
Real-Time Global Illumination using Precomputed Light Field Probes

Morgan McGuire
Williams College and NVIDIA

Mike Mara
Stanford University

Derek Nowrouzezahrai
McGill University

David Luebke
NVIDIA

Figure 1: Left to right: a living room scene with global illumination computed in 4.7 ms using our light field probes (i.e., there is no artificial
ambient or environment map term). Note the glossy reflection on the floor, table, and television, as well as interreflections throughout the
scene. We visualize the 43 grid of 1024× 1024-texel light field probes, as well as the path of a single ray traced through four of these probes.

Abstract

We introduce a new data structure and algorithms that employ it
to compute real-time global illumination from static environments.
Light field probes encode a scene’s full light field and internal visi-
bility. They extend current radiance and irradiance probe structures
with per-texel visibility information similar to a G-buffer and vari-
ance shadow map. We apply ideas from screen-space and voxel
cone tracing techniques to this data structure to efficiently sample
radiance on world space rays, with correct visibility information,
directly within pixel and compute shaders. From these primitives,
we then design two GPU algorithms to efficiently gather real-time,
viewer-dependent global illumination onto both static and dynamic
objects. These algorithms make different tradeoffs between perfor-
mance and accuracy. Supplemental GLSL source code is included.

Keywords: global illumination, irradiance, light field

Concepts: •Computing methodologies→ Rendering;

1 Introduction

Radiance and irradiance probes are widely adopted techniques that,
when combined with screen-space ray tracing and ambient occlu-
sion, form the core for approximating realistic shading effects in
most interactive graphics engines today.

Despite their popularity and flexibility, probes and screen-space
techniques are not without limitations. Expensive, manual place-
ment of light probes and proxy geometry is often necessary to re-
duce light and dark leaking artifacts and misaligned reflection ef-
fects (see Figure 13). High-performance screen-space techniques

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org. © 2017 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
I3D ’17, February 25 - 27, 2017, San Francisco, CA, USA
ISBN: 978-1-4503-4886-7/17/03. . . $15.00
DOI: http://dx.doi.org/10.1145/3023368.3023378

add important visual features, naturally handle dynamic objects,
and map well to modern GPUs (e.g., exploiting high coherence tex-
ture accesses); however, they are limited to locally-visible surfaces
and can suffer from view-dependent aliasing.

We present a new probe representation that combines the quality of
precomputed shading with the ability to perform true world-space
ray tracing, all with similar performance to modern screen-space
ray tracers. To do so, we populate and encode an augmented repre-
sentation of a scene’s light field in a compact, GPU data structure.

Concretely, our technical contributions are:

• a light field probe data structure that encodes a scene’s radiance
and geometric information for visibility-aware light field queries,

• an efficient light field probe construction algorithm that does not
require any surface parameterization,

• a world-space ray tracing algorithm using light field probes that
can be invoked directly from a shader,

• extension of prefiltered (ir)radiance maps with visibility-aware
sampling and interpolation to eliminate light and dark leaks, and

• demonstration and evaluation of light-transport simulation algo-
rithms in a real-time deferred rendering context.

Fortunately, while the derivation and optimization process are
somewhat complex, the final implementation is relatively simple
and we include executable shader code for it. The code structure
for the first illumination algorithm resembles a Monte Carlo ray
tracer atop a hierarchical ray marcher. It is appropriate for inter-
active applications such as digital content creation. Because rays
sampled from a Lambertian BSDF lobe tend to yield high variance,
we include a second illumination algorithm that uses the prefiltered
irradiance maps with that lobe. The prefiltered result are fast and
noise-free, but biased. This algorithm is appropriate for real-time
applications such as games and virtual reality experiences.

Figure 1 illustrates a living room scene with global illumination
computed with our method, including diffuse and glossy indirect
light, mirror reflections, and area sources. We visualize light field
probe locations, as well as the path that a world-space ray marches
in our octahedral parameterization of the scene geometry (encoded
as part of a light field probe): here, apparent changes of the ray’s
direction occur at octahedral face boundary crossings, and the ray
jumps from one probe to another when visibility cannot be resolved
by the first probe (see Section 4). We use a two-level ray traversal

http://dx.doi.org/10.1145/3023368.3023378

hierarchy: orange lines are traced at 1/162 resolution, and yellow
segments at full resolution (for fine-scale geometric details).

2 Previous Work
Light fields. The light field (or plenoptic function) describes the
spatial-angular distribution of radiance in free space for an envi-
ronment, dating back to models proposed in physics literature in
the early 1930’s. The first works to use light fields in graphics in-
troduced the concept of a light slab, encoding a rectangular subset
of the light field [Levoy and Hanrahan 1996; Gortler et al. 1996].
This light slab has been employed in many products and produc-
tions, and methods exist for reconstructing it in real-time with the
slab region. However, ours is the first method to encode and ap-
ply to real-time rendering a light field parameterization that can be
evaluated at any point in space, with correct occlusion.

Image-based lighting. The state of the art in interactive global
illumination for games relies heavily on image-based lighting vari-
ants, many of which are documented exclusively in GDC and
SIGGRAPH talks (e.g., [Martin and Einarsson 2010; Ritschel
et al. 2009; Mickael Gilabert 2012; Sébastien and Zanuttini 2012;
Hooker 2016]). In most cases, probes are placed densely inside
the volume of a scene, each of which encoding a spherical radi-
ance map. Additional pre-filtered radiance maps are often stored
in order to approximate diffuse and glossy reflections. Sometimes,
manually-placed (i.e., by an artist) box or sphere proxies are used
to warp the lookups into these maps, in order to better approximate
local reflection variation. Moreover, manually-placed convex proxy
geometry sets can be used to bound blending weights used during
reflection lookups, in order to prevent light leaks.

We refer readers to a comprehensive survey of these initial works,
and other advanced image-based lighting techniques [Debevec
2006]. Image-based lighting techniques are ubiquitous in modern
offline and real-time rendering.

While these production-level image-based lighting systems gener-
ate convincing illumination effects, practitioners agree that manual
probe and proxy placement remains an important open problems
in production [Hooker 2016]. Without these manual adjustments
light and dark (i.e., shadow) leaks, and displaced reflections, are
unavoidable. Some applications rely instead on screen-space ray
tracing [Valient 2014] for pixel-accurate reflections; however, this
fails when a reflected object is not visible from the camera’s point
of view.

Light field probes automatically resolve these issues by encoding
additional information about the scene geometry (Section 3). No
manual placement is necessary and all of our results use a naı̈ve uni-
form grid placement of the probes: reflections appear (consistently)
where they should due, in part, to our accurate world-space ray
tracing algorithm (Section 4), and visibility-aware blending weights
are computed automatically when sampling filtered radiance probes
(Section 5) without the need for manually placed geometric proxies
about each probe.

Interactive tracing & shading. Many recent interactive render-
ing approaches for resolving point-to-point queries (e.g., like mu-
tual visibility) have shaped the solutions used in practice today.
Ritschel et al.’s [2008] imperfect shadow maps encode a sparse,
low-resolution representation of point-to-point visibility in a scene,
which they use to compute accurate secondary diffuse and glossy
reflections using virtual point lights (shot, e.g., using a ray-tracer).
Our work is motivated by voxel cone tracing [Crassin et al. 2011].
At a high-level, one can interpret our ray tracing solution (Sec-
tion 4) tracing rays against spherical voxel cells, as opposed to the
octree representation constructed for voxel cone tracing. Two key

Figure 2: Light field probes: radiance, normal, and distance maps
are packed together for all the probes in a the Sponza scene.

differences, that lead to many practical advantages, are: first, we
explicitly encode geometric scene information (i.e., normals and ra-
dial depths) instead of relying on the implicit octree structure to
resolve local and global visibility details; and second, neither our
spatial parameterization nor our filtering rely on the scene geom-
etry, which allows us to completely sidestep the light (and dark)
leaking artifacts present in voxel cone tracing solutions. Moreover,
we are able to resolve centimeter-scale geometry at about the same
cost (in space and time) as a voxel cone tracer that operates at meter-
scale.

Other works. We use Cigolle et al.’s [2014] octahedral map-
ping from the sphere to the unit square for storing our spherical
distributions, since it has slightly less distortion and admits sim-
pler border handling than cube maps. As we enable true world-
space ray-tracing within a pixel shader, our technique can be inter-
preted as a generalization of many previous, e.g., real-time environ-
ment map Monte Carlo integration techniques [Stachowiak 2015;
Wyman 2005; Toth et al. 2015; Jendersie et al. 2016] .

Preliminary investigations for our work were undertaken by Evan-
gelakos [2015], who showed that ray tracing with a single probe is
correct for star-shaped geometric regions, and Donow [2016], who
proposed a multiple-probe tracing algorithm.

3 Light Field Probe Structure
A scene’s continuous)light fieldL(x, ω) encodes the spatial-angular
distribution of radiance for all points and directions in the scene,
where x ∈ R3 is a point in free-space (i.e., within the bounding
volume of scene) and ω ∈ S2 is a unit outgoing direction at x.

We build an augmented, discrete representation of this distribution,
and so we require a discretization of positions in space and direc-
tions. We discretize spatial variation of the light field using a regular
grid inside the scene’s bounding box. While this regular structure
allows us to simplify our tracing algorithm (Section 4), nothing pre-
vents us from using spatial samples jittered within each volumetric
grid cell during construction- and query-time. Such jittering is use-
ful to allow artists to displace spatial samples that fall within the
interior of an object to increase efficiency or cooperative sampling
patterns such as Latin squares to avoid certain worst-case behavior
for scene elements exactly aligned with the grid, but is never re-
quired because our ray tracing algorithm automatically disregards
results from fully-occluded probes.

At each discrete sample position x′, we store a spherical light field
probe that map directions ω about x′ to the following quantities:

• a (discretized) spherical “slice” of the light field at x′ (i.e.,
L(x′, ω)) that corresponds to the local incident radiance dis-
tribution at x′ from surrounding scene geometry and light
sources

• the surface normal ~nx′′ at points x′′ closest to x′ in (outgoing)
direction ω, and

• the radial distance rx′↔x′′ between x′ and x′′.

We populate the geometric information (e.g., normals ~nx′′ and ra-
dial distances rx′↔x′′ at points x′′) of the probes using rasteriza-
tion, and the spherical light field slice radiance L(x′, ω) distribu-
tion is generated using a numerical lighting simulation: depending
on the application, this simulation can either be computed during
rasterization using existing interactive shading techniques (i.e., de-
ferred renderers with shadow maps), using an offline path tracer,
or even generated through iterative application of our shading algo-
rithm (Section 5). All of our results do the latter: specifically, for
the first bounce of direct illumination, L(x′, ω) simply contains the
emission profiles of lights in a scene, and then we repeat the shad-
ing to iteratively populate L(x′, ω) with additional light bounces.
Because the algorithm can use rasterization to compute the probes
themselves, we do not require a separate geometric ray tracer in the
manner of most light map generation algorithms.

Section 4 details a ray tracing algorithm that allows us to populate,
update and query physically-based light transport quantities using
this data structure but, before doing so, we provide practical guide-
lines for realizing this discrete representation on modern GPUs.

Implementation Details. We use the engine’s usual rasterizer
path to render high-resolution cube map faces at each probe loca-
tion, and then resample them into lower-resolution octahedral pro-
jections [Cigolle et al. 2014] (see our supplemental code). Octa-
hedral parameterization maps an entire sphere to a square that has
lower distortion, fewer boundaries, and simpler boundaries than a
cube map at comparable resolution. This is not essential to the
derivation of the algorithm, however it gives approximately a fac-
tor of four space and bandwidth reduction at the same quality level
compared to storing cube maps. Octahedral mapping also preserves
the piecewise-linear projection required for efficient ray marching,
unlike most other sphere-to-square mappings.

We store each probe’s square mappings as one layer of a 2D tex-
ture array. The high-dynamic range radiance values are encoded
with the R11G11B10F (32 bits/pixel) format, the normals ~nx′′

with RG8 (16 bpp), and the radial distances rx′↔x′′ with R16F
(16 bpp), for a total of 8 bytes per octahedral texel. Figure 2 il-
lustrates these light field probe textures for a 43 grid for the Sponza
scene.

For static illumination and geometry, we can alternatively use the
compressed BC6H (8 bpp) format for radiance and two BC4 tex-
tures (2 × 4 bpp) for normals, reducing the storage cost to 4 bytes
per texel. Unfortunately, current GPUs lack compressed 16-bit
scalar compression suitable for encoding radial distances. Since
BC compression is slow and our shading algorithm’s bandwidth is
almost independent of the normal and radiance size, our results all
use uncompressed textures to reduce light field generation time. We
also use an octahedral map to encode unit normal vectors in 2D.

For shading applications (see Section 5) it is often beneficial to pre-
filter the light field radiance “slice” L(x′, ω), additionally storing a
cosine-weighted incident irradiance probe E(x′, ~n) for all possible
receiving surfaces at x′ (with orientation ~n). Here, we found that
octahedral resolutions above 1282 resulted in no additional accu-
racy in the diffuse shading and, in many scenes, probe resolutions
as low as 322 still yield good results (depending on the scene’s vis-
ibility complexity). We also store irradiance probes in 8 bytes per
octahedral texel, simply replacing the normals from the radiance
representation with 16-bit floating point squared depths needed for
the Chebychev test explained later, and retaining the other channels.

For radiance probes, the required resolution depends on the image
resolution and the lowest microfacet roughness on scene objects:
e.g., in order to avoid reflectance aliasing on perfect mirrors, we
require an octahedral probe resolution with texel solid angles no
larger than the solid angle subtended by a pixel at the probe center

y

x

z

0	 1	

2	 3	

4	 5	

6	 7	

0	

1	

2	

3	

4	

5	

6	

7	

Figure 3: An indexed cube of probes. Arrows illustrate the order in
which probes are considered when testing ray-scene intersections.

x′. We recommend 10242 radiance maps and use them for all our
results, except for experiments explicitly on resolution parameters.

Figure 1 is rendered at 1920 × 1080, with shading computed at
full resolution. This is in stark contrast to modern screen-space ray
tracers that operate at, e.g., 1/4× screen resolution.

4 Light Field Probe Ray Tracing
Generally speaking, every physically-based rendering algorithm
can be implemented atop a ray tracer, where (potentially incoher-
ent) rays are used to resolve visibility and to sample radiometric
quantities in the scene1. Concretely, a ray is a half-line with points
p(t) = ro+ t rd parameterized by the distance t from the ray’s ori-
gin ro ∈ R3 along its direction rd ∈ S2. Resolving visibility and
querying the scene amounts to intersecting rays against the scene
geometry, solving for the (nearest) intersection point p(t′) ≡ p′.

Radial distances and visible normals in the light field probes en-
code the geometric information used to resolve incoherent, world-
space ray intersections, and the radiance (and irradiance) probes
encode radiometric quantities of interest, i.e., the outgoing radiance
L(p′,−rd) (and incident irradiance E(p′, ~n ≡ −rd)).
Our light field ray tracer (Listing 1) first selects a probe, then in-
vokes a single-probe ray intersection routine to march across the
geometry defined by that probe. If the single-probe routine is un-
able to accurately determine a hit or miss event, then the algo-
rithm advances to the next candidate probe and reapplies the single-
probe routine.

As such, the single-probe routine returns one of three possible re-
sults: a definitive hit, a definitive miss, or an unresolvable
exit code; the latter occurs when the ray passes into a 3D region that
is occluded from the probe’s center of projection. In other words,
when a probe “knows” that it does not have the required visibility
information at a region of space, an intersection for a ray that passes
through that region cannot be (reliably) computed using only infor-
mation from the one probe. Note, however, that by increasing the
density of light probes stored in the scene, we are (very quickly)
able to guarantee accurate world-space ray-object intersection res-
olution across probes. We provide the details of the single-probe
and full ray tracing algorithms, below and in Listing 1.

Listing 1: Pseudocode for the ray tracing algorithm.

def lightFieldTrace(ray):
result = UNKNOWN
while result == UNKNOWN:

choose the next probe
(result, endpoint) = singleProbeTrace(ray, probe)
ray.origin = endpoint # Advance the ray to the last point checked

return result

1Rasterization can resolve coherent visibility queries, and so many ap-
proximate solutions to the rendering equation need not rely on a ray tracer.

def singleProbeTrace(ray, probe):
compute the four 2D polyline segments
for each polyline segment:

for each 2D pixel and corresponding 3D point on the segment:
compare the voxel in the radial distance texture to the ray:

if hit: return (HIT, point)
if hidden behind surface: return (UNKNOWN, point)
(otherwise, keep iterating)

return (MISS, last polyline endpoint) # Reached the end of the line

4.1 Light Field Ray Tracing Algorithm

The light field ray tracer selects a probe, traces within that single
probe, and then repeats that process until a definitive hit or miss.

Selecting a probe. With the exception of simple scenes, any ray
origin ro inside a scene’s bounding box will be contained within
a cubic cage of eight light field probes (Figure 3). Due to spatial
locality, these probes will have similar scene visibility information,
and so they are reasonable candidates to use to test for the ray’s
intersection with the scene. Of course, this heuristic can fail in
scenes with high depth complexity and low probe density, however
even sparsely placed probes were sufficient for the scenes we used.

The probe whose center lies closest to the line containing the ray
nearly always yields the shortest octahedral projection of the ray2,
so we begin with that probe. Choosing the first probe this way
has some additional advantages: first, it will likely minimize the
number of texture fetches needed during visibility marching (see
below); and, second, this probe is also likely to “observe” the entire
unoccluded portion of the ray until its true (i.e., world-space) hit.

Note that probe selection only affects performance, not accuracy,
except for depth aliasing within a texel and finite precision. That
is, any point observed by multiple probes is represented at the same
world-space location in all of those probes, and probes that can-
not observe the point contain the position of the nearest occluder.
The issues are exactly the same for those in the shadow mapping
algorithm, which also compares different discrete projections of
the same point. So, since any probe selection process will lead
to same ray-intersection result within available precision, we prefer
a heuristically efficient selection.

Single-probe hierarchical tracing routine. A line segment in
R3 maps to a polyline (with at most four segments) in R2, after
spherical octahedral projection. Each polyline segment lies on a
separate octahedral face, and the 2D coordinates of the segment
endpoints are the 2D projections of the intersections of the 3D line
with the three principal axis-aligned planes that pass through the
probe center. These define eight quadrants that correspond to the
octahedral faces, after projection.

To trace a ray within a single probe, we compute the 2D polyline
endpoints and optimally march along the polyline in the octahedral
map. Intersection tests are computed at each texel by depth testing
the polyline point against the radial depthmap value stored in the
probe at the texel: when the stored radial depth of the scene is less
than the radial distance from the probe’s center to the 3D polyline at
the currently marched polyline texel, the ray has either hit a surface
or passed behind the surface.

Within an octahedral face, this tracing routine is a GPU-optimized
variant of hierarchical algorithms for voxel and heightfield trac-
ing [Amanatides and Woo 1987; Musgrave et al. 1989; McGuire
and Mara 2014]. We use a min-MIP map to hierarchically refine
the test. Each octahedral texel describes a planar patch (i.e., surfel)

2Because an octahedron is not a sphere, it is possible to construct cases
where a probe that is slightly farther away instead meets the criterion.

Figure 4: The single-probe ray trace routine in the living room
scene: we visualize the coarsest resolution grid in our two-level
hierarchy, octahedral faces after spherical projection, and coarse-
(orange) and fine-level (green) ray march tests. Most of visibility
tests occur at 1/162× resolution (orange). Since the center of the
room has no occluders, this ray never changes probes.

at distance rp′↔x′′ from the probe origin, with normal ~nx′′ . We
bound that patch by a spherical voxel based on the normal and rep-
resentation precision. The currently-marched point along the ray p′

intersects the voxel if its bounds at the corresponding texel overlap
the voxel’s. Using the observed normal ~nx′′ from the octahedral
normal maps, we can exclude back face intersections relative to the
ray (not the probe center). This back-face discrimination is neces-
sary for scenes with (unrealistically thin) two-sided geometry (e.g.,
curtains in Sponza).

We visualize debug ray trace output in Figure 4. Here, we see the
three-segment polyline of a single ray on the octahedral projection
of a probe in the living room scene. We overlay the polyline atop
the radiance texture for illustration purposes, however the actual
tracing uses the radial distance and normal probe data.

Selecting fall-back probes. If the single-probe hierarchical ray
cast is unable to find a definitive hit or miss event on the pre-
viously selected probe, then we must pick a new probe and re-
peat the process. To do so, we advance the ray origin to the point
r′o = ro + t′ rd where the previous probe trace terminated. If r′o
lies within a different cube of bounding probes, then we reuse the
same selection procedure to pick the next probe from the new eight
candidate probes. However, if r′o remains within the bounding box
of the original eight probes, we heuristically choose the untested
probe farthest from the previous one: this heuristic relies on the
assumption that moving as far as possible from the previous probe
will avoid any locally occluding geometry. Figure 5 visualizes the
probe indices used to resolve ray intersections in a typical scene.

We can define a simple and efficient procedural iteration sequence
that respects this selection heuristic (Figure 3). Without loss of gen-
erality, assume that we translate and scale the scene (including the
ray) to place the eight probes within the 1 m3 cube with the origin
at the lower corner. The index of the probe with the smallest x-,
y-, and z- coordinates is broc, and the relative indices of adjacent
probes 0 ≤ i < 8 are broc+(imod 2, bi/2cmod 2, bi/4cmod 2).

An exhaustive search of the permutations yields an optimal eight-
element probe index selection sequence: namely, one that consis-
tently moves to the farthest probe (without revisiting a probe). The
sequence, starting at the relative index i closest to the ray, is given
by i′ = (i + 3) mod 8. This selection sequence can be efficiently
evaluated with bitwise operations.

Figure 5: Living Room color-coded by the probe (matching Figure
1) in which a hit was detected for a glossy ray from that pixel.

Again, we note that the selection procedure does not affect ray trac-
ing accuracy, only performance. If, after testing against all eight
probes we still fail to find a true world-space intersection (i.e.,
when none of the probes are able to observe the path of the ray
behind some densely-scattered, complex occluders), we simply as-
sume that the ray hit the occluder at the last observed location.

4.2 Discussion
Our probe selection criterion results in the (nearly) shortest possi-
ble 2D polyline, after octahedral projection. This leads to a con-
venient memory-performance trade-off: reducing the length of the
2D polyline reduces the number marched polyline texels (and, so,
the number of radial depth tests). Increasing probe density not only
increases accuracy, but also increases performance by decreasing
the length of projected rays. In the limit of infinite probe density,
an entire ray will project onto a single texel of a probe, as there will
always be a probe with center atop the ray origin and only a single
texel will need to be depth tested against in this probe.

Implementation Details. Optimizing any algorithm for high
throughput on modern GPUs requires careful management de-
sign and optimization: GPU compilers are often not sophisticated
enough to perform important parallel processing-sensitive data and
computation transformations. Our implementation seeks to min-
imize peak register count (since increased register usage reduces
thread count and parallelism). We also re-arrange branches to in-
crease convergence since, when a warp of threads diverges at a
branch the instruction cost is doubled at both sides. Our supple-
mental code includes a complete optimized GLSL implementation
of the tracing algorithm, suitable for use in both pixel and compute
shaders.

In practice, we observe optimal performance by fixing a two-level
deep min-MIPmap hierarchy for radial depth tests, where the sec-
ond level is at 1/162× resolution. This behavior can be explained
by the fact that shader programs cannot use a stack without spilling
registers to main (video) memory, and so the asymptotic advantages
of using a full hierarchy are overweighed by the large constant-
factor cost incurred by accesses to main memory.

5 Shading with Light Field Probes

We now describe three global illumination algorithms, the later two
of which are practical: a brute force importance-sampling Monte-
Carlo renderer, an more efficient extension that reduces the number
of ray samples required by post-filtering separate Lambertian and
glossy terms, and an extremely fast but biased solution that pre-
filters Lambertian reflection and only traces rays for glossy reflec-
tion (which is then also post-filtered).

A naı̈ve renderer. Given the ray tracing algorithm in Section 4,
we can readily implement a naı̈ve, hybrid rasterization/Monte Carlo
ray tracing solution to the rendering equation that exploits the GPU.

We rasterize directly visible surfaces and compute direct light us-
ing shadow maps (and a deferred renderer) in a pixel shader. Then,
in the same pixel shader, we ray trace to estimate indirect light-
ing using Monte Carlo integration: we trace n random rays ac-
cording to an importance-sampling distribution, each returns a sam-
pled incident radiance value from the light field, we scale samples
by the cosine-weighted bidirectional reflection distribution function
(BRDF) and normalize by the sampling distribution and n. The in-
tegral will converge for any (valid3) sampling distribution.

This naı̈ve algorithm captures indirect effects on both static and
dynamic objects, and we could also use it to progressively populate
the light field probes’ radiance distributions for an arbitrary number
of scattering events, by re-rendering into the probes. This approach
does, however, have two limitations: viewpoint biasing in higher-
order indirect lighting effects, and performance.

Specifically, second- and higher-order indirect lighting (i.e., from
iteratively re-rendered probes that rely on the shading computed
from previous shading iterations), such as mirror reflections of ob-
jects reflected by other mirrors, will be viewpoint biased according
to probe locations. As this is error is substantially less objectionable
than the distorted first-bounce reflections that, e.g., state-of-the-art
screen-space ray tracing and warped environment maps suffer from,
we leave this problem as a potential area of future work.

We instead focus proposing a solution to the more pressing perfor-
mance issue, especially since we target real-time rendering appli-
cations. Any (imperfect) Monte Carlo sampling process will result
in variance, which manifests itself as image noise in the case of
uncorrelated pixel sampling. Offline renderers address this by in-
creasing the sampling rate n and applying a post-process denoiser,
both of which incur minutes of additional frame rendering time.
We instead extend our naı̈ve rendering algorithm with approxima-
tions and optimizations appropriate to modern real-time rendering
pipelines. These necessarily introduce bias, but significantly reduce
noise and increase performance to levels that are likely acceptable
for many current real-time applications.

5.1 Spatial-Temporal Radiance Denoising

We introduce an optimization suitable for deferred and forward+
renderers: we compute a denoised estimate of indirect incident il-
lumination in a separate pass using a G-buffer, applying the cosine-
weighted BRDF and adding the result to direct illumination com-
puted (and stored in a framebuffer) in an earlier pass.

Most BRDFs can be factored into a Lambertian term and one or
more narrow lobes or impulses combined by a directionally-varying
Fresnel coefficient. With BRDF importance sampling, directions
drawn proportional to the Lambertian component tend to produce
extremely noisy results when traced because they evenly cover the
entire hemisphere of illumination about the surface normal. Perfect
mirror reflectors correspond to impulse terms that produce no noise
– they result in a single explicit sampling direction. Sampling pro-
portional to narrow glossy lobes, such as from a microfacet BRDF
models, produce noisy glossy reflection phenomena but with much
less variance than the Lambertian estimate.

We choose to factor the BRDF into two terms and draw samples
proportional to these two factors: a uniform Lambertian hemi-
spherical distribution, and a “glossy” term that can combines per-
fect specular impulses, retroreflection, and glossy lobes. Our in-
direct illumination pass traces one ray sampled from each of these

3Normalized, with non-zero probability wherever the BRDF is non-zero.

Figure 6: Left: Incident radiance from one ray per pixel for the
Living Room scene. Right: Irradiance result with filtered visibility,
directly approximating a denoised result.

(with cosine weighting) and writes the results to (noisy) Lambertian
and glossy incident radiance buffers.

For Lambertian reflection, we compute and store integrated incident
irradiance, instead of albedo-modulated outgoing radiance. This
allows us to denoise our numerical estimate without blurring or bi-
asing the surface albedo. We denoise this incident irradiance in a
second pass with standard cross-bilateral and reprojected temporal
filters, using G-buffer normals and depths to measure the difference
between surfaces4. Here, the benefits of separating Lambertian and
glossy terms become apparent: the Lambertian term is often noisier
(at equal sampling rate), but also spatially slower-varying. As such,
it benefits much more from filtering and admits the use of wider
filters. Our results use a 12 pixel radius and 2 pixel stride, and an
exponentially-weighted moving average temporal filter (with 98%
hysteresis). Since illumination sampled according to the glossy
component is less noisy, but also faster-varying in space, we only
apply a 3 pixel radius spatial filter and a 75% hysteresis temporal
filter (Figure 7).

This approach is similar to standard offline rendering practice [Bit-
terli et al. 2016] but much lighter weight. With only two indirect
rays per pixel, our denoising process allows us to achieve equal-
quality results compared images computed using a sampling rate
on the order of hundreds of samples per pixel. Denoising produces
some reflection blurring (both in space and time), and filter parame-
ters allow the user to trade between noise and blur depending on the
needs of their application and the structure in the scene materials.

5.2 Irradiance with (Pre-)Filtered Visibility
Rays that sample the Lambertian reflection capture less informa-
tion per pixel than glossy samples (i.e., compare the left sides of
Figures 7 and 6), since they estimate a function that varies more
smoothly in space (except at edges, which the bilateral filter de-
tects). Meanwhile (and ironically), Lambertian rays are more ex-
pensive to trace due to their incoherence: e.g., Figure 5 shows the
coherence of the probes used to resolve glossy hits; an analogous
visualization for single-sample Lambertian integration would yield

4Directly applying the open-source G3D Innovation Engine
TemporalFilter and BilateralFilter implementations.

Figure 7: Visualizing the glossy indirect buffer. Left: One glossy
sample per pixel. Right: After denoising.

an essential randomly colored image. Note, however, that complex
visibility events may introduce “probe-indexing noise” even with
the coherent glossy rays; see the bookshelf in Figure 5 – this is a
representative example of how our light field probes and ray tracing
combine to provide a much more robust solution to, e.g., manually-
placed probes and occlusion proxy geometry.

Assuming a reasonable probe density, incident irradiance varies
slowly within the eight probe cube volume, except when visibil-
ity changes rapidly within the cube. We precompute 1282 octahe-
dral irradiance maps with a (quasi-)Monte Carlo integral estimate
using the radiance maps. At runtime, we estimate incident irradi-
ance at shading points by trilinearly interpolating irradiance maps
at the eight probes within the cube of the intersection. This reduces
tens-to-hundreds of texture operations that result from exhaustive
sampling down to only eight prefiltered fetches at runtime.

One major limitation of previous methods that interpolate incident
irradiance this way is that lighting and darkness can leak “through”
objects inside the volume of the irradiance probe cube grid (see
Figure 13): specifically, when the mutual visibility assumption be-
tween a shading point inside the cube volume and one or more
probes is invalidated. We introduce a geometry-aware approach for
using precomputed incident irradiance that avoids these artifacts by
also filtering the geometric data used for ray marching.

While precomputing cosine-filtered irradiance maps, we also com-
pute filtered maps of the radial distance and squared radial distance.
These correspond to first and second moments of radial distance.
We filter these with a cosine-power lobe to account for aliasing in
the discrete distance values while avoding overblurring them. Fig-
ure 8 illustrates these maps at three probe locations in the living
room scene.

At runtime, in order to compute geometry-aware weights for in-
terpolating from surrounding irradiance maps, we combine the tri-
linear weighing with two additional terms: a clamped dot prod-
uct of the shading point’s surface normal and the direction towards
each probe center (i.e., projected area, corresponding to a spatially-
smooth backface test), and by a Chebyshev visibility test of the
local radiance distance distribution, using the two filtered moments
as spherical analogues of a variance shadow map test [Donnelly and
Lauritzen 2006] with variance σ2 = |E[r]2−E[r2]|. We normalize
the result by the sum of all eight weights. See our code supplement
for the preferred implementation and filter weights.

Why not spend the texture space from the irradiance probe storage
simply computing high-quality irradiance light maps for surfaces?
There are two reasons. First, that requires a corresponding high-
quality surface parameterization, which is a continual problem in
practice. Any such parameterization will still place texels where
they cross lighting conditions, such as on a floor half inside and
half outside of a wall, unless the scene is itself modeled without
any geometric interpenetration, and create interpolation discontinu-
ities wherever there are seams in the texture atlas. Second, precom-
puted irradiance maps are only useful on static surfaces. Our irra-
diance probes with prefiltered visibility allow gathering irradiance
anywhere in the space of the scene, including on dynamic objects.

6 Results
We render all results at 1920×1080 on a GeForce 1080 with 10242

texel light field probe textures and 1282 texel filtered-visibility ir-
radiance probes, except where noted. Our implementation is built
on the G3D [McGuire and Mara 2016] engine using its deferred
shading mode and the shaders from our supplement.

Irradiance visualizations. Figure 8 visualizes the prefiltered ir-
radiance and radial distance moments (in lat-long parameterization)
in the living room scene. Probe #11 is near the yellow curtain, and

#11 #40 #41

Figure 8: Columns: Three irradiance + filtered distance probes
from the Living Room scene. Rows: Irradiance, filtered radial dis-
tance, filtered squared radial distance.

Figure 9: Cornell Box with direct light, visualization of eight light
field probes and their relative contributions (after visibility filter-
ing), and the scene with direct and one-bounce indirect.

probes #40 and #41 are adjacent to each other, near the red stool
and bookcase. The tops of the probes are dark since this example
only has a single scattering event, so indirect light has yet to scatter
off onto the ceiling. Adjacent probes (#40 & #41) have similar ir-
radiance, confirming its slow spatial variation and the fact that it is
a reasonable candidate for interpolation. However, their radial dis-
tance maps (affecting visibility) differ significantly, which justifies
our extended visibility filtering and testing process.

Figure 9 visualizes the relative interpolation weights for eight irra-
diance probes in the Cornell Box. The color gradient in the center
image is dominated by the trilinear spatial weighing, but changes
abruptly with normal for backfaces, and weight “shadows” appear
on the floor where boxes occlude the red and lavender probes.

Light leaking. Light and darkness leaks arise in two situations
with existing irradiance probes, voxels, and lightmaps: first, when
a probe (or texel or voxel) lies inside an object, it is completely
black and leaks darkness around itself; second, when the probe is
in free space but illumination conditions vary rapidly around it (i.e.,
due to occlusions) then light can leak, e.g., through the wall.

Figure 10 (left) illustrates the case of a probe inside an object with

Figure 10: Left: traditional irradiance probes leak darkness when
geometry covers probes, as with the center and upper right cylin-
ders; right: our filtered visibility eliminates these leaks.

Figure 11: (a) Our ray-cast indirect illumination [13ms], (b) after
spatio-temporal denoising, (c) traditional irradiance maps, and (d)
our irradiance sampled with filtered visibility [0.2 ms].

a state of the art irradiance mapping trilinear interpolation scheme.
The scene comprises a box with four cylinders, modeled with a
3×2×3 probe grid. We only visualize the indirect lighting contri-
bution. The center and right cylinders collectively overlap three of
these probes, all of which record black (for all directions). Note the
pools of darkness at the center and upper right of the left subimage;
on the right side of the figure, our prefiltered visibility tests cor-
rectly downweights the contribution from these “covered” probes,
preventing darkness from leaking into the scene.

Figure 11 shows four versions of indirect lighting in a scene with
occluding shapes, modeled with a 3×2×3 probe grid. The top
row visualizes a single-sample global illumination sample per pixel
traced into the probe grid, and the denoised result. This results
renders soft indirect light shadows without any light leaks around
internal walls in 13ms (with filtering). In the bottom row, traditional
irradiance probes leak light into the center region, whereas our pre-
filtered visibility prevents light leaks and casts indirect shadows into
the center. The softer indirect shadows from the edges and pillars
in (b) are lost with the prefiltered visibility, however this approxi-
mation renders without noise about 65× faster, in 0.2ms.

Figure 12 illustrates light leak prevention in Sponza. Only about 20
pixels are directly lit (the small bright triangle) and traditional irra-
diance probes (left) leak light from the center of the atrium through
the curtain and pillars; our prefiltered visibility (right) correctly
blocks the indirect light, except where it should correctly propagate
through the gaps beneath and beside the curtains.

Figure 13 further illustrates how, even in geometrically simple
scenes, radiometrically complex situations arise where light leaks

Figure 12: Left: light leaks from traditional irradiance probes;
right: correct indirect shadows using our prefiltered visibility.

a) Direct Illumination Only

d) Our Irradiance with Filtered Visibility

b) Our Light Field Probe Ray Trace

c) Traditional Irradiance Maps

Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 3

Figure 13: Avoiding light leaks while capturing interreflections.

Figure 14: An area light with correct shadowing, using light field
probes. Here, we compute direct illumination with our ray tracer,
instead of relying on a deferred renderer with shadow mapping.
Incident radiance is exclusively from the emissive square (inset).

occur using traditional irradiance map interpolation. Here, again,
filtered visibility interpolation significantly reduces artifacts and
produces results similar to a high-fidelity light field ray-trace.

Complex illumination. Figure 21 (on the last page of this paper)
compares direct and full global illumination in scenes with complex
materials and geometry. The top row also visualizes probe locations
and, in each case, probes were re-rendered using their own previous
lighting iterations for indirect illumination until convergence.

An advantage of light field global illumination is that it automat-
ically handles direct light from area light emitters, including soft
shadowing, which is not the case with recent analytic methods for
glossy reflection of area lights [Lecocq et al. 2016; Heitz et al.
2016]. Figure 14 demonstrates this feature by reproducing the
scene from Heitz et al.’s work exclusively using our light field probe
ray tracer. We are able to place a statue in front of the area light and
correctly shadow its reflection off the glossy floor, as well as re-
flecting the banners on the sides. There is no explicit direct illumi-
nation term in this scene and the only source of light is the emissive
square. It is not surprising that this gives a correct result, since it is
mathematically equivalent to path tracing with area sources. How-
ever, the light field probe data structure and ray tracing algorithm
make it possible to employ this practically for the first time in a
real-time renderer on consumer hardware, and have running time
independent of the number of area light sources in the scene.

Figure 15 shows a challenging case handled well by our method.
This kitchen scene is lit by dim direct illumination from overhead
lights and a bright sun, however the sun only shines (through a
window) on the door in the background. Indirect lighting is the
dominant contributor at most pixels. The glossy reflections on the

Figure 15: The faucet casts a shadow in the glossy reflection of
indirect light in this kitchen counter.

Figure 16: Three dynamic objects reflect indirect light from the
static scene.

counter top are from indirect light and are correctly blocked by the
faucet and teapot, demonstrating high-precision indirect light shad-
owing.

Since our implementation only generates probes once at scene ini-
tialization, we only cast indirect illumination from static objects;
however, we can cast indirect illumination onto both static and dy-
namic objects at run time, as shown in Figure 16. This is a crit-
ical feature for games, as enabled by traditional light probes and
voxel cone tracing however, unlike these solutions, light maps and
precomputed radiance transfer methods [Sloan et al. 2002] are re-
stricted to lighting only static objects.

Parameters. A single probe can capture the entire light field and
visibility for a star-shaped volume, such as the Holodeck in Fig-
ure 17. For scenes with more complex visibility, there is a quality
tradeoff at fixed storage cost between the number of probes and
their resolution. Figures 19 and 18 vary these parameters inde-
pendently for the Living Room scene. Although there are some
subtle interactions with visibility aliasing in the bookcase, resolu-
tion mainly affects radiance aliasing as observed glossy reflections,

Figure 17: The Holodeck rendered with direct and indirect light
from an area light, with only a single light field probe.

such as on the television and coffee table. The left-most subfigure
uses only 642-texel probes; that’s comparable to using a 48x48x6-
texel environment map, so the reflections obviously show the texel
boundaries. We show this to demonstrate how the technique de-
grades with inappropriate parameters and do not recommend such
extreme undersampling. Glossy reflections are insensitive to probe
count, provided that most surfaces are observed by a probe. Diffuse
interreflection (such as on the ceiling and underneath the table),
however, can have artifacts when there are too few probes since the
prefiltered visibility cannot properly capture local variation.

Performance. Table 1 shows indirect illumination render time
for scenes from our paper. Time for evaluating the Lambertian term
varies slightly between scenes based on cache behavior arising from
how many probes affect visible surfaces. The number of operations
per pixel is constant and the glossy term evaluation varies signifi-
cantly based on the number of surfaces with glossy reflection (e.g.,
few in Sponza and Cornell Box, nearly all in the other scenes), the
visibility complexity of the scene, and the coherence of the glossy
rays.

Complex visibility forces the tracing algorithm to frequently change
probes along a ray, which incurs a setup cost when recomputing the
projected polyline. Incoherent rays cause incoherent memory ac-
cesses with poor cache behavior. Both of these occur in San Miguel,
but it is also significantly slower than the other scenes because ev-
ery surface has a dim, broad glossy lobe in the BRDF that requires
a wide post-filter. To improve the performance of such a scene for
a real-time game, an artist could tune the BRDF to balance perfor-
mance and appearance or flag low-magnitude glossy lobes as not
receiving ray traced global illumination. Furthermore, they might
replace the foliage with proxy geometry during light field probe
computation to simplify the visibility, as is done today with Ge-
omerics’ light map and probe system.

Precomputation of the probes takes 1 to 2 minutes for every scene
and is dominated by the cost of rendering the radiance probes at full
resolution, which is the product the number of probes and the time
to render a single frame (times six cube map faces). The projection
to octahedral space and filtering cost only a few seconds more.

Scene Probes Resolution Lambertian Glossy
Cornell Box 2x2x2 20482 0.358 0.000
Cornell Box 2x2x2 2562 0.302 0.000
Sponza (Statue) 8x2x4 5122 0.332 0.151
Living Room 4x4x4 10242 0.293 4.401
Luxury Kitchen 4x4x4 10242 0.358 9.334
San Miguel 8x2x8 10242 0.520 47.170

Table 1: Rendering times for indirect light in milliseconds

Figure 18: Light field probe texture resolution primarily affects
glossy reflection quality. From left: 642, 2562, 10242 texels.

Figure 19: The number of probes primarily affects diffuse inter-
reflection quality. From left: 1×4×1, 4×4×4, 8×4×8.

7 Future Work
Light field compression. With compressed textures, we can
store 128 probes in San Miguel with 500 MB. Compared to the
original scene’s 2 GB of compressed geometry and texture maps,
this corresponds to only a moderate overhead; however, there’s ob-
viously redundant data between probes. Light field-specific com-
pression could exploit this for additional storage reductions [Chang
et al. 2006], but implementing it with efficient GPU read operations
remains an open problem.

Glossy sample prefiltering. It is tempting to pre-filter the light
field probes by constructing MIP-map chains to enable cone trac-
ing, in the same manner as voxel cone tracing. This would eliminate
the need for post-filtering glossy term. However, while it is trivial to
prefilter radiance maps, the optimal strategy for prefiltering normal
and distance maps is nonobvious. Voxel cone tracing produces light
and dark leaks due to filtering, and is based on a frequently-invalid
assumption that occlusion of multiple surfaces is uncorrelated (ex-
actly analogous to the way that image alpha compositing assumes
that coverage locations are uncorrelated between layers). A better
filtering strategies is required for voxels, and then for the spherical
voxels in light field probes.

Spherical harmonics. Projection into a spherical harmonic ba-
sis is one way to represent and then filter low-order functions on
the sphere, such as the prefiltered irradiance probes. They have the
advantage of a much lower memory footprint than our octahedral
probes. For these reasons we are interested in spherical harmonic
representation as future work. We did not incorporate them into
this work because, spherical harmonics also introduce ringing dur-
ing reconstruction and require more bandwidth to read. The ringing
can create light and dark leaks when it occurs in the depth model.
The bandwidth is 2-3x higher. For example, bilinear filtering of
an octahedral irradiance probe requires four 64-bit (RGB, Z, Z2)
samples = 256 bits. A 3rd-order spherical harmonic representation

Figure 20: Primary visibility traced directly from the light field
probes. These images were produced with no explicit geometry in
memory–just the probes and a full-screen compute shader.

requires 576 bits, and in practice, 786 bits to extend the depth por-
tion to 4th-order to approximately match our visibility prefiltering
cosine-power filter width.

Real-time probe updates. Systems such as Geomerics re-render
radiance probes and light maps in real-time using complex schedul-
ing and threading. Our input data are similar, so a similar software
engineering approach may be applicable to the light field probe rep-
resentation to enable real-time updates of the global illumination
solution.

Primary rays. The light field probe ray tracer produces unaccept-
able aliasing when used to render primary eye rays (Figure 20),
however early results are promising and performance is higher than
for glossy rays due to high coherence. Solving primary-ray alias-
ing would unlock interesting applications for virtual reality, such as
directly tracing into the lens-warped projection, foveated rendering
by adjusting screen-space sample density and filtering probes, and
beam tracing to render each pixel just ahead of scanout.

References

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal
algorithm for ray tracing. In Eurographics, 3–10.

BITTERLI, B., ROUSSELLE, F., MOON, B., IGLESIAS-GUITIÁN,
J. A., ADLER, D., MITCHELL, K., JAROSZ, W., AND NOVÁK,
J. 2016. Nonlinearly weighted first-order regression for denois-
ing monte carlo renderings. EGSR 35, 4 (June).

CHANG, C.-L., ZHU, X., RAMANATHAN, P., AND GIROD, B.
2006. Light field compression using disparity-compensated lift-
ing and shape adaptation. Trans. Img. Proc. 15, 4, 793–806.

CIGOLLE, Z. H., DONOW, S., EVANGELAKOS, D., MARA, M.,
MCGUIRE, M., AND MEYER, Q. 2014. A survey of efficient
representations for independent unit vectors. JCGT 3, 2, 1–30.

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISE-
MANN, E. 2011. Interactive indirect illumination using voxel
cone tracing: A preview. In I3D, ACM, 207–207.

DEBEVEC, P. 2006. Image-based lighting. In SIGGRAPH Courses,
ACM.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In I3D, ACM, 161–165.

DONOW, S., 2016. Light probe selection algorithms for real-time
rendering of light fields.

EVANGELAKOS, D., 2015. A light field representation for real time
global illumination.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN,
M. F. 1996. The lumigraph. In SIGGRAPH, ACM, 43–54.

HEITZ, E., DUPUY, J., HILL, S., AND NEUBELT, D. 2016. Real-
time polygonal-light shading with linearly transformed cosines.
ToG 35, 4 (July), 41:1–41:8.

HOOKER, J., 2016. Volumetric global illumination at treyarch, Au-
gust. SIGGRAPH Advances in Real-Time Rendering Course.

JENDERSIE, J., KURI, D., AND GROSCH, T. 2016. Precomputed
illuminance composition for real-time global illumination. In
I3D, ACM, 129–137.

LECOCQ, P., SOURIMANT, G., AND MARVIE, J.-E. 2016. Accu-
rate analytic approximations for real-time specular area lighting.
In I3D, ACM.

LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. In

SIGGRAPH, ACM, 31–42.

MARTIN, S., AND EINARSSON, P., 2010. A real time radiosity
architecture for video games, August. SIGGRAPH Advances in
Real-Time Rendering Course.

MCGUIRE, M., AND MARA, M. 2014. Efficient GPU screen-
space ray tracing. JCGT 3, 4 (Dec.), 73–85.

MCGUIRE, M., AND MARA, M., 2016. The G3D innovation en-
gine. http://g3d.cs.williams.edu/.

MICKAEL GILABERT, N. S. 2012. Deferred radiance transfer
volumes. GDC.

MUSGRAVE, F. K., KOLB, C. E., AND MACE, R. S. 1989.
The synthesis and rendering of eroded fractal terrains. In SIG-
GRAPH, ACM, 41–50.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P.,
DACHSBACHER, C., AND KAUTZ, J. 2008. Imperfect shadow
maps for efficient computation of indirect illumination. ToG 27,
5 (Dec.), 129:1–129:8.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approx-
imating dynamic global illumination in image space. In I3D,
ACM, 75–82.

SÉBASTIEN, L., AND ZANUTTINI, A. 2012. Local image-based
lighting with parallax-corrected cubemaps. In SIGGRAPH Talks,
ACM, 36:1–36:1.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM ToG.

STACHOWIAK, T., 2015. Stochastic screen-space reflections. SIG-
GRAPH Advances in Real-Time Rendering in Games course.

TOTH, R., HASSELGREN, J., AND AKENINE-MÖLLER, T. 2015.
Perception of highlight disparity at a distance in consumer head-
mounted displays. In HPG, ACM, 61–66.

VALIENT, M., 2014. Taking killzone shadow fall image quality
into the next generation. GDC.

WYMAN, C. 2005. An approximate image-space approach for
interactive refraction. In SIGGRAPH, ACM, 1050–1053.

Figure 21: Left: Direct illumination only. Right: Global illumination with iteratively-rendered probes.

