Supplementary Material: Learning Affinity via
Spatial Propagation Networks

Sifei Liu Shalini De Mello Jinwei Gu
UC Merced, Nvidia Nvidia Nvidia
Guangyu Zhong Ming-Hsuan Yang Jan Kautz
Dalian University of Technology UC Merced, Nvidia Nvidia

1 More Experimental Settings

We combine the guidance network and the spatial propagation module similarly to [4]]. We use two
propagation units (e.g., the bottom part in Figure 2 of the paper is one propagation unit) with cascaded
connections to achieve better results. Differently, we feed in the integrated hidden map of the first unit
to the second unit, instead of cascading each direction separately and integrate them at the end of the
second unit. We use two more convolutional layers with 32 channels before and after the propagation
units to transfer the input map to an intermediate feature map and to make it compatible with the
node-wise max-pooling. In addition, we maintain a smaller size of the propagation layer to make
the model more efficient w.r.t computational speed and memory. This is carried out by bi-linearly
downsampling/upsampling after the two convolutional layers, so that the hidden maps of propagation
module is with a smaller dimension of 64 x 64. Note that to compare the one-way with the three-way
connection, we use exactly the same structure except the propagation units. We do not apply any
configuration used by [1]] or [4].

2 Proof of Theorem 3

Theorem. Let {pth }k be the weights in w;. The model can be stabilized if ) ;. . ‘ pth’ <1
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Proof. Let X be the eigenvalues of matrix w; and A4, be the largest one. According to Gershgorin’s
Theorem [2l], when every eigenvalue of a square matrix w; satisfies:
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which satisfies the model stability condition. O

Theorem 3 in the paper shows that the stability of a linear propagation model can be maintained by
regularizing all the weights of each pixel in the hidden layer such the summation of their absolute
values is less than one. For the one-way connection, Chen et al. [1]] maintain each scalar output p to be
within (0, 1). Liu et al. [4] extend the range to (—1, 1), where the negative weights show preferable
effects for learning image enhancers. This indicates that the affinity matrix is not necessarily restricted
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Figure 1: Results of face parsing on the HELEN dataset with detailed regions cropped from the high resolution
images. (Images are all in high resolution and can be viewed by zooming in.)

to be positive/semi-positive definite. (e.g., this setting is also used for a pre-defined affinity matrix
in [3]].) For the three-way connection, we simply regularize the three weights (the output of a deep
CNN) according to Theorem 3 without any positive/semi-positive definite restriction.

3 Additional Face Parsing results on the HELEN dataset

Baseline network settings. We first train a baseline CNN with a symmetric U-net structure, where
both the input and output are 8 x smaller than the original image. The downsampling part of the
network is equipped with five consecutive conv+relu+max-pooling (with stride of 2) layers. Starting
from 32, each one has double the number of channels, resulting in a 4 x 4 x 512 feature maps
at the bottleneck. In order to use the information at different levels of image resolution, we add
skipped-links by summing features maps of the same dimensions from the corresponding upsample
and dowsample layers. The upsample part has symmetric configurations, except that the max-pooling
is replaced with bilinear upsampling, and the last sub-module has 11 channels for the 11 classes.

Qanlitative results. We show more parsing results on the HELEN dataset. The detailed regions are

cropped from the high resolution results. Figure[l|shows the effectiveness of the proposed spatial
propagation network (SPN).

4 Semantic segmentation results on the PASCAL dataset

Specifically, the SPN improves the base model with much larger margin compared to the context
aggregation module (see “+3 way” vs “+Context” in Table 4 of the paper).
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RGB pretrained (R) with dense CRF with 3-way SPN  ground truth

Figure 2: Based on model R, we visualize the Pascal VOC segmentation results (left) and object probability
(by 1 — Py, where P, denotes the probability of the background region).

Qanlitative results. We show more semantic segmentation results (left) and object probability (i.e.,
1 — Py, where P}, denotes the probability of the background region) on the Pascal VOC 2012 dataset

(Figure2).
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