
HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 359 #1

CHAPTER

Thrust: A
Productivity-Oriented
Library for CUDA 26

Nathan Bell and Jared Hoberock

This chapter demonstrates how to leverage the Thrust parallel template library to implement high-
performance applications with minimal programming effort. Based on the C++ Standard Template
Library (STL), Thrust brings a familiar high-level interface to the realm of GPU Computing while
remaining fully interoperable with the rest of the CUDA software ecosystem. Applications written
with Thrust are concise, readable, and efficient.

26.1 MOTIVATION
With the introduction of CUDA C/C++, developers can harness the massive parallelism of the GPU
through a standard programming language. CUDA allows developers to make fine-grained decisions
about how computations are decomposed into parallel threads and executed on the device. The level
of control offered by CUDA C/C++ (henceforth CUDA C) is an important feature: it facilitates the
development of high-performance algorithms for a variety of computationally demanding tasks which
(1) merit significant optimization and (2) profit from low-level control of the mapping onto hardware.
For this class of computational tasks CUDA C is an excellent solution.

Thrust [1] solves a complementary set of problems, namely those that are (1) implemented effi-
ciently without a detailed mapping of work onto the target architecture or those that (2) do not merit
or simply will not receive significant optimization effort by the user. With Thrust, developers describe
their computation using a collection of high-level algorithms and completely delegate the decision
of how to implement the computation to the library. This abstract interface allows programmers to
describe what to compute without placing any additional restrictions on how to carry out the computa-
tion. By capturing the programmer’s intent at a high level, Thrust has the discretion to make informed
decisions on behalf of the programmer and select the most efficient implementation.

The value of high-level libraries is broadly recognized in high-performance computing. For
example, the widely-used BLAS standard provides an abstract interface to common linear algebra
operations. First conceived more than three decades ago, BLAS remains relevant today in large part
because it allows valuable, platform-specific optimizations to be introduced behind a uniform interface.

Whereas BLAS is focused on numerical linear algebra, Thrust provides an abstract interface to
fundamental parallel algorithms such as scan, sort, and reduction. Thrust leverages the power of C++
templates to make these algorithms generic, enabling them to be used with arbitrary user-defined
types and operators. Thrust establishes a durable interface for parallel computing with an eye towards
generality, programmer productivity, and real-world performance.

GPU Computing Gems
c© 2012 Elsevier Inc. All rights reserved.

359

nbell
Text Box
Appears in GPU Computing Gems: Jade EditionPublished 2011 by Morgan Kaufmann Publishershttp://mkp.com/news/3405

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 360 #2

360 CHAPTER 26 Thrust: A Productivity-Oriented Library for CUDA

26.2 DIVING IN
Before going into greater detail, let us consider the program in Listing 26.1, which illustrates the salient
features of Thrust.

#include <thrust/host vector.h>

#include <thrust/device vector.h>

#include <thrust/generate.h>

#include <thrust/sort.h>

#include <thrust/copy.h>

#include <cstdlib>

int main(void)
{

// generate 16M random numbers on the host
thrust::host vector<int> h vec(1 << 24);
thrust::generate(h vec.begin(), h vec.end(), rand);

// transfer data to the device
thrust::device vector<int> d vec = h vec;

// sort data on the device
thrust::sort(d vec.begin(), d vec.end());

// transfer data back to host
thrust::copy(d vec.begin(), d vec.end(), h vec.begin());

return 0;
}

Listing 26.1. A complete Thrust program which sorts data on the GPU.

Thrust provides two vector containers: host vector and device vector. As the names sug-
gest, host vector is stored in host memory while device vector lives in device memory on the
GPU. Like the vector container in the C++ STL, host vector and device vector are generic con-
tainers (i.e., they are able to store any data type) that can be resized dynamically. As the example shows,
containers automate the allocation and deallocation of memory and simplify the process of exchanging
data between the host and device.

The program acts on the vector containers using the generate, sort, and copy algorithms. Here,
we adopt the STL convention of specifying ranges using pairs of iterators. In this example, the iterators
h vec.begin() and h vec.end() can be thought of as a pair of int pointers, where the former
points to the first element in the array and the latter to the element one past the end of the array.
Together the pair defines a range of integers of size h vec.end() - h vec.begin().

Note that even though the computation implied by the call to the sort algorithm suggests one or
more CUDA kernel launches, the programmer has not specified a launch configuration. Thrust’s inter-
face abstracts these details. The choice of performance-sensitive variables such as grid and block size,

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 361 #3

26.2 Diving In 361

the details of memory management, and even the choice of sorting algorithm are left to the discretion
of the library implementor.

26.2.1 Iterators and Memory Spaces
Although vector iterators are similar to pointers, they carry additional information. Notice that we did
not have to instruct the sort algorithm that it was operating on the elements of a device vector
or hint that the copy was from device memory to host memory. In Thrust the memory spaces of
each range are automatically inferred from the iterator arguments and used to dispatch the appropriate
implementation.

In addition to memory space, Thrust’s iterators implicitly encode a wealth of information which can
guide the dispatch process. For instance, our sort example above operates on ints, a primitive data
type with a fundamental comparison operation. In this case, Thrust dispatches a highly-tuned Radix
Sort algorithm [2] which is considerably faster than alternative comparison-based sorting algorithms
such as Merge Sort [3]. It is important to realize that this dispatch process incurs no performance or
storage overhead: metadata encoded by iterators exists only at compile time, and dispatch strategies
based on it are selected statically. In general, Thrust’s static dispatch strategies may capitalize on any
information that is derivable from the type of an iterator.

26.2.2 Interoperability
Thrust is implemented entirely within CUDA C/C++ and maintains interoperability with the rest of
the CUDA ecosystem. Interoperability is an important feature because no single language or library
is the best tool for every problem. For example, although Thrust algorithms use CUDA features like
shared memory internally, there is no mechanism for users to exploit shared memory directly

through Thrust. Therefore, it is sometimes necessary for applications to access CUDA C directly to
implement a certain class of specialized algorithms, as illustrated in the software stack of Figure 26.1.

Interfacing Thrust to CUDA C is straightforward and analogous to the use of the C++ STL with
standard C code. Data that resides in a Thrust container can be accessed by external libraries by

Application

Thrust

CUDA C/C++

BLAS, FFT ...

CUDA

FIGURE 26.1

Thrust is an abstraction layer on top of CUDA C/C++.

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 362 #4

362 CHAPTER 26 Thrust: A Productivity-Oriented Library for CUDA

size t N = 1024;

// allocate Thrust container
device vector<int> d vec(N);

// extract raw pointer from container
int ∗ raw ptr = raw pointer cast(&d vec[0]);

// use raw ptr in non−Thrust functions
cudaMemset(raw ptr, 0, N ∗ sizeof(int));

// pass raw ptr to a kernel
my kernel<<<N / 128, 128>>>(N, raw ptr);

// memory is automatically freed

(a) Interfacing Thrust to CUDA

size t N = 1024;

// raw pointer to device memory
int ∗ raw ptr;
cudaMalloc(&raw ptr, N ∗ sizeof(int));

// wrap raw pointer with a device ptr
device ptr<int> dev ptr = device pointer cast(raw ptr);

// use device ptr in Thrust algorithms
sort(dev ptr, dev ptr + N);

// access device memory through device ptr
dev ptr[0] = 1;

// free memory
cudaFree(raw ptr);

(b) Interfacing CUDA to Thrust

Listing 26.2. Thrust interoperates smoothly with CUDA C/C++.

extracing a “raw” pointer from the vector. The code sample in Listing 26.2 illustrates the use of
raw pointer cast to obtain an int pointer to the contents of a device vector.

Applying Thrust algorithms to raw pointers is also straightforward. Once the raw pointer has been
wrapped by a device ptr it can be used like an ordinary Thrust iterator. The wrapped pointer provides
the memory space information Thrust needs to invoke the appropriate algorithm implemention and also
allows a convenient mechanism for accessing device memory from the host.

Thrust’s native CUDA C interoperability is a powerful feature. Interoperability ensures that Thrust
always complements CUDA C and that a Thrust plus CUDA C combination is never worse than
either Thrust or CUDA C alone. Indeed, while it may be possible to write whole parallel applications
entirely with Thrust functions, it is often valuable to implement domain-specific functionality directly
in CUDA C. The level of abstraction targeted by native CUDA C affords programmers fine-grained
control over the precise mapping of computational resources to a particular problem. Programming at
this level provides developers the flexibility to implement exotic or otherwise specialized algorithms.
Interoperability also facilitates an iterative development strategy: (1) quickly prototype a parallel
application entirely in Thrust, (2) identify the application’s hot spots, and (3) write more specialized
algorithms in CUDA C and optimize as necessary.

26.3 GENERIC PROGRAMMING
Thrust presents a style of programming emphasizing genericity and composability. Indeed, the vast
majority of Thrust’s functionality is derived from four fundamental parallel algorithms: for each,
reduce, scan, and sort. For example, the transform algorithm is a derivative of for each while
inner product is implemented with reduce.

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 363 #5

26.4 Benefits of Abstraction 363

Thrust algorithms are generic in both the type of the data to be processed and the operations to be
applied to the data. For instance, the reduce algorithm may be employed to compute the sum of a
range of integers (a plus reduction applied to int data) or the maximum of a range of floating point
values (a max reduction applied to float data). This generality is implemented via C++ templates,
which allows user-defined types and functions to be used in addition to built-in types such as int or
float or Thrust operators such as plus.

Generic algorithms are extremely valuable because it is impractical to anticipate precisely which
particular types and operators users will require. Indeed, while the computational structure of an
algorithm is fixed, the number of instantiations of the algorithm is truly limitless. However, it is worth
remarking that while Thrust’s interface is general, the abstraction affords implementors the opportu-
nity to specialize for specific types and operations known to be important use cases. As with inferences
from memory space, these opportunities may be exploited statically.

In Thrust, user-defined operations take the form of C++ function objects, or functors. Functors
allow the programmer to adapt a generic algorithm to implement a specific user-defined operation.
For example, the code samples in Listing 26.3 implement SAXPY, the well-known BLAS operation,
using CUDA C and Thrust respectively. Here, the generic transform algorithm is called with the
user-defined saxpy functor.

26.4 BENEFITS OF ABSTRACTION
In this section we’ll describe the benefits of Thrust’s abstraction layer with respect to programmer
productivity, robustness, and real-world performance.

26.4.1 Programmer Productivity
Thrust’s high-level algorithms enhance programmer productivity by automating the mapping of com-
putational tasks onto the GPU. Recall the two implementations of SAXPY shown in Listing 26.3. In
the CUDA C implementation of SAXPY the programmer has described a specific decomposition of
the parallel vector operation into a grid of blocks with 256 threads per block. In contrast, the Thrust
implementation does not prescribe a launch configuration. Instead, the only specifications are the input
and output ranges and a functor to apply to them. Otherwise, the two codes are roughly the same in
terms of length and code complexity.

Delegating the launch configuration to Thrust has a subtle yet profound implication: the launch
parameters can be automatically chosen based on a model of machine performance. Currently, Thrust
targets maximal occupancy and will compare the resource usage of the kernel (e.g., number of registers,
amount of shared memory) with the resources of the target GPU to determine a launch configura-
tion with highest occupancy. While the maximal occupancy heuristic is not necessarily optimal, it is
straightforward to compute and effective in practice. Furthermore, there is nothing to preclude the
use of more sophisticated performance models. For instance, a run-time tuning system that exam-
ined hardware performance counters could be introduced behind this abstraction without altering
client code.

Thrust also boosts programmer productivity by providing a rich set of algorithms for common
patterns. For instance, the map-reduce pattern is conveniently implemented with Thrust’s sort by key
and reduce by key algorithms, which implement key-value sorting and reduction respectively.

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 364 #6

364 CHAPTER 26 Thrust: A Productivity-Oriented Library for CUDA

global
void saxpy kernel(int n, float a, float ∗ x, float ∗ y)
{

const int i = blockDim.x ∗ blockIdx.x + threadIdx.x;

if (i < n)
y[i] = a ∗ x[i] + y[i];

}

void saxpy(int n, float a, float ∗ x, float ∗ y)
{

// set launch configuration parameters
int block size = 256;
int grid size = (n + block size − 1) / block size;

// launch saxpy kernel
saxpy kernel<<< grid size, block size >>>(n, a, x, y);
}

(a) CUDA C

struct saxpy functor
{

const float a;

saxpy functor(float a) : a(a) {}

host device
float operator()(float x, float y)
{

return a ∗ x + y;
}

};

void saxpy(float a, device vector<float>& x, device vector<float>& y)
{

// setup functor
saxpy functor func(a);

// call transform
transform(x.begin(), x.end(), y.begin(), y.begin(), func);
}

(b) Thrust

Listing 26.3. SAXPY implementations in CUDA C and Thrust.

26.4.2 Robustness
Thrust’s abstraction layer also enhances the robustness of CUDA applications. In the previous section
we noted that by delegating the launch configuration details to Thrust we could automatically obtain
maximum occupancy during execution. In addition to maximizing occupancy, the abstraction layer also

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 365 #7

26.4 Benefits of Abstraction 365

ensures that algorithms “just work,” even in uncommon or pathological use cases. For instance, Thrust
automatically handles limits on grid dimensions (no more than 64K), works around limitations on the
size of global function arguments, and accommodates large user-defined types in most algorithms.
To the degree possible, Thrust circumvents such factors and ensures correct program execution across
the full spectrum of CUDA-capable GPUs.

26.4.3 Real-World Performance
In addition to enhancing programmer productivity and improving robustness, the high-level abstrac-
tions provided by Thrust improve performance in real-world use cases. In this section we examine two
instances where the discretion afforded by Thrust’s high-level interface is exploited for meaningful
performance gains.

To begin, consider the operation of filling an array with a particular value. In Thrust, this is imple-
mented with the fill algorithm. Unfortunately, a straightforward implementation of this seemingly
simple operation is subject to severe performance hazards. Recall that processors based on the G80
architecture (i.e., Compute Capability 1.0 and 1.1) impose strict conditions on which memory access
patterns may benefit from memory coalescing [4]. In particular, memory accesses of sub-word gran-
ularity (i.e., less than four bytes) are not coalesced by these processors. This artifact is detrimental to
performance when initializing arrays of char or short types.

Fortunately, the iterators passed to fill implicitly encode all the information necessary to inter-
cept this case and substitute an optimized implementation. Specifically, when fill is dispatched for
smaller types, Thrust selects a “wide” version of the algorithm that issues word-sized accesses per
thread. While this optimization is straightforward to implement, users are unlikely to invest the effort
of making this optimization themselves. Nevertheless, the benefit, shown in Table 26.1, is worthwhile,
particularly on earlier architectures.

Like fill, Thrust’s sorting functionality exploits the discretion afforded by the abstract sort and
stable sort functions. As long as the algorithm achieves the promised result, we are free to utilize

Table 26.1 Memory Bandwidth of Two fill Kernels

GPU data type naive fill thrust::fill Speedup

GeForce 8800 GTS char 1.2 GB/s 41.2 GB/s 34.15x
short 2.4 GB/s 41.2 GB/s 17.35x
int 41.2 GB/s 41.2 GB/s 1.00x
long 40.7 GB/s 40.7 GB/s 1.00x

GeForce GTX 280 char 33.9 GB/s 75.0 GB/s 2.21x
short 51.6 GB/s 75.0 GB/s 1.45x
int 75.0 GB/s 75.0 GB/s 1.00x
long 69.2 GB/s 69.2 GB/s 1.00x

GeForce GTX 480 char 74.1 GB/s 156.9 GB/s 2.12x
short 136.6 GB/s 156.9 GB/s 1.15x
int 146.1 GB/s 156.9 GB/s 1.07x
long 156.9 GB/s 156.9 GB/s 1.00x

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 366 #8

366 CHAPTER 26 Thrust: A Productivity-Oriented Library for CUDA

0

500

1000

1500

2000

2500

0 4 8 12 16 20 24 28 32

S
o
rt

in
g
 p

e
rf

o
rm

an
c
e
 (

M
 K

e
y/

s)

Bits per key

FIGURE 26.2

Sorting 32-bit integers on the GeForce GTX 480: Thrust’s dynamic sorting optimizations improve performance
by a considerable margin in common use cases.

sophisticated static (compile-time) and dynamic (run-time) optimizations to implement the sorting
operation in the most efficient manner.

As mentioned in Section 26.2.1, Thrust statically selects a highly-optimized Radix Sort algo-
rithm [2] for sorting primitive types (e.g., char, int, float, and double) with the standard less
comparison operator. For all other types (e.g., user-defined data types) and comparison operators,
Thrust uses a general Merge Sort algorithm. Because sorting primitives with Radix Sort is considerably
faster than Merge Sort, this static optimization has significant value.

Thrust also applies dynamic optimizations to improve sorting performance. Before invoking the
Radix Sort, Thrust quickly computes the minimum and maximum among the keys to be sorted.
Since the cost of Radix Sort is proportional to the number of significant key bits, we can exploit
knowledge of the extremal values to reduce the cost of sorting. For instance, when all integer keys are
in the range [0, 16), only four bits must be sorted, and we observe a 2.71× speedup versus a full 32-bit
sort. The relationship between key bits and radix sort performance is plotted in Figure 26.2.

26.5 BEST PRACTICES
In this section we highlight three high-level optimization techniques that programmers may employ to
yield significant performance speedups when using Thrust.

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 367 #9

26.5 Best Practices 367

26.5.1 Fusion
The balance of computational resources on modern GPUs implies that algorithms are often bandwidth
limited. Specifically, computations with low arithmetic intensity, the ratio of calculations per memory
access, are constrained by the available memory bandwidth and do not fully utilize the computational
resources of the GPU. One technique for increasing the computational intensity of an algorithm is
to fuse multiple pipeline stages together into a single operation. In this section we demonstrate how
Thrust enables developers to exploit opportunities for kernel fusion and better utilize GPU memory
bandwidth.

The simplest form of kernel fusion is scalar function composition. For example, suppose we have
the functions f (x)→ y and g(y)→ z and would like to compute g(f (x))→ z for a range of scalar
values. The most straightforward approach is to read x from memory, compute the value y= f (x), and
then write y to memory, and then do the same to compute z= g(y). In Thrust this approach would be
implemented with two separate calls to the transform algorithm, one for f and one for g. While this
approach is straightforward to understand and implement, it needlessly wastes memory bandwidth,
which is a scarce resource.

A better approach is to fuse the functions into a single operation g(f (x)) and halve the number of
memory transactions. Unless f and g are computationally expensive operations, the fused implementa-
tion will run approximately twice as fast as the first approach. In general, scalar function composition
is a profitable optimization and should be applied liberally.

Thrust enables developers to exploit other, less-obvious opportunities for fusion. For example, con-
sider the following two Thrust implementations of the BLAS function SNRM2 shown in Listing 26.4,
which computes the Euclidean norm of a float vector.

Note that SNRM2 has low arithmetic intensity: each element of the vector participates in only two
floating point operations, one multiply (to square the value) and one addition (to sum values together).
Therefore, SNRM2 is an ideal candidate for fusion and the transform reduce implementation,
which fuses the square transformation with a plus reduction should be considerably faster. Indeed
this is true and snrm2 fast is fully 3.8 times faster than snrm2 slow for a 16M element vector on a
Tesla C1060.

While the previous examples represent some of the more common opportunities for fusion, we
have only scratched the surface. As we have seen, fusing a transformation with other algorithms is
a worthwhile optimization. However, Thrust would become unwieldy if all algorithms came with a
transform variant. For this reason Thrust provides transform iterator which allows transfor-
mations to be fused with any algorithm. Indeed, transform reduce is simply a convenience wrapper
for the appropriate combination of transform iterator and reduce. Similarly, Thrust provides
permutation iterator which enables gather and scatter operations to be fused with other
algorithms.

26.5.2 Structure of Arrays
In the previous section we examined how fusion minimizes the number of off-chip memory trans-
actions and conserves bandwidth. Another way to improve memory efficiency is to ensure that all
memory accesses benefit from coalescing, since coalesced memory access patterns are considerably
faster than non-coalesced transactions.

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 368 #10

368 CHAPTER 26 Thrust: A Productivity-Oriented Library for CUDA

struct square
{

host device
float operator()(float x) const
{

return x ∗ x;
}

};

float snrm2 slow(const thrust::device vector<float>& x)
{

// without fusion
device vector<float> temp(x.size());
transform(x.begin(), x.end(), temp.begin(), square());

return sqrt(reduce(temp.begin(), temp.end()));
}

float snrm2 fast(const thrust::device vector<float>& x)
{

// with fusion
return sqrt(transform reduce(x.begin(), x.end(), square(), 0.0f, plus<float>());
}

Listing 26.4. SNRM2 has low arithmetic intensity and therefore benefits greatly from fusion.

struct float3
{

float x;
float y;
float z;
};

float3 ∗ aos;
...

aos[0].x = 1.0f;

(a) Array of Structures

struct float3 soa
{

float ∗ x;
float ∗ y;
float ∗ z;
};

float3 soa soa;
...

soa.x[0] = 1.0f;

(b) Structure of Arrays

Listing 26.5. Data layouts for three-dimensional float vectors.

Perhaps the most common violation of the memory coalescing rules arises when using a so-called
Array of Structures (AoS) data layout. Generally speaking, access to the elements of an array filled
with C struct or C++ class variables will be uncoalesced. Only special structures such as uint2 or
float4 satisfy the memory coalescing rules.

An alternative to the AoS layout is the Structure of Arrays (SoA) approach, where the components
of each struct are stored in separate arrays. Listing 26.5 illustrates the AoS and SoA methods of repre-
senting a range of three-dimensional float vectors. The advantage of the SoA method is that regular

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 369 #11

26.5 Best Practices 369

struct rotate tuple
{

host device
tuple<float,float,float> operator()(tuple<float,float,float>& t)
{

float x = get<0>(t);
float y = get<1>(t);
float z = get<2>(t);

float rx = 0.36f ∗ x + 0.48f ∗ y + −0.80f ∗ z;
float ry =−0.80f ∗ x + 0.60f ∗ y + 0.00f ∗ z;
float rz = 0.48f ∗ x + 0.64f ∗ y + 0.60f ∗ z;

return make tuple(rx, ry, rz);
}

};

...

device vector<float> x(N), y(N), z(N);

transform(make zip iterator(make tuple(x.begin(), y.begin(), z.begin())),
make zip iterator(make tuple(x.end(), y.end(), z.end())),
make zip iterator(make tuple(x.begin(), y.begin(), z.begin())),
rotate tuple());

Listing 26.6. The zip iterator facilitates processing of data in structure of arrays format.

access to the x, y, and z components of a given vector is coalesceable (because float satisfies the
coalescing rules), while regular access to the float3 structures in the AoS approach is not.

The problem with SoA is that there is nothing to logically encapsulate the members of each ele-
ment into a single entity. Whereas we could immediately apply Thrust algorithms to AoS containers
like device vector<float3>, we have no direct means of doing the same with three separate
device vector<float> containers. Fortunately Thrust provides zip iterator, which provides
encapsulation of SoA ranges.

The zip iterator [5] takes a number of iterators and zips them together into a virtual range of
tuples. For instance, binding three device vector<float> iterators together yields a range of type
tuple<float,float,float>, which is analogous to the float3 structure.

Consider the code sample in Listing 26.6 which uses zip iterator to construct a range of three-
dimensional float vectors stored in SoA format. Each vector is transformed by a rotation matrix in the
rotate tuple functor before being written out again. Note that zip iterator is used for both input
and output ranges, transparently packing the underlying scalar ranges into tuples and then unpacking
the tuples into the scalar ranges. On a Tesla C1060, this SoA implementation is 2.85× faster than the
analogous AoS implementation (not shown).

26.5.3 Implicit Ranges
In the previous sections we considered ways to efficiently transform ranges of values and ways to
construct ad hoc tuples of values from separate ranges. In either case, there was some underlying data

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 370 #12

370 CHAPTER 26 Thrust: A Productivity-Oriented Library for CUDA

stored explicitly in memory. In this section we illustrate the use of implicit ranges, i.e., ranges whose
values are defined programmatically and not stored anywhere in memory.

For instance, consider the problem of finding the index of the element with the smallest value in
a given range. We could implement a special reduction kernel for this algorithm, which we’ll call
min index, but that would be time-consuming and unnecessary. A better approach is to implement
min index in terms of existing functionality, such as a specialized reduction over (value, index)
tuples, to achieve the desired result. Specifically, we can zip the range of values v[0], v[1], v[2], . . .

together with a range of integer indices 0, 1, 2, . . . to form a range of tuples (v[0], 0), (v[1], 1),
(v[2],2) . . . and then implement min index with the standard reduce algorithm. Unfortunately,
this scheme will be much slower than a customized reduction kernel, since the index range must be
created and stored explicitly in memory.

To resolve this issue Thrust provides counting iterator [5], which acts just like the explicit
range of values we need to implement min index, but does not carry any overhead. Specifically, when
counting iterator is dereferenced it generates the appropriate value “on the fly” and yields that
value to the caller. An efficient implementation of min index using counting iterator is shown
in Listing 26.7.

struct smaller tuple
{

tuple<float,int> operator()(tuple<float,int> a, tuple<float,int> b)
{

// return the tuple with the smaller float value
if (get<0>(a) < get<0>(b))
return a;

else
return b;

}

};

int min index(device vector<float>& values)
{

// [begin,end) form the implicit sequence [0,1,2, ... value.size())
counting iterator<int> begin(0);
counting iterator<int> end(values.size());

// initial value of the reduction
tuple<float,int> init(values[0], 0);

// compute the smallest tuple
tuple<float,int> smallest = reduce(make zip iterator(make tuple(values.begin(), begin)),

make zip iterator(make tuple(values.end(), end)),
init,
smaller tuple());

// return the index
return get<1>(smallest);
}

Listing 26.7. Implicit ranges improve performance by conserving memory bandwidth.

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 371 #13

References 371

Here counting iterator has allowed us to efficiently implement a special-purpose reduction
algorithm without the need to write a new, special-purpose kernel. In addition to counting iterator
Thrust provides constant iterator, which defines an implicit range of constant value. Note
that these implicitly-defined iterators can be combined with the other iterators to create more
complex implicit ranges. For instance, counting iterator can be used in combination with
transform iterator to produce a range of indices with nonunit stride.

In practice there is no need to implement min index since Thrust’s min element algorithm pro-
vides the equivalent functionality. Nevertheless the min index example is instructive of best practices.
Indeed, Thrust algorithms such as min element, max element, and find if apply the exact same
strategy internally.

References
[1] J. Hoberock, N. Bell, Thrust: A parallel template library, 2011. Version 1.4.0.
[2] D. Merrill, A. Grimshaw, Revisiting sorting for gpgpu stream architectures, Technical Report CS2010-03,

University of Virginia, Department of Computer Science, Charlottesville, VA, 2010.
[3] N. Satish, M. Harris, M. Garland, Designing efficient sorting algorithms for manycore GPUs, in Proceedings

23rd IEEE Int’l Parallel & Distributed Processing Symposium, IEEE Computer Society, Washington, DC,
2009.

[4] NVIDIA Corporation, CUDA C Best Practices Guide v3.2, NVIDIA Corporation, Santa Clara, CA, 2010
(Section 3.2.1).

[5] Boost Iterator Library. www.boost.org/doc/libs/release/libs/iterator/.

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 372 #14

HWU 2011 Ch26-9780123859631 2011/8/22 15:33 Page 373 #15

Non-Print Items

Abstract
This chapter demonstrates how to leverage the Thrust parallel template library to implement high-
performance applications with minimal programming effort. Based on the C++ Standard Template
Library (STL), Thrust brings a familiar high-level interface to the realm of GPU Computing while
remaining fully interoperable with the rest of the CUDA software ecosystem. Applications written
with Thrust are concise, readable, and efficient.

	Thrust: A Productivity-Oriented Library for CUDA
	Motivation
	Diving In
	Iterators and Memory Spaces
	Interoperability

	Generic Programming
	Benefits of Abstraction
	Programmer Productivity
	Robustness
	Real-World Performance

	Best Practices
	Fusion
	Structure of Arrays
	Implicit Ranges

	References

