screen-space AO-only techniques while significantly exceeding their quality: we capture small-scale
details and complex radiometric effects more robustly than screen-space techniques, and we implicitly handle dynamic illumi-
nation conditions. We include the pseudocode for our Deep G-buffer construction in the paper and the full source code of our
technique in our supplemental document.

1. Introduction

Recent advances in graphics hardware have promoted the devel-
opment and adoption of high-quality, dynamic, high-performance
approximate global illumination techniques in interactive visual-
ization and game engines. Here, maintaining consistent shading for
dynamic view and lighting conditions, as well as adhering to ex-
treme performance constraints, are more important than full physi-
cal accuracy. Among these interactive approximations, screen- and
voxel-based techniques are the most adopted approaches due to
their ability to balance robustness and performance.

Screen-space methods, the most common of which are variants
of screen-space ambient occlusion (AO), map very well to current
GPUs and can very efficiently approximate coarse hemispherical
shading effects. Despite their popularity, well-known shortcomings

include underestimated shading variation and inconsistent shading
induced from their view-dependent sampling. On the other hand,
world space voxel-based solutions can complement these limita-
tions (often in tandem with screen-space techniques), however they
are not as widely adopted due to scalability concerns and an inabil-
ity to handle higher-frequency effects.

Given the benefits of combining screen- and voxel-space ap-
proaches, and motivated by Deep Geometry Buffers (G-buffers),
we present a practical technique for constructing two-layer Deep
G-buffers entirely on the GPU. We leverage our Deep G-buffers
to devise robust and fully interactive shading algorithms. We fo-
cus on providing solutions that address the three bolded constraints
above, which are essential to interactive graphics and gaming.

We improve the robustness of existing screen-space AO ap-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

Domain Coarse-scale Solutions Fine-scale Solutions
Visibility occlusion culling, depth sorting, frustum culling z-buffer
Geometry geometry, subdivision surfaces, displacement map bump map, normal map
Materials different scattering (BSDF) models texture maps of coefficients
Lighting baked light map, baked light probe, irradiance volume, sparse voxel octree screen-space, Deep G-buffer

Table 1: Examples of common, practical coarse- and fine-scale decompositions in computer graphics.

proaches, as well as extending them to indirect illumination ef-
fects with negligible additional cost, by carefully combining com-
pression, cache management, sampling, and reconstruction. These
applications all build atop our new GPU-friendly data structure:
a deep geometry buffer with minimum separation, generated effi-
ciently using a single pass over the scene geometry. While our shad-
ing applications are radiometrically approximate, we characterize
the nature of the sampling errors we introduce and discuss our abil-
ity to scale to fully-converged physically accurate shading, assum-
ing the necessary additional computational budget. While we only
consider global illumination applications, we note that our Deep G-
buffers can also be used to improve the robustness of other screen-
space effects, including distribution effects like depth-of-field and
motion blur, or reprojection-based shading techniques.

Our Deep G-buffer generation method is 1.5-2.0 times faster
than depth peeling for producing the second layer at full reso-
lution (Table 7), and can be up to five times faster than depth
peeling at low resolution (Figure 13). Moreover, it designed to
scale with current GPU architecture trends and usage scenarios. We
minimize memory traffic by reading geometry from DRAM once
and processing both layers on chip simultaneously, because mem-
ory speeds have increased slowly between GPU generations com-
pared to ALU throughput due to parallelism. We observe that next-
generation game engines have increasing pre-rasterization GPU
workloads, such as tessellation and skinning, that make multiple
passes over source geometry prohibitively expensive.

We are ultimately motivated by the potential applications of ef-
ficient and accurate Deep G-buffer generation, of which robust and
dynamic indirect illumination is of immediate interest. We detail
the implementation of our construction and shading techniques,
both of which are straightforward to understand and implement,
and we provide full pseudocode for the construction algorithm,
full C++ and GLSL source code, and a standalone interactive in-
direct illumination demonstration application with complex scene
content. Despite its simplicity, the design of our approach and its
applications treat the complex interplay of bandwidth management
and execution on modern GPU architectures, as well as provid-
ing a robust and efficient quasi-Monte Carlo integration schemes
amenable to these architectures. We analyze our approach’s quality
and performance trade-offs, detailing the conditions under which it
is guaranteed to execute efficiently.

Many well-established solutions in computer graphics benefit
from divide-and-conquer strategies to leverage coarse- and fine-
scale scene factorization (see Table 1). Speaking more broadly,
similar decompositions occur outside of graphics: in computer net-
working, for example, similar abstractions have led to the “last
mile/link/kilometer” standards, in which a network’s leaf nodes are

treated using specialized solutions compared to its internal nodes;
similarly, in sorting algorithms, a radix or quick sort pre-pass is
often used to coarsely arrange data before applying a more costly
insertion sort to handle the finer-scale sorting.

Motivated by near- and far-field shading decomposition [Ari05],
most existing interactive lighting solutions in modern game engines
rely on combining approaches based on coarse decompositions of
detail and scale. Our AO, indirect lighting, and ray-traced reflection
applications all target the finest scale of dynamic radiometric detail
and are fully compatible with existing coarse-scale solutions, such
as precomputed static light probe shading. Despite the increasing
geometry and material complexity in modern game content, normal
maps and texture maps will likely remain and integral component
of interactive content generation pipelines, due to the difficulties of
scaling geometry and materials to sub-pixel resolutions. In a simi-
larly vain, interactive global illumination will continue to increase
in scope and efficiency at coarse scales, but we purport that the il-
lumination techniques presented in this paper are likely to remain
useful for finer-scale lighting effects, at least in the foreseeable fu-
ture of e.g., interactive gaming.

Contributions Our two-layer Deep G-buffers builds on several
ideas, including techniques that apply multiple views or layers
to improve screen-space shading effects [SA07, RGS09, VPG13,
DS05, Hac05, BS09]. Specifically, our contributions include:

1. an efficient Deep G-buffer construction method with minimum
separation, on modern GPUs, in a single pass (Section 2.3),

2. a scalable AO algorithm for Deep G-buffers (Section 3.1),
3. a robust and coherent indirect illumination algorithm for Deep

G-buffers (Section 3.2),
4. a camera-space quasi-Monte Carlo sampling sequence based on

an empirical analysis of sampling strategies (Section 3.4),
5. a screen-space ray-tracer for Deep G-buffers (Section 3.6),
6. an extensive quantitative performance analysis (Section 4), and
7. a qualitative analysis of our shading approximation errors, used

to motivate our Deep G-buffer spacing constraints (Section 4).

We validate the quality and performance of our approach with
image and video sequences captured (interactively) on complex
scenes, in Section 4 and our supplemental material. We provide
full source code for an optimized implementation of our Deep G-
buffer indirect illumination and AO solutions, both with temporal
filtering. Our results improve upon existing widely-adopted and op-
timized single-layer shading solutions.

1.1. Related Work

We focus on capturing several layers of geometric information from
a single viewpoint. While using several carefully-placed viewpoints

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

...

x
z

y

a) 1-Layer G-Buffer
 “Screen space”

b) 2-Layer Deep G-Buffer d) Camera-Space Voxels c) 3-Layer Deep G-Buffer

Figure 2: A continuum of data structures on the homogeneous clip-space view frustum: traditional G-buffers (a) have high xy-resolution,
minimal z-resolution, and fill each voxel with the nearest surface to the camera; traditional voxels (d) have moderate xyz-resolution and store
averaged surface properties at each voxel; our multi-layer Deep G-buffers (b, c, ...) are a middle-ground between these structures. Our results
show that as few as two layers (b) can capture much of the richness of full geometry.

can improve the robustness of screen-space shading approaches,
we limit ourselves to single-view approaches for the following rea-
sons:

1. practicality: camera-aligned geometric data generates a regular
parameterization of the scene, similar to voxels, that simplifies
the sampling and reconstruction needed for shading,

2. perception: by increasing the precision of data directly aligned
to the camera view, we ensure a sufficient sampling of visi-
ble and nearly-visible surfaces, maximizing surface-view con-
sistency as observed by a viewer across adjacent frames, and

3. performance: the cost of performing multiple passes over the
scene geometry does not satisfy the constraints of modern high-
performance graphics engines. A single view-aligned pass al-
lows us to amortize pre-rasterization operations such as occlu-
sion culling, tessellation, and skinning.

Generating Layers Several approaches can render multiple ge-
ometry layers from a single view. In order of decreasing mem-
ory footprint, these include: clip-space voxelization [Sch12,CG12],
F- and A-buffers [MP01, Car84], ZZ-buffers [SS89], k-buffers and
other bounded A-buffer approximations [LV00, MB07, BCL∗07,
SML11, Sal13], frequency A-buffer approximations [YK07, SA09,
JB10], and depth peeling [Eve01, BM08]. Of these approaches,
depth peeling is particularly interesting for effects that benefit most
from a small number (i.e., two or three) of depth layers, since it has
the smallest memory footprint.

Prior work has shown that the quality and robustness of screen-
space global illumination can be significantly improved using even
one additional layer [SA07, RGS09, VPG13]. As such, computing
the second-closest camera-facing surface is an important operation
and state-of-the-art approaches for computing these surfaces, us-
ing a single depth peel, either require two passes over the geome-
try [BM08] or a single pass with programmable blending [Sal13].
Furthermore, neither of these strategies guarantees a minimum sep-
aration between layers, which we show is necessary to compute
high-quality and consistent shading. Our approach has much higher
performance, does not require programmable blending, operates in
a bounded and modest memory footprint, and is order-independent,
requiring only one rasterization pass over the geometry.

Indirect Lighting Our shading models are most directly related
to directional occlusion [RGS09], a recent interactive AO vari-
ant [VPG13], and horizon-based AO [BS09, SN08, NS09, GN15].

The former uses multiple views, whereas the latter uses a two-layer
depth buffer without any minimum separation guarantees. We con-
ceptually extend these approaches to support multiple layers with
minimum separation, and we show how to efficiently apply these
structures to compute an arbitrary number of indirect bounces and
specular reflections. Our entire shading approach is incorporated
into a scalable gathering framework [MML12] and bears similari-
ties to previous image-space gathering techniques [DS05,SHRH09,
NRS14].

2. Generating Deep G-Buffers with Minimum Separation in a
Single Pass

Motivating Multiple Layers We review (see Figure 2) a contin-
uum of uniform, regular grid data structures used to store and pa-
rameterize geometric data, starting with traditional single-layer G-
buffers [DWS∗88, ST90] on one end of the spectrum and camera
frustum voxelizations on the other.

Traditional G-buffers have high xy-resolution and the lowest pos-
sible z-resolution, storing a single voxel at each pixel, whereas
camera-space voxelizations have uniform xyz-resolution, mea-
sured in either homogeneous- (e.g., [ED06]) or world space (e.g.,
[CNLE09]). We refer to solutions between these two extremes
as Deep G-buffers: while originally applied to niche applica-
tions [Per07, Cha11, NRS14], this structure’s generalization to lay-
ered depth images [SGHS98, PLAN98, Eve01, MB07] has proven
fruitful to shading applications. We extend previous work on Deep
G-buffers to include important constraints on the resulting layer-
ing, presenting an efficient generation method that requires only a
single geometry pass.

Traditional, single-layer G-buffer pixels and voxels store both a
regularly-sampled grid of surface point properties suitable for light
transport simulation, such as position, normal, and reflectance pa-
rameters. In the simplest case, these include simple screen-space
depth buffers and binary voxelizations, from which position and
normal can be inferred with finite differences. Existing construction
methods differ in how they assign values at each discrete buffer el-
ement: G-buffer-based construction typically assigns properties us-
ing the information available at the nearest surface (visible through
each pixel’s xy center), certain voxel construction approaches as-
sign voxel properties from the surface closest to the voxel’s center
in Cartesian coordinates [LK10], while others average all the sur-
face properties within a voxel [CNLE09]. We extend these strate-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

gies to include a new minimum separation selection criterion dur-
ing Deep G-buffer construction.

Both of these data structures have the advantage of decoupling
the cost of illumination computation from geometric complexity.
G-buffers are widely used in high-performance game engines for
screen-space effects such as AO and reflections, despite potential
inconsistencies in the resulting shading effects, primarily due to
their ability to leverage fine-scale data already computed during e.g.
deferred [DWS∗88] or forward+ [HMY12] shading passes. While
voxel-based algorithms are more stable for coarse-scale illumina-
tion, they have yet to be widely adopted in industry for two princi-
pal reasons: these approaches do not currently scale to finer-scale
details, and they require a separate data representation and genera-
tion that, unlike G-buffer pixels, cannot leverage the existing shad-
ing framework in a game’s graphics engine.

Modern rasterization is tailored to visible surface determination
and “local” shading operations. When “global” scene information
is necessary for shading, rasterizing multiple views or layers can
help to fill the gap. Shadow mapping [Wil78] is perhaps the earliest
such example, where depth rasterized from the light’s view is used
to compute shadows from the camera’s view. Reflective shadow
maps [DS05] and orthographic depth peeling [Hac05] extend this
idea to more complex effects, and other works have improved the
robustness of screen-space techniques using many views [SA07,
RGS09, VPG13].

Motivating Single-Pass Generation Rasterizing multiple views
of the scene can significantly increase the amount of geometric
information available to e.g. a shading algorithm, but not without
substantial performance implications: unless the many rasterized
views are aligned close to the primary camera frustum (limiting
the information retrieval benefits, e.g., [BS09]), geometry submis-
sion costs during rasterization increase dramatically. Our single-
view approach, on the other hand, amortizes the cost of geometry
submission across the layers we generate. Moreover, from a percep-
tual standpoint, viewer-facing geometry provides the most preva-
lent cues for visual lighting interpretation and processing: even
though there might be important geometry, from a lighting stand-
point, outside of the view pyramid, a user will remain oblivious to
its presence until it approaches visibility.

In order to better understand the penalty of rendering multiple
views or multiple layers, we surveyed several industrial experts in
high-performance game engine development and solicited render-
ing profiles from their respective engines: in all cases, the experts
consistently report that one sixth to one third of a frame’s ren-
der time is spent on operations that occur prior to rasterization in
the graphics pipeline, including scene graph traversal, frustum and
occlusion culling, tessellation, displacement mapping, procedural
geometry generation, skeletal animation, and various transforma-
tions [Bra13, Buk13, McG13]. This implies that, even in the limit-
ing case of populating a one-pixel G-buffer with zero rasterization
or pixel processing overhead, processing all of the scene geometry
twice in order to generate just two different views incurs a signif-
icant and often prohibitive cost. Furthermore, the pre-rasterization
cost of the graphics pipeline has been increasing as culling and ge-
ometry processing become more sophisticated, and given the in-
crease of animated/dynamic content.

Primary Traditional Peeling Minimum Separation

Figure 3: Depth peeling (center) provides little additional informa-
tion in areas with local structure, compared to nearest-surface ren-
dering (left). Our minimum separation helps to capture the most
relevant next significant surface.

Normal (Oct32)

Depth Depth32F

Lambertian RGB Color

RG16

RGBA8 Unused

Glossy
Exponent Glossy RGB Color RGBA8

RG16

Screen-Space Velocity

32 bits

Texture Format Contents

Figure 4: Each 160 bits/pixel layer of the G-buffer we generate.

Motivating Minimum Depth Separation We observe in prac-
tice that the second-closest surface to the camera is often not the
second-most relevant surface for capturing information useful to
shading: decals, non-convex geometry, and finer geometric details
often introduce local structure that occludes the most useful sec-
ondary surface. For example, traditional depth peeling in Sponza re-
veals the second fold of the column’s molding, and not the more ra-
diometrically relevant red tapestry behind the column (Figure 3). To
resolve this local structure problem, we enforce a minimum separa-
tion distance between layers. When generating our Deep G-buffers,
we select only those fragments that are immediately accessible af-
ter a certain distance ∆z past the visible surfaces.

Note that a k-buffer cannot resolve this problem in bounded
memory, even with single-pass programmable blending vari-
ants [Sal13]. One would need more than a k = 2 buffer to guarantee
minimum separation, since the goal is to output two specific layers
from a k =∞ buffer, not the first two layers. That is, until all sur-
faces have been rasterized, each pixel has no way of knowing the
minimum acceptable depth for the second layer, so all surface frag-
ments must be stored. Given this limitation, we proceed to describe
a set of algorithms to robustly identify these important secondary
surfaces within a small, bounded memory footprint.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

2n
d

L
ay

er
D

iff
.f

ro
m

Pe
el

in
g

(a) DELAY (b) PREVIOUS (c) PREDICT (d) REPROJECT

Figure 5: Top: second-layer surfaces captured by variants of Listing 2 with a moving camera in Sponza. Bottom: differences from ground
truth produced by Listing 1. DELAY is perfect but has latency, while REPROJECT is nearly as good and adds no latency.

2.1. G-buffer Format

Figure 4 outlines the Deep G-buffer format we use for each layer in
our implementation, which is comparable in size to the G-buffers
typically used in recent high-performance games (see Table 2).

2.2. A Strawman Two-Pass Generation Algorithm

Listing 1 outlines a multi-pass depth peeling algorithm to gener-
ate a Deep G-buffer that respects our minimum depth constraint at
frame t. Here, each frame buffer render target is a texture array, a
feature supported by current GPUs, and we denote the depth buffer
layers as Zt [0] and Zt [1]. The geometry shader applies the cur-
rent transformation Tt to each triangle, which comprises all model-
view-projection and skinning transformations.

For ∆z = 0, this algorithm corresponds to traditional depth peel-
ing [BM08] and, for ∆z > 0, it guarantees a minimum separation.
The pixel shader applies an arbitrary shading function S. For G-
buffer generation, S would simply output material properties. It is
possible (and often preferable on modern GPUs) to implement this
algorithm using two separate frame buffers, without texture arrays
and a geometry shader. We chose this structure to make the analogy
and notation clear in the following section.

1 // 1st Pass
2 submit geometry with:
3 geometryShader(tri):
4 emit Tt (tri) to layer 0
5 pixelShader(x,y, z):
6 return S(x,y, z)
7

8 // 2nd Pass
9 submit geometry with:

10 geometryShader(tri):
11 emit Tt (tri) to layer 1
12 pixelShader(x,y, z):
13 if (z > Zt [0][x,y]+∆z): return S(x,y, z)
14 else: discard the fragment

Listing 1: A strawman two-pass Deep G-buffer generator with min-
imum separation ∆z, using depth peeling. Our method (Section 2.3)
improves significantly on this approach.

1 submit geometry with:
2 geometryShader(tri)
3 emit Tt (tri) to layer 0
4 emit Tt (tri) to layer 1
5 if (VARIANT == Delay) || (VARIANT == Predict):
6 emit Tt+1(tri) to layer 2
7

8 pixelShader(x,y, z):
9 switch (layer):

10 case 0: // 1st layer; usual G-buffer pass
11 return S(x,y, z)
12

13 case 1: // 2nd G-buffer layer: choose the comparison texel
14 if (VARIANT == Delay) || (VARIANT == Predict):
15 L = 2 // Comparison layer
16 C = (x,y, z) // Comparison texel
17 else if (VARIANT == Previous):
18 L = 0; C = (x,y, z)
19 else if (VARIANT == Reproject):
20 L = 0; C = (xt−1,yt−1, zt−1)

21

22 if (zC > Zt−1[L][xC,yC]+∆z): return S(x,y, z)
23 else: discard the fragment
24

25 case 2: // Depth only write to predict Zt+1[0]; no shading
26 return // We only reach this case for Delay and Predict

Listing 2: Our efficient single-pass Deep G-buffer generator with
minimum separation ∆z.

2.3. Efficient Single-Pass Deep G-buffer Generation

Listing 2 generates a two layer Deep G-buffer with minimum sep-
aration in a single pass over the geometry by rendering to both lay-
ers simultaneously. To identify fragments in the second layer, we
require an oracle to predict the depth buffer’s first layer before that
buffer has been rendered to. We will detail four algorithm variants,
each corresponding to a different oracle approximation, along with
an optimized version of the REPROJECT variant.

DELAY Variant By adding a frame of latency, so that the next

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

frame’s transformations Tt+1 are known at render time, we can per-
fectly predict the next frame’s first depth layer. Frame t reads (line
22) from the oracle computed in the previous frame, and generates
the oracle for frame t + 1 (lines 4, and 25-26) to satisfy the induc-
tion. This variant gives perfect output but requires one frame of
latency; in certain cases (e.g., triple buffering) such a latency may
already be present but, typically, we would like to avoid it.

PREVIOUS Variant By simply using the previous frame’s first
depth layer as an approximate oracle, approximation error increases
only as object and camera motion increase. This can be acceptable
in some cases for several reasons: first, errors will only appear in
the second layer, not on visible surfaces; second, the errors are only
in the minimum separation as the second layer still captures only
surfaces at the correct positions at time t; lastly, there will only
be errors in final moving objects, and we know that the perception
of motion overrides the perception of precise intensities and even
shape [SA11].

PREDICT Variant We can predict Tt+1 using velocities from any
underlying physics/animation simulation, or extrapolation from
vertices at t − 1 and t. When velocity prediction is accurate, this
variant yields perfect results (equivalent to DELAY), but without
latency. When it is inaccurate, the same disadvantages and argu-
ments that hold for the PREVIOUS variant apply here.

REPROJECT Variant Here, we apply reverse reprojec-
tion [NSL∗07] to perform a minimum separation test against the
first depth layer from frame t − 1: we use vertex positions from
t−1 to compute the screen coordinates and depth C for the visibil-
ity test. Note that old depth values are not warped forward: instead,
visibility is computed in the “past”. This is susceptible to errors
around moving objects, but less so than PREDICT since it can use
perfect hindsight velocities from t− 1. Note that many techniques
require such velocities for use e.g. in screen-space motion blur and
antialiasing.

Figure 5 (top) compares the second layer surfaces obtained from
each variant, with fast camera motion in Sponza; Figure 5 (bot-
tom) compares to ground truth minimum separation. PREVIOUS

and PREDICT can produce large errors, while REPROJECT limits
errors to tight regions around silhouettes and adds no latency. As
such, we identify it as our principal solution.

Optimized REPROJECT Variant Simple geometry shaders
are less expensive on the newest generation of GPUs. Fur-
thermore, as of the NVIDIA Maxwell architectures, we
can bypass generating multiple triangles in the geometry
shader by using the new pass-through geometry shader and

Game Year Bits/pixel
Killzone 2 2009 128 [Val09]
StarCraft II 2010 192 [FM08]
Battlefield 3 2011 160 [Cof11]
Crysis 3 2013 96 [RSW13]
Ryse 2013 128 [Sch14]
inFAMOUS: Second Son 2014 328 [Ben14]
Destiny 2014 96 [TTV13]

Table 2: G-buffer sizes for some recent games.

viewport multicast features of the hardware (exposed in
OpenGL via the NV_geometry_shader_passthrough and
NV_viewport_array2 extensions). We compare the straight-
forward implementation of the REPROJECT variant to the opti-
mized version leveraging these new features in the results section.

3. Applications to Global Illumination

Several applications can benefit from our layered Deep G-buffers,
including stereo image reprojection, depth of field, transparency,
motion blur, and global illumination. We focus on the latter.

We first extend screen-space AO to Deep G-buffers (Section 3.1),
modulating local light probe shading by AO. Despite the popular-
ity of screen-space AO, indirect illumination extensions have yet to
find widespread adoption. We suspect this is primarily due the ad-
ditional artifacts present in such single-layer screen-space solutions
and we address this issue by generalizing our robust AO solution
to single-bounce indirect illumination (Section 3.2). Multi-bounce
indirect illumination (Section 3.3) is much more challenging as it
requires a higher numerical integration sampling for low-error re-
sults. We extend our indirect solution to multiple bounces, adding
temporal smoothing and reverse reprojection to amortize the ad-
ditional computation, which reduces the cost to that of our single
bounce solution per frame. Computing indirect illumination with
Deep G-buffers is similar to reflective shadow mapping [DS05]:
the main differences are that, by operating exclusively in camera
space, we can amortize cost by using work already performed in
a deferred-shading pipeline, allowing us to simulate more complex
effects that involve objects visible to the viewer but not to the light.
In our final application, we apply Deep G-buffers to mirror reflec-
tion tracing (Section 3.6).

As future work, we plan to investigate glossy reflections by either
modifying the reflection rays to use pre-filtered incident lighting
(computed on each layer of the Deep G-buffer) or by modifying
the BSDF in our indirect illumination algorithm, depending on the
footprint of the glossy integration lobe.

3.1. Ambient Occlusion

We extend Scalable Ambient Obscurance [MML12] (SAO) to
leverage our layered Deep G-buffer, devising a sampling scheme
that further improves its quality (Section 3.4). The original SAO
algorithm compensates for undersampling behind primary surfaces
(which dominates its error) with a coarser, biased estimator. Our
improvements produce a more plausible shading falloff, avoid
view-dependent halos on moving objects, and reduce noise.

Ambient Visibility (1−AO) at a (view-space) point X is:

AV (X) = max


0,1−

√√√√ π

N

N

∑
i=1

max
(
0,A0

i ,A
1
i
)

 (1)

where we sample over occluding surfaces, A j
i = O(X ,R(Z[j], i)),

N is the sample count, R(Z, i) reconstructs the position of the ith

sample surface using the depth buffer Z, and O is the occlusion at
X due to a sample at Y :

O(X ,Y) =
(

1−~v ·~v
r2

)
·max

(
~v · n̂X −β√
~v ·~v+ ε

,0
)
, (2)

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

where ~v = Y −X , r is the sample pattern radius (see Section 3.4),
and n̂X is the normal at X . Equation 1 corresponds roughly to
SAO’s AV with a union of occluders in both layers, but without
any of the ad-hoc falloff terms.

Our improved sampling (Section 3.4) benefits from explicit nor-
mals, and we pack camera-space Z and normal values for the two
layers into a single texture each (see Table 3; note, radiosity inputs
are unused for AO). For all our applications, we employ a modified
bilateral reconstruction that includes normal and plane weights to
prevent blurring across surface discontinuities [SGNS07].

3.2. Single-bounce Diffuse Indirect Illumination

bnX

X

bnY

b!

Y

Soler et al. [SHRH09] proposed a screen-
space radiosity approximation that we
extend in a radiometrically well-founded
fashion. After doing so, we extend the ap-
proach to use Deep G-buffers, including
performance and aesthetically motivated
modifications.

The incident irradiance E(X) at X due
to outgoing diffuse radiance B(Y) from
the closest point Y in direction ω̂ is [CG85]

E(X) =
∫

Ω

B(Y)
π

max(n̂X · ω̂,0) dω̂ . (3)

We estimate this integral numerically as

E(X)≈ 2π

M ∑
samples

B(Y)max(ω̂ · n̂X ,0), (4)

where ω̂ =~v/||~v||. The highest-quality version of our approximation
samples N points Y from both G-buffer layers, but only uses the M
for which both

(ω̂ · n̂X)> 0 and (ω̂ · n̂Y)< 0. (5)

As with AO, we assume mutual visibility between X and Y . We
can significantly reduce the bandwidth requirements for our sam-
pling process by omitting the second test in Equation 5 since, in
this case, we need not access nY for each sample. Eliminating this
test introduces bias in our indirect illumination approximation but,
by allowing us to increase the effective sampling rate, we achieve a
reduction in variance. Thus, the user can choose to do so depending
on whether a less biased estimator is preferable to one that reduces
noise. Incident irradiance at X is reflected as outgoing radiance as

B(X) = E(X) ·ρX ·boost(ρX), (6)

where ρX is the diffuse reflectivity at X . We amplify it by

boost(ρ) =
maxλ ρ[λ]−minλ ρ[λ]

maxλ ρ[λ]
, (7)

where λ is the wavelength or color channel. If we so choose, we
can use boost(ρ)=1 to conserve energy; if not, this boosting func-
tion can be used to emphasize scattering from saturated surfaces
to enhance the perception of color bleeding. This is a common
post-processing operation in interactive graphics, as it helps with
visualizing intermediate results as well as providing a high-level

Layer 0 Normal n
(Oct16)

RG32F

RGBA8

R11G11B10F

R11G11B10F

Layer 1 Normal n
(Oct16)

Layer 0 Previous Bounce Radiosity B

Layer 1 Previous Bounce Radiosity B

Layer 0 Camera-space z

Layer 1 Camera-space z

Texture Format Contents

32 bits

Table 3: Input to our indirect illumination algorithm, packed into
160 bits/pixel to minimize bandwidth and fetch instructions.

aesthetic control often desirable in entertainment applications (i.e.,
see [Hal10]).

The diffuse radiance B(Y) in the initial input is simply the Lam-
bertian shading from (boosted) direct illumination. We iteratively
re-apply Equations 4 and 6 (i.e., over multiple frames) to synthe-
size multiple indirect bounces (Section 3.3).

In addition to the indirect illumination, our shading pass com-
putes a confidence value M/N at each pixel, corresponding to the
fraction of samples that contribute to the final result. At pixels
where confidence is close to 1, many nearby points were identified
in the Deep G-buffer to produce a robust indirect shading approxi-
mation. At pixels where the confidence is ≈ 0, most samples from
the Deep G-buffer were not representative of surfaces that could
reflect light towards the pixel (i.e., since they were backfacing), so
the result is unreliable. During final shading, we linearly interpo-
late between a coarse-scale or precomputed lighting solution and
our dynamic Deep G-buffer indirect illumination, according to the
confidence. All our results use static radiance and irradiance probes
for the coarse-scale fallback, a common industry solution [MG12];
however, light maps, sparse voxel lighting, irradiance volumes, or
per-vertex lighting are all viable alternatives.

Our indirect illumination algorithm uses Deep G-buffers as in-
put (as in Figure 4) in addition to data packed according to Table 3.
Careful bandwidth management (both for DRAM and cache) is es-
sential to high-performance computation on modern GPUs, and so
data packing both optimizes the cache and amortizes the cost of
issuing and executing texture fetches. We pack frequently sampled
data into low precision and memory-adjacent locations, including
camera-space depth (which, combined with projection information
and texel location fully describes 3D scene position) for both layers
into a single buffer, and we use the OCT16 encoding [CDE∗14] to
pack both layers’ normals into a single RGBA8 buffer.

We additionally implement the cache coherence optimization of
McGuire et al. [MML12], where a depth MIP-map computed us-
ing rotated-grid downsampling has been shown to improve perfor-
mance when sampling over a large radius in screen space.

3.3. Multi-bounce Indirect Illumination

Computing multiple bounces of indirect light requires N integra-
tion samples per bounce iteration and, in order to decouple ren-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

Figure 6: Direct and indirect illumination after 1, 2, and 100 frames
= bounces.

a) Propagating first layer b) Deep propagation

Figure 7: Gathering indirect light in Warehouse from two G-buffer
layers but only propagating within the first underestimates multi-
bounce lighting (a) in areas of high depth complexity compared to
two-layer propagation (b).

Figure 8: Temporal filtering artifacts under vertical camera move-
ment in Kitchen at α = 0.98. Choosing α = 0.85 eliminates these.

1 // tau[N-1] = optimal number of spiral turns for N samples

2 const int tau[] = {1, 1, 2, 3, 2, 5, 2, 3, 2, 3, 3, 5, 5, 3, 4,

7, 5, 5, 7, 9, 8, 5, 5, 7, 7, 7, 8, 5, 8, 11, 12, 7, 10, 13, 8,

11, 8, 7, 14, 11, 11, 13, 12, 13, 19, 17, 13, 11, 18, 19, 11, 11,

14, 17, 21, 15, 16, 17, 18, 13, 17, 11, 17, 19, 18, 25, 18, 19,

19, 29, 21, 19, 27, 31, 29, 21, 18, 17, 29, 31, 31, 23, 18, 25,

26, 25, 23, 19, 34, 19, 27, 21, 25, 39, 29, 17, 21, 27};

Listing 3: Discrepancy-minimizing number of turns τ.

der cost from the number of bounces, we incorporate information
across frames in two ways: first, we only increment illumination
by one bounce per frame using progressive computation; second,
we filter temporally using an extension of our bilateral reconstruc-
tion across time to pixels from the previous frame. In each case,
we reverse-reproject sample locations to account for motion, which
differs from our reverse-reprojection depth oracle (Section 2.3) but
shares the same benefits and drawbacks.

Progressive Computation We accumulate additional light
bounces using the previous frame’s final indirect irradiance buffer
Et−1 in Equation 6, simulating n bounces in n frames (Figure 6).
Reprojection avoids ghosting in the presence of dynamic objects,
but light will still linger for many frames on a surface. To reduce
this artifact, we damp the forward propagation of Et−1 by a factor
0 < δ ≤ 1, which (intentionally) underestimates illumination. We
compensate for this bias with a small amount of environment
lighting from static light probes, all according to our confidence
value.

We also propagate indirect illumination across layers, which is
essential for multiple bounces in scenes with high depth complexity
(see Figure 7). The marginal cost of propagating to the second layer
is negligible since it shares gathered samples from the first layer.

Temporal Filtering To reduce any remaining undersampling
noise we apply an exponentially-weighted moving average
Et = E(1−α)+ reproject(Et−1)α but use Et = E for pixels where
the reprojected point is not within 1cm of either layer, which is
indicative of an incorrect velocity estimate. We recommend (and
use) α = 0.85, except where noted. For α ≥ 0.95 we observe dy-
namic lighting latency and two types of artifacts may appear in each
frame (Figure 8): despite detecting failed reprojections, ghosting
can still result from incrementally accumulated reprojection errors
(each within the 1cm threshold), and rejecting too many samples
due to reprojection disocclusion increases the variance per pixel.

3.4. Quasi-Monte Carlo Sampling

For our AO and indirect illumination, we distribute N samples
around each shade point in a spiral pattern with τ turns and radius
rp, similarly to McGuire et al. [MML12], however we optimize
the pattern’s parameters to minimize (2D) discrepancy [Shi91] for
quasi-Monte Carlo (QMC) integration. We amortize computation
over layers by sampling the same points in each. The ith sam-
ple at (x,y) is accessed from texel (x,y)+ hi ûi, where hi = rpκi,
ûi = (cosθi,sinθi), θi = 2πκiτ+ φ, and κi = (i+ 0.5)/N. We ro-
tate all samples by an azimuthal angle φ chosen according to a hash
on (x,y), and the sample MIP level mi is mi = blog2(hi/q)c. The
constant q is the screen-space radius at which we first increment
MIP levels, chosen based on the texture cache size.

We precompute the optimal values of τ (to the nearest integer;
see Listing 3) that minimize discrepancy for each N and choose
the appropriate value at run-time, whereas McGuire et al. manu-
ally computed τ = 7 for a fixed N = 9, and so their shading quality
is suboptimal when τ = 7 is used for N 6= 9. Figure 9 illustrates
the impact of our optimized QMC sample placement: all three im-
ages have equal render time and use 99 AO samples. The left-most

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

Figure 9: AO from 99 spiral taps (left) without rotation and a suboptimal τ, (center) unbiased in 2D via pattern rotation, and (right) with τ

chosen using our screen-space QMC optimization. Results are shown without reconstruction to better illustrate the noise reduction.

image has high discrepancy (τ = 7) and exhibits banding since all
samples use φ = 0, the center image rotates along φ, but the im-
pact of discrepancy still manifests itself as visual clusters of noise;
choosing the optimal τ yields a higher quality result (right).

3.5. Recommended Radiosity Parameters

There are five content-independent parameters for our indirect il-
lumination method. These should be chosen based on the desired
performance and image quality tradeoff. We recommend three pa-
rameter sets in Table 4, which are also supplied as presets in our
demo application. Increasing the number of samples N (from which
we determine the number of spiral turns τ, according to Listing 3)
reduces variance. Increasing the number of spatial reconstruction
filter taps reduces noise in the final image, but also blurs high-
frequency illumination. Including the nY test (Equation 5) improves
contrast and reduces bias. Increasing the minimum MIP level when
computing indirect illumination can increase variance in the low-
frequency terms, leading to large-scale flickering, but has a signif-
icant impact on performance since it affects cache coherence. The
Deep G-buffer input fills a guard band around the frame to help sta-
bilize results under camera motion. The output can fill a more nar-
row guard band since it only contributes to the previous bounce’s
result. Thus, a user can increase performance at the expense of ro-
bustness for multi-bounce indirect light by reducing the fraction of
the guard band for which we compute indirect illumination.

We tuned the HIGH PERFORMANCE parameter set to minimize
evaluation time for the lowest image quality we found acceptable.
It barely suppresses flicker and noise artifacts and provides heavily
biased results, but it is still stable and fast. This is what one might
desire for a game with strict performance constraints. We tuned the
HIGH QUALITY parameter set until further parameter changes led
to negligible increase in quality. The BALANCED parameter set is
at the knee in our perceived quality vs. performance curve, and we
recommend it for games with smoother camera movement.

3.6. Reflection Ray Tracing

We adapt screen-space mirror reflection [SKS11] to Deep G-
buffers, and Section 4 illustrates results with this effect in addi-
tion to our indirect illumination. We march reflection rays in cam-
era space, projecting each point into both G-buffer layers: we treat
rays that lie within [z,z+∆z] of either of the G-buffers’ (x,y,z) po-
sitions for a pixel as a hit and, here, outgoing radiance is simply the

incoming radiance along the reflection direction. After a maximum
distance, or once the ray exits the guard band, we revert to mir-
ror refleciton environment map lookups. Our supplement includes
a full implementation with this feature.

4. Evaluation

We evaluate our single-pass layered Deep G-buffer construction
with minimum separation, and its application to global illumination
(GI) in several scenes (see Table 5). All results were measured at
1080p (i.e., 1920×1080) on a NVIDIA GeForce GTX 980 GPU.

4.1. Performance

Table 7 shows that both of our single-pass construction REPROJECT

variants outperform depth peeling on all scenes. On complex scenes
such as San Miguel, our optimized REPROJECT variant provides
even more of a performance improvement the standard REPROJECT

variant. Table 6 illustrates that the incremental cost of including
an additional layer for GI computation is small. Our algorithms
amortize the cost of pixel iteration, sample tap computation, and
framebuffer overhead – only bandwidth costs increase measurably
when adding more samples.

4.2. Parameter Selection

G-buffer construction depends on a scene-dependent min-
imum separation constant, ∆z. If ∆z is too small, then
the second layer will capture superfluous local detail.

�z = 1m

�z = 1 cm

�z = 25 cm

If ∆z is too large, then
the second layer will cap-
ture surfaces that are too
distant, potentially miss-
ing important features:
e.g., in the inlined figure,
∆z = 1 m fails to capture
the blue wall behind the column and will instead “see through” to
the green wall.

We have, however, consistently observed robust and stable im-
age quality for a wide range of ∆z settings, even on scenes with
high depth complexity. We use ∆z = 50 cm for every result in this
paper. Figure 16 illustrates the impact of the temporal weight α

on undersampling noise: our temporal filter is an exponentially-
weighted moving average, so the useful range of α is on the high
end of the [0,1) interval. We generally recommend α = 0.85.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

Indirect Reconstruction Use n̂Y Test Minimum Fraction of Guard
Preset Samples (N) Filter Taps (Equation 5) MIP Level Band Shaded
HIGH PERFORMANCE 13 9 No 3 10%
BALANCED 14 11 Yes 2 50%
HIGH QUALITY 30 13 Yes 0 80%

Table 4: Three parameter sets for our radiosity algorithm.

Figure 10: Sponza lit with dynamic lighting from a static light probe lighting solution (top), and indirect illumination computed with our
Deep G-buffers (bottom), where global illumination captures color bleeding and reproduces plausible large-scale soft shadowing.

4.3. Image Quality

As few as two layers can significantly improve the appearance of
scenes that have high depth variance and depth complexity. Fig-

Scene Source Tris. Chars. Meshes
Office g3d.sf.net 10k 0 17

Kitchen turbosquid.com 370k 0 77
Warehouse turbosquid.com 640k 34 89

Sponza Crytek 850k 0 56
Old City turbosquid.com 1.2M 0 100
Dockside Call of Duty: Black Ops 2 2.3M 8 20
Op925 Battlefield 3 2.8M 32 66

San Miguel Evolucién Visual 5.9M 0 1196

Table 5: Triangle, animated character, and mesh counts for scenes.

Indirect Illumination [ms] AO
Scene Max Perf. Balanced Max Quality [ms]

Kitchen 2.1 + 0.5 3.2 + 0.4 5.4 + 1.0 1.4 + 0.1
Sponza 2.0 + 0.7 3.4 + 0.5 6.3 + 0.9 1.4 + 0.0

Old City 2.1 + 0.4 3.5 + 0.4 6.1 + 0.5 1.8 + 0.1
Dockside 1.8 + 0.5 3.2 + 0.3 6.1 + 0.3 1.7 + 0.1
Op925 2.2 + 0.5 3.6 + 0.3 6.3 + 0.3 1.7 + 0.0

San Miguel 2.2 + 0.5 3.5 + 0.5 6.0 + 0.7 1.7 + 0.0

Table 6: Execution times for two-layer Deep G-buffer GI (includ-
ing spatial and temporal reconstruction filtering), formatted as 1st

layer time + 2nd layer time. Amortizing the overhead reduces the
incremental cost for the 2nd layer. For scenes with mirror reflectors,
ray tracing cost KITCHEN: 1.3 + 0.3; DOCKSIDE: 1.7 + 0.1; and
SAN MIGUEL: 1.0 + 0.2.

Layer 2 [ms]
Layer 1 Depth REPROJECT PREVIOUS PREDICT/

Scene [ms] Peel Optimized Standard DELAY

SAN MIGUEL 4.1 4.0 1.7 2.7 2.7 25.8
KITCHEN 2.2 2.2 0.3 0.4 0.3 1.5
SPONZA 1.5 1.5 0.9 0.9 0.9 3.4

DOCKSIDE 2.1 2.0 1.1 1.2 1.1 7.4
OP925 2.7 2.8 0.8 1.2 1.2 8.3

OLD CITY 1.2 1.1 0.7 0.9 0.9 6.1
OFFICE 0.2 0.2 0.1 0.1 0.1 0.2

WAREHOUSE 2.4 2.4 0.9 1.0 1.0 3.4

Table 7: Deep G-buffer construction times at 1080p, with the
fastest method for a full-resolution second layer in bold for each
scene/row. Our optimized REPROJECT variant produces the second
layer in about half the time of single-layer rendering, on all scenes.

ures 18 and 19 illustrate our robustness to occlusion and viewpoint
changes in scenes with indirect illumination, and Figures 20 and 21
highlight the importance, and validate the necessity, of enforcing a
minimum separation distance in addition to the additional layer: we
capture important lighting features by enforcing minimum separa-
tion and, more importantly, accuracy improvements (i.e., compared
to 8-layer depth-peeled references) due to minimum separation are
larger than that of including many more depth peeled layers.

In general, our Deep G-buffer approach increases the quality of
existing screen-space shading approaches (e.g., see Figure 21 for
AO and Figure 14 for specular reflections) with only moderate per-
formance and storage costs, and we quickly approach the quality
of many-layer depth peeled references: Figures 13 and 17 highlight
the scalability of our approach with the resolution of our second
layer, as well as our scalability compared to traditional depth peel-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

a) Indirect Light Confidence b) Light Probe Fallback c) + Deep G-buffer GI d) Composite w/ Uniform Confidence

Figure 11: a) A context-sensitive confidence weight (with histogram shown inset) blends between b) static light probe GI and Deep G-buffer
indirect lighting, producing c) a more robust result than either alone or d) simple averaging.

(a) Ground truth (b) Approximated visibility (c) Approximated sampling
Sampling /

:
3D hemisphere + full ray-tracing 3D hemisphere + Deep G-buffer 2D spiral + full ray-tracing

Visibility (with n̂Y test) ray cast (with n̂Y test) (with n̂Y test)

(d) Section 3.2 (e) No visibility test, variant 1 (f) No visibility test, variant 2
Sampling /

:
2D spiral + Deep G-buffer 2D spiral + no visibility 2D spiral + no visibility

Visibility ray cast (with n̂Y test) (with n̂Y test) (without n̂Y test)

Figure 12: Experimental results on the qualitative impact of each of our simplifying assumptions for indirect lighting. The approximations
are complimentary, so although each adds different error, the net difference between ground truth and our full approximation is only minor
darkening at frame edges and some loss of contrast under the ivy.

ing. Our single-pass construction consistently outperforms depth
peeling by more than a factor of 2, in addition to generating higher
quality results due to our robust minimum separation criterion.

Figures 1, 10, 18, and 19 also confirm that a layered Deep G-
buffer can provide sufficient information to indirectly illuminate
large regions that receive no direct light, provided that direct light
appears somewhere in the framebuffer (e.g., the 2nd layer or guard
band). These results inherently depend on the viewpoint, but in a
manner that has two desirable properties: indirect illumination and
AO fade-out smoothly as surfaces approach glancing angles, avoid-
ing temporal “popping” artifacts; moreover, our results remain self-
consistent for surfaces that are in (or nearly in) view.

Our indirect lighting approximation has four sources of error:

1. it can overestimate E by assuming Y is visible from X ,
2. it underestimates E by not taking surfaces outside the Deep G-

buffer into account,

3. our spiral sampling pattern introduces bias, and
4. ignoring the sample backface (i.e., n̂Y) test overestimates E.

Figure 12 explores the qualitative impact of each of these er-
ror sources on the final rendering. Here, we would like to iden-
tify the point at which a user could perceive differences between
ground truth after our approximation, as opposed to a quantitative
numerical error analysis. Figure 12a uses full world-space ray trac-
ing against triangles, unbiased QMC hemispherical sampling, and
the full backface test to produce a ground truth indirect + direct
illumination result. The remaining results in Figure 12 use every
valid combination of the aforementioned error-introducing approx-
imations, culminating our fastest approximation in Figure 12f. The
principal visual artifacts that we observed were under-estimation
of indirect light when not using world-space ray tracing (i.e., Fig-
ure 12a vs. b) and over-estimation of indirect light when omiting
the n̂Y backface test (i.e., Figure 12e vs. f). Some other minor arti-
facts include varying (and often complimentary) degrees of global

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

Full-Resolution
Layer 1 (4.1 ms)

Depth Peel
Layer 2

REPROJECT Optimized
Layer 2

Ti
m

e (
m

s)

Lo
w

er
 is

 B
et

te
r

Relative Resolution

1
2 ×

1
2 1 × 1 1

3 ×
1
3 1

4 ×
1
4 1

8 ×
1
8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 13: Performance of two methods for generating the Deep G-
buffer’s 2nd layer vs. resolution in SPONZA. Our REPROJECT algo-
rithm is twice as fast as traditional DEPTHPEEL. As the resolution
for the second layer decreases, the incremental cost of generating
a second layer with REPROJECT asymptotically drops to only 25%
of that of the first layer, a 4x savings over naive depth peeling.

contrast loss, but we note that the ground truth offline result (Fig-
ure 12a) and our fastest real-time approximation (Figure 12f) com-
pare reasonably well to each other.

In these examples, we find that the mutual visibility approxima-
tion contributes less to the perceptible error than the spiral sam-
pling bias, likely due to the fundamental underlying screen-space
assumption: nearby surfaces that face each other often have small
amounts of mutual occlusion. A distant or backfacing surface con-
tributes little indirect illumination, so its visibility does not signifi-
cantly impact the final result.

We use reverse reprojection in multi-bounce indirect illumi-
nation for both progressive computation and temporal filtering.
In each case, reverse reprojection creates disoccluded regions
(“holes”) at newly revealed locations. Figure 15 illustrates the ef-
fect of disocclusion on progressive computation (and the impact on
filtering is comparable). Since the 2nd layer can fill in many dis-
occlusions, and indirect illumination has a wide gather kernel, the
perceptible impact on the final image is small.

Figure 14: A second layer makes the red containers’ reflection in
DOCKSIDE more stable to passing foreground objects.

5. Conclusions

We presented an efficient single-pass method for constructing lay-
ered Deep G-buffers that respect a novel minimum separation cri-
terion, and we demonstrated the robustness and utility of this struc-
tured in the context of several shading applications. We detailed
four GPU-accelerated variants of our construction algorithm, solv-
ing the problem of determining the first layer’s depth before it is
ever rendered. Our indirect illumination sampling is based on ra-
diometric first principles, and we showed how Deep G-buffers can
be applied to sampling-based shading integral estimates.

While multiple layers increase robustness in these important use
cases, we showed that both the minimum separation criterion and
our single-pass implementation are essential to generating high-
performance, high-quality results. Finally, we described a sampling
and spatio-temporal reconstruction strategy optimized for both im-
age quality and performance.

Discussion Our results illustrate, sometimes surprisingly, that one
can reach a rendering quality normally associated to offline global
illumination, but instead using our high-performance Deep G-
buffers. Our techniques fail gracefully and in ways that self-identify
undersampled regions, allowing fallbacks to coarser-scale light-
ing solutions such as precomputed light probes (which we demon-
strate) or dynamic sparse voxel octrees.

All of our single-pass Deep G-buffer construction methods can
generalize from 2 to k G-buffer layers, but our PREDICTION vari-
ant requires rendering 2k−1 layers per frame (k−1 for depth-only).
The REPROJECTION (and less desirable PREVIOUS) variants re-
quire only k render layers per frame.

References
[Ari05] ARIKAN O.: Fast and detailed approximate global illumination

by irradiance decomposition. ACM ToG 24 (2005), 1108–1114. 2

[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA JO A.
L. D., SILVA C. T.: Multi-fragment effects on the GPU using the k-
buffer. In I3D (2007), ACM, pp. 97–104. 3

[Ben14] BENTLEY A.: Engine postmortem of inFAMOUS: Second Son,
2014. GDC Talk. 6

[BM08] BAVOIL L., MYERS K.: Order independent transparency with
dual depth peeling. Tech. rep., NVIDIA, 2008. 3, 5

[Bra13] BRAINERD W.: Profiling results on Playstation4 at Activision
Maine, October 2013. Personal comm. 4

[BS09] BAVOIL L., SAINZ M.: Multi-layer dual-resolution screen-space
ambient occlusion. In ShaderX7, Engel W., (Ed.). 2009. 2, 3, 4

[Buk13] BUKOWSKI M.: Profiling results on NVIDIA GeForce 670 at
Vicarious Visions, October 2013. Personal comm. 4

[Car84] CARPENTER L.: The A-buffer, an antialiased hidden surface
method. SIGGRAPH 18, 3 (Jan. 1984), 103–108. 3

[CDE∗14] CIGOLLE Z. H., DONOW S., EVANGELAKOS D., MARA M.,
MCGUIRE M., MEYER Q.: A survey of efficient representations for
independent unit vectors. JCGT 3, 2 (April 2014), 1–30. 7

[CG85] COHEN M. F., GREENBERG D. P.: The hemi-cube: a radiosity
solution for complex environments. SIGGRAPH (July 1985), 31–40. 7

[CG12] CRASSIN C., GREEN S.: Octree-based sparse voxelization using
the GPU hardware rasterizer. CRC Press, 2012. 3

[Cha11] CHAPMAN J.: Deferred rendering, transparency & alpha blend-
ing, January 2011. Blog post. 3

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

Ground truth shading for a static camera (position 1) Shading from position 1 reprojected onto position 2 Final shading with reprojection and direct lighting

Ground truth shading for a static camera (position 2) Shading with reprojection from position 1 to 2 Error due to reprojection at position 2 (scaled 3×)

Figure 15: Impact of reprojection on indirect lighting: cyan marks disocclusions in layer 1, and yellow marks disocclusions in both layers.

α = 0 α = 0.5 α = 0.85 α = 0.95
Figure 16: Increasing temporal filter weight α decreases noise.

Layer 1 (4.1 ms)

Depth Peel

Ti
m

e p
er

 A
dd

iti
on

al
 L

ay
er

 (m
s)

Lo

w
er

 is
 B

et
te

r

k Layers

0.0

1.0

2.0

3.0

5.0

4.0

2 3 4 8

REPROJECT Optimized

Figure 17: Deep G-buffer generation in SAN MIGUEL. We subtract
the constant overhead of the first layer and show the additional time
to complete all k layers, divided by k− 1 to reveal amortized cost.
Main result: optimized REPROJECT is 2x as fast as depth peeling.

Figure 18: Single-layer shading misses the indirect bounce off the
red floor (bottom left), yielding inconsistent shading in WARE-
HOUSE; using two layers (bottom right) corrects this.

Figure 19: A single layer fails to capture indirect light from the
purple banners behind the column in SPONZA (left), whereas our 2-
layer Deep G-buffer captures enough light for plausible GI (right).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

1-layer AO Error (1-layer) 2-layer AO w/ min. separation Error (2-layer w/ min. sep.)

2-layer AO without min. sep. Error (2-layer w/o min. sep.) 4-layer AO without min. sep. Error (4-layer w/o min. sep.)

Figure 20: The impact of minimum separation on rendering quality, compared to an 8-layer rendering reference, is larger than the impact
of increasing the number of layers: the difference between 1-layer and 2-layer AO (with min. separation) is larger than that of 2-layer (with
min. separation) and the reference. This discrepancy even increases in scenes with higher depth complexity.

1-Layer lighting Areas refined by our method 2-Layer Deep G-buffer with min. sep.

Figure 21: Screen-space AO and GI results with a single layer (left), and with two layers & minimum separation (right), in the (top to bottom)
KITCHEN, SAN MIGUEL, WAREHOUSE and SPONZA scenes. Middle column: color-coded 2× difference images, where cyan highlights
areas improved by using two layers and yellow highlights areas improved by minimum separation.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

M. Mara, M. McGuire, D. Nowrouzezahrai, and D. Luebke / Deep G-Buffers for Stable Global Illumination Approximation

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: Gi-
gaVoxels: Ray-guided streaming for efficient and detailed voxel render-
ing. In I3D (2009), ACM, pp. 15–22. 3

[Cof11] COFFIN C.: SPU-based deferred shading for battlefield 3 on
playstation 3, 2011. GDC Talk. 6

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective shadow maps.
In I3D (2005), ACM, pp. 203–231. 2, 3, 4, 6

[DWS∗88] DEERING M., WINNER S., SCHEDIWY B., DUFFY C.,
HUNT N.: The triangle processor and normal vector shader: A VLSI
system for high performance graphics. SIGGRAPH (1988), 21–30. 3, 4

[ED06] EISEMANN E., DÉCORET X.: Fast scene voxelization and appli-
cations. In I3D (2006), ACM SIGGRAPH, pp. 71–78. 3

[Eve01] EVERITT C.: Interactive order-Independent transparency. Tech.
rep., NVIDIA, 2001. 3

[FM08] FILION D., MCNAUGHTON R.: Starcraft II effects & tech-
niques. In Advances in Real-time Rendering. August 2008. 6

[GN15] GIRAUD A., NOWROUZEZAHRAI D.: Practical shading of
height fields and meshes using spherical harmonic exponentiation. In
EGSR Experimental Ideas & Imp. (2015), Eurographics. 3

[Hac05] HACHISUKA T.: High-Quality Global Illumination Rendering
Using Rasterization. GPU Gems 2, Addison-Wesley, 2005, ch. 38. 2, 4

[Hal10] HALÉN H.: Style and gameplay in the Mirror’s Edge, July 2010.
Stylized Rendering in Games SIGGRAPH Course. 7

[HMY12] HARADA T., MCKEE J., YANG J. C.: Forward+: Bringing
deferred lighting to the next level. In Eurographics Short Papers (2012),
Eurographics, pp. 5–8. 4

[JB10] JANSEN J., BAVOIL L.: Fourier opacity mapping. In I3D (2010),
ACM, pp. 165–172. 3

[LK10] LAINE S., KARRAS T.: Efficient sparse voxel octrees. In I3D
(2010), ACM, pp. 55–63. 3

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In SIGGRAPH
(2000), ACM Press, pp. 385–392. 3

[MB07] MYERS K., BAVOIL L.: Stencil routed A-buffer. In SIGGRAPH
Sketches (2007), ACM. 3

[McG13] MCGUIRE M.: Profiling results on NVIDIA GeForce 660 at
Unknown Worlds, October 2013. Personal comm. 4

[MG12] MICKAEL GILABERT N. S.: Deferred radiance transfer vol-
umes. GDC Talk. 7

[MML12] MCGUIRE M., MARA M., LUEBKE D.: Scalable ambient
obscurance. In HPG (June 2012). 3, 6, 7, 8

[MP01] MARK W. R., PROUDFOOT K.: The F-buffer: a rasterization-
order FIFO buffer for multi-pass rendering. In Graphics Hardware
(2001), ACM, pp. 57–64. 3

[NRS14] NALBACH O., RITSCHEL T., SEIDEL H.-P.: Deep screen
space. In I3D (2014), ACM, pp. 79–86. 3

[NS09] NOWROUZEZAHRAI D., SNYDER J.: Fast global illumination on
dynamic height fields. CGF: EGSR (2009). 3

[NSL∗07] NEHAB D., SANDER P. V., LAWRENCE J., TATARCHUK N.,
ISIDORO J. R.: Accelerating real-time shading with reverse reprojection
caching. In Graphics Hardware (2007), Eurographics, pp. 25–35. 6

[Per07] PERSSON E.: Deep deferred shading, Nov 2007. Blog post. 3

[PLAN98] POPESCU V., LASTRA A., ALIAGA D., NETO M. D. O.:
Efficient warping for architectural walkthroughs using layered depth im-
ages. In IEEE Visualization (1998), pp. 211–215. 3

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approximating dy-
namic global illumination in image space. In I3D (2009), ACM, pp. 75–
82. 2, 3, 4

[RSW13] RAINE C., SOUSA T., WENZEL C.: Rendering technologies
of crysis 3, 2013. GDC Talk. 6

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated ambient
occlusion techniques on GPUs. In I3D (2007), ACM, pp. 73–80. 2, 3, 4

[SA09] SINTORN E., ASSARSSON U.: Hair self shadowing and trans-
parency depth ordering using occupancy maps. In I3D (2009), ACM,
pp. 67–74. 3

[SA11] SUCHOW J. W., ALVAREZ G. A.: Motion silences awareness of
visual change. Curr. Bio. 21, 2 (2011), 140 – 143. 6

[Sal13] SALVI M.: Pixel synchronization: solving old graphics problems
with new data structures. In Advances in Real-time Rendering. 2013. 3,
4

[Sch12] SCHWARZ M.: Practical binary surface and solid voxelization
with Direct3D 11. In GPU Pro 3, Engel W., (Ed.). A K Peters, 2012,
pp. 337–352. 3

[Sch14] SCHULZ N.: Rendering technology of Ryse, 2014. GDC Talk. 6

[SGHS98] SHADE J., GORTLER S., HE L.-W., SZELISKI R.: Layered
depth images. In SIGGRAPH (1998), ACM, pp. 231–242. 3

[SGNS07] SLOAN P.-P., GOVINDARAJU N. K., NOWROUZEZAHRAI
D., SNYDER J.: Image-based proxy accumulation for real-time soft
global illumination. In Pacific Graphics (2007), IEEE, pp. 97–105. 7

[Shi91] SHIRLEY P.: Discrepancy as a quality measure for sample distri-
butions. In Eurographics (1991), Elsevier, pp. 183–194. 8

[SHRH09] SOLER C., HOEL O., ROCHET F., HOLZSCHUCH N.: A Fast
Deferred Shading Pipeline for Real Time Approximate Indirect Illumina-
tion. Tech. rep., INRIA, 2009. 3, 7

[SKS11] SOUSA T., KASYAN N., SCHULZ N.: Secrets of CryEngine 3
graphics technology. In SIGGRAPH Courses (2011), ACM. 9

[SML11] SALVI M., MONTGOMERY J., LEFOHN A.: Adaptive trans-
parency. In HPG (2011), ACM, pp. 119–126. 3

[SN08] SNYDER J., NOWROUZEZAHRAI D.: Fast soft self-shadowing
on dynamic height fields. CGF: EGSR (2008), 1275–1283. 3

[SS89] SALESIN D., STOLFI J.: The ZZ-buffer: A simple and effi-
cient rendering algorithm with reliable antialiasing. In PIXM’89 (1989),
pp. 415–465. 3

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of 3-d
shapes. SIGGRAPH 24, 4 (1990), 197–206. 3

[TTV13] TATARCHUK N., TCHOU C., VENZON J.: Destiny: From
mythic science fiction to rendering in real-time. In SIGGRAPH Talks
(2013), ACM. 6

[Val09] VALIENT M.: The rendering technology of killzone 2, 2009.
GDC Talk. 6

[VPG13] VARDIS K., PAPAIOANNOU G., GAITATZES A.: Multi-view
ambient occlusion with importance sampling. In I3D (2013), ACM,
pp. 111–118. 2, 3, 4

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces. SIG-
GRAPH 12, 3 (Aug. 1978), 270–274. 4

[YK07] YUKSEL C., KEYSER J.: Deep Opacity Maps. Tech. rep., Dept.
of Comp. Sci., Texas A&M University, 2007. 3

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

