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ABSTRACT

Unistable polyhedra are in equilibrium on only one of their faces. The smallest known
homogeneous unistable polyhedron to date has 18 faces. Using a new optimization algo-

rithm, we have found a unistable polyhedron with only 14 faces, which we believe to be

a lower bound. Despite the simplicity of the formulation, computers were never success-
fully used for solving this problem due to the seemingly insurmountable dimensionality

of the underlying mathematical apparatus. We introduce new optimization approaches

designed to overcome the problem’s intractability and discuss its significance to other ap-
plication areas. We also mathematically prove the unistable property of the found bodies

using rational arithmetic. Surprisingly enough, all of our computer-generated unistable
polyhedra look similar to the human eye, providing important insights into the nature

of the problem.

Keywords: miscellaneous polyhedra, stability, center of mass, bound constrained Lips-
chitz optimization, unsolved problems

1. Introduction

We consider all homogeneous convex polyhedra (3D polytopes). If such a body is

in equilibrium on only one of its faces, it is said to be unistable 1 (with respect to

the uniform gravity field orthogonal to the rest plane). In discrete geometry it is

also common to refer to a unistable polyhedron as monostatic polyhedron. To date,

all known unistable polyhedra are fruits of human ingenuity. Conway and Guy2

constructed a unistable convex homogeneous polyhedron with 19 faces. It was long

believed to be the best possible result, until improved by Bezdek3, who discovered

an 18-faceted polyhedron. Both these polyhedra are shown in Figure 1(b).

Every homogeneous tetrahedron is stable on at least two faces4; therefore the

unexplored interval is from 5 to 17 faces. One possibility to harness computational

power for probing this interval is to

∗part of this work was done in Intel Labs

1
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(a) Four different views of our unistable polyhedron with 14 faces. The only stable face is shown

in red.

Out[214]=

(b) Prior art unistable polyhedra. Left: Guy’s polyhedron (19 faces).

Right: Bezdek’s polyhedron (18 faces).

Fig. 1. Unistable polyhedra.

a. describe a mechanism for creating an arbitrary convex polyhedron

from a set of given variables,

b. provide a cost function which will have a minimum when the con-

structed polyhedron becomes unistable, and

c. devise an efficient optimization routine.

(1)

Conceptually, all these steps can be carried out using exact computations, ei-

ther with integer or rational numbers. However, computations with fixed precision

float numbers are typically more efficient. If inexact calculations are used to find a

candidate unistable body, it has to be converted afterwards to an exact form and

its properties have to be provably reasserted to get a definite mathematical proof.

The success of this approach depends on the complexity of the used cost func-

tion. A posteriori, we plotted the typical behavior of the cost function in the local

neighborhood of our 14-faced unistable polyhedron (Figure 2, right). The proba-

bility of randomly finding such body is about one in (1/10−4)3×14/14! ≈ 10157,

accentuating the need for an efficient optimization.

As shown by Várkonyi and Domokos5, the number of stable equilibria can easily

be increased by carving away small portions of the polyhedron. The reverse is

false: i.e., for a typical body it is very difficult to decrease the number of equilibria

via small perturbations. This pretty much excludes local optimization techniques,

making the problem even more convoluted.

Minich6 attempts to reduce the problem space by considering only polyhedra

that are similar to Guy’s object. This still results in a high-dimensional problem, so

clever approaches were used to further exclude large portions of the search space.

These efforts were not successful.
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Fig. 2. Typical behavior of the cost function. Values less than 0 correspond to unistable polyhe-

dron. Left: interpolating between 2 random parameter sets in 60-dimensional space. Right: local

neighborhood (cut along a straight line in a parametric space) of the found unistable polyhedron
with 14 faces in log-log scale. For each chart, 5000 sample points were used.

We believe the only way to obtain leverage against the problem is to design

our own cost function. Without loss of generality, such a function maps a point in

n-dimensional parametric space, which uniquely specifies a particular polyhedron,

into a single value that characterizes how close we are to the solution (unistable

body). The most important property of the cost function is a correlation between

its values at different points. If the correlation is significant, we could “predict” the

behavior of the cost function by analyzing sparsely located points (with respect to

Euclidean distance in n-dimensional parametric space). We will provide the formal

definition of this property in section 2.2.

It is worth mentioning that there are homogeneous 3D bodies which have exactly

one stable and one unstable point of equilibrium. Such bodies were first described by

Várkonyi and Domokos5, confirming the hypothesis proposed by Vladimir Arnold

in 1995. These mathematicians deserve credit for making stability problems popular

again.

Unistable bodies exist in all dimensions greater than 2. And, in fact, there are

unistable simplices in 10-dimensional space, as shown by Dawson7.

2. Mathematical Apparatus

In this section, we will describe our implementation of steps (1), i.e., steps required

to create a plurality of polyhedra and find ones with the desired properties.

2.1. Polyhedron Generation

As discussed by Henk and Ziegler8 and Schneider9, three basic ways of generating

a random convex polytope are

(1) construct a convex hull of finitely many random points,

(2) compute an intersection of closed half-spaces,

(3) project a high-dimensional polytope into a subspace.

The third method is somewhat esoteric. Using convex hulls is an attractive

proposition since integral properties of any polyhedron (volume, centroid, etc) can
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be algebraically computed from coordinates of its vertices as described by Mirtich10

and Wang11. However, we rejected this approach since it almost surely creates only

triangular faces. Note that all prior art unistable polyhedra (see Figure 1(b)) contain

faces with high valence. Another problem with this approach is that it potentially

results in many dormant points, that lie inside the convex hull of other points.

Accordingly, the final shape will not depend on these variables, confounding the

optimization process.

Fig. 3. Building polyhedron through intersection of half-spaces. Left: half-space is defined by a

point in the unit cube. Middle: re-adjusting non-intersected planes. Right: avoiding very small
faces (the resulting body is shaded).

Correspondingly, the second approach (half-spaces) creates vertices with va-

lence 3 and could also have dormant planes that do not contribute to the final

body. Moreover, unlike the convex hull approach, the intersection of arbitrary half-

spaces can be open. We fight all these problems with a custom process illustrated

in Figure 3 and outlined below.

For each three numbers n = [nx, ny, nz] in the [−0.5, 0.5]3 cube, we define a

halfspace H(n) such as

• its plane is orthogonal to vector n

• the halfspace plane contains point [nx, ny, nz]

• origin [0, 0, 0] is inside H(n)

We split a set of given variables into triplets nj and construct a corresponding

polyhedron as follows:

(1) We initialize the constructed body Ω = H(t1) ∩ H(t2) ∩ H(t3) ∩ H(t4)

where ti are normals defining a regular tetrahedron. Accordingly, we will

always have a valid closed polyhedron at all steps of the construction. The

intent is to have the tetrahedron big enough so its faces will not contribute

to the final result, but it is not required.

(2) We consider all given triplets nj one by one. If the intersection Ω∩H(nj) 6=
∅, we use it at the next iteration (left of Figure 3).

(3) If the plane does not intersect the body, we move it so it will go through

the second closest vertex (middle).
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The rationale for step 3 is to allow most of the half-spaces to contribute to the

final body. Simply ignoring non-intersecting plane(s) might also work, but we never

tested it.

Vertex coordinates are not used explicitly in the polyhedron definition but rather

derived from planes (a vertex is considered as an intersection of 3 planes).

This algorithm will work if nj are represented by rational numbers and will

create an exact convex polyhedron. If nj are float numbers, we will have to deal

with numerical inaccuracies, given that these steps can create very small faces (or

even the plane coinciding with an existing face). If edges of the newly created faces

are shorter than the given threshold, we will consider the next closest vertex and

so on (Figure 3, right). In extreme cases, nothing will work and we will just reject

the current plane, leaving the three corresponding variables dormant.

The number of the used half-spaces roughly corresponds to the number of faces

in the built polyhedron. It can be increased by the number of the contributing faces

from the original tetrahedron and decreased by the number of the rejected planes.

It is also quite possible that the currently considered half-space completely cuts off

already built faces, leaving the corresponding variables dormant. This is undesirable

by itself, but it also helps us to create polyhedra with a smaller number of faces

than the number of the original half-spaces (remember that our goal is to reduce

the lower bound for the number of faces in a unistable polyhedron).

We found that starting with 20 planes is adequate for finding record-breaking

polyhedra (note that this decision stipulates a 60-dimensional search space). After

each optimization phase, we eliminate all dormant variables. If the number of half-

spaces falls below the pre-defined threshold (13), we add an additional half-space,

assuming that unistable polyhedra with a very small number of faces do not exist.

Note that the number of faces in the created body could be less than the number

of the used half-spaces (some half-spaces might not contribute to the final body),

so such optimization does not preclude, in theory, search for a unistable polyhedra

with smaller than 13 faces.

For expediency, we use float numbers during the initial search for candidate

bodies. We have discovered that singe precision float numbers are not adequate,

due to the extremely small steps required when the cost function approaches 0. We

use double precision float numbers instead.

Once candidate unistable polyhedron is found, we convert float numbers, which

define the body, to their rational approximation (at maximum accurancy), rebuild

the polyhedron, and verify the unistable property.

Such rational approximation could conceivably create a body that is topolog-

ically different from one defined by float numbers, especially if valency of some

vertices in the original body was more than 3. Accordingly, the verification process

using rational approximation is an integral part of the search for unistable poly-

hedra. It so happens that in all found unistable bodies, valency of all vertices was

always 3, despite the fact that step 3 above might encourage creation of vertices

with higher valency. We speculate that such bodies were purged during the opti-
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mization process, as higher valency vertices tend to belong to bodies with higher

number of faces.

2.2. Cost Function

It is rather straightforward to define a plain vanilla cost function that will be 0

at unistable polyhedra and positive for other bodies. It is more challenging to find

one that will guide us through the optimization process, with smaller values corre-

sponding to bodies that are somehow closer to the goal.

The number of stable faces by itself cannot be indicative of any progress toward

a unistable polyhedron, as it is very easy to create a polyhedron with just two stable

faces (just consider a variety of assorted cut pyramids).

Since a polyhedron is defined by a sample point in 60-dimensional parametric

space (as described in the previous section), it is expedient to identify closeness

with Euclidean distance in this space (with the distance between maximally distant

samples in the unit hypercube equal to
√

60). Note that the samples that are close

geometrically could still produce very different polyhedra due to the threshold-based

nature of step 3 from the previous section.

In most cases, candidate cost functions quickly cause creation of degenerate

bodies (very flat or very long). In order to avoid this, a cost function should yield a

unitless numerical value, so it can use lengths, areas, and volumes only as a ratio.

This is a necessary but not sufficient condition.

It would be nice to be able to tell if one cost function is better than another

without running multi-day simulations. We cannot afford to densely sample all

neighborhoods of the parametric space that defines polyhedra. Thus we will place

more value on those cost functions that have a better correlation between sparsely

placed samples.

To measure the expected correlation as a function of distance between two sam-

ples, we evaluate cost function for multiple random pairs of sample points in the

parametric space at a specific distance from each other and then compute the math-

ematical correlation between the resulting series. Note that this will give us a higher-

order function (functor). For any given cost function it will create a function that

maps distance to the expected correlation. We will then inspect the shape of this

function and favor functions that have longer tails (see Figure 4 for a few examples).

Fig. 4. Average correlation be-

tween two samples at the spec-

ified distance for different cost
functions; the maximum possi-
ble distance between samples is√

60.
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To formally introduce possible choices for cost functions, we partition the faces of

a given polyhedron into groups containing exactly one stable face. A face’s stability

can be verified by projecting the body’s centroid (the center of mass) onto the face

plane: the face is stable only if the projection lies inside the face (for convex bodies).

We partition the faces by

• initially including all stable faces into their own groups and then

• iterating over remaining unstable faces and assigning them to the group

for the stable face onto which the polyhedron naturally rolls when set on

a given face on a flat surface (ignoring possible momentum overruns and

considering only geometric properties).

By design, this process creates groups that contain one and only one stable face

each.

Fig. 5. Cost function compu-
tation (using 13-faced polyhe-

dron as an example). Three dif-

ferent facet groups are shown
in brown, green, and red color.

The red group is a good one

(has the largest total area).

Distance from the 
centroid projection to 
the perimeter of the 

red group

the body centroid

During the search for unistable bodies, we can say that progress is made when the

largest group (by total area) grows, and the rest shrink to the point of vanishing.

For lack of more discernible terminology, we will call the largest group (and its

faces) good and all others bad. In Figure 5, there are three facet groups, i.e., there

are three stable faces. We want to make brown and green groups smaller and the

red one bigger.

One possible choice for the cost function is the ratio of the total area of the

bad faces to the good ones. Unfortunately, it does not tell us very reliably how

close we are to the goal. If we perturb the faces of the prior art unistable polyhedra

(Figure 1(b)) just a little bit, we may get a multistable polyhedron in which bad

faces will be large (with respect to the perturbation). What is happening actually

is that previously good faces are suddenly becoming bad ones.

This can be dealt with by projecting the polyhedron’s centroid onto stable faces

in bad group(s), and considering the distance between this point and the perimeter

separating bad and good faces. In Figure 5, the perimeter is shown as magenta

line and the distances — as black lines (only one is noticeable since the other one

— for the brown group — is very small). We compute this distance in Euclidean

space, i.e. if the bad stable face is not adjacent to a good face, we compute the

length of the vector that goes through the solid. This approach is chosen just to

simplify computations, we did not test any other options. To get a unitless value, the
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minimum distance has to be divided by another length, for example, the minimum

distance from the centroid projection onto the good stable face to its edges.

If this distance-based cost function is used as-is, it tends to create very flat

polyhedra with just a few faces. Additionally, cost values for closely placed samples

are poorly correlated with each other, making it difficult to “predict” the cost values.

Figure 4 shows the correlation functions for different cost functions. The

distance-based cost function (red color) has a modest correlation and is a poor

choice. While the correlation for the area-based cost function (blue) is high, it can-

not guide us to the goal as this cost function is always discontinuous at unistable

bodies. The green line shows the correlation for the cost function we have eventually

used, combining the good properties of the distance-based and the area-based cost

functions, and avoiding their shortcomings.

It is computed as follows. For all bad faces, we find the minimum distance to the

perimeter of the good group from the centroid projections and multiply it by the

face area. The sum of all such values is then divided by the polyhedron volume. This

function has a few properties that make it very attractive. It does not differentiate

between bad faces: we do not care if a bad face is stable or not, we just want it to go

away. Similarly, good faces contribute to the cost function only indirectly (through

volume), as we do not want to numerically quantify the goodness property until

we actually find a unistable body (then we will want bigger safety margins — see

section 2.4). Note also that all face planes are meaningfully contributing to the cost

by influencing the body volume, which is important for numerical optimization.

Such cost function has 0 value for all unistable bodies and positive for other

ones. It might be convenient to further differentiate between unistable bodies pur-

suing certain desirable properties. For example, we could search for bodies that will

be easier to manufacture. This can be facilitated by assigning negative values to

cost function for unistable bodies and allowing the optimization process find the

minimum corresponding to the most desired properties. This approach is further

explained in section 2.4.

2.3. Cost Function Minimization

We need an optimization process that can take advantage of the correlation be-

tween sparsely placed samples and guide us to 0 (which corresponds to a unistable

polyhedron), since we cannot afford exploring all neighborhoods of the unit cube

[−0.5, 0.5]3×20 in 60-dimensional space. Figure 2 (left) shows typical behavior of our

cost function, computing it along a random line in this space. Obviously, derivative-

based optimization techniques will not be able to find the global minimum of such

a function.

We initially assumed that quadratic (or higher order) approximation to the ob-

jective function would allow us to codify the correlation into a simpler model, en-

suring a fast rate of convergence, similar to the NEWUOA method12. However, the

extrema of the cost function are localized in very narrow regions, and the NEWUOA
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procedure treated them as outliers. Similarly, neither the simplex method13 nor

simulated annealing14 was able to penetrate these regions. Furthermore, the stan-

dard Nelder-Mead simplex algorithm becomes inefficient in high dimensions15 and

simulated annealing does not exhibit a high rate of convergence even in the best

scenarios.

Our chosen technique uses Lipschitzian optimization in the DIRECT method,

which stands for “DIviding RECTangles”16. Ironically, our cost function does not

have Lipschitz continuity. What makes the DIRECT algorithm suitable is that it

does not use the explicit Lipschitz constant, instead it is adaptively dividing the

initial hypercube and continuing with the potentially optimal rectangles. Concep-

tually, this algorithm carries out simultaneous searches using all possible constants,

and therefore operates at both the global and local level. The fact that such a con-

stant does not exist at all becomes immaterial, since our function exhibits strong

correlation between sparsely placed points (rectangle vertices) and thus can guide

the optimization process.

Still, the DIRECT method was not quite able to go directly to the solution,

instead getting stuck at local minima. To unstick it, we alternate between different

search spaces, some of them having more and others fewer independent variables

than the original 60-dimensional space describing polyhedron planes. For each al-

ternative space, the starting point was one that would recreate the current best

polyhedron verbatim, while still allowing us to explore alternative representations.

These spaces are defined as follows:

(1) We could actually treat vertices of the given polyhedron as variables, in-

creasing the number of the independent variables (in comparison with face

planes). In general, face vertices become un-planar when changed by the

optimization routine. For each function evaluation, we refit all vertices of

a particular face into a plane and use these modified planes as half-spaces

to create a new convex polyhedron and evaluate the cost function of the

modified polyhedron. Not only does this search space have more degrees of

freedom, it can also dramatically change the structure of the polyhedron.

(2) A linear transformation (scaling + shear + rotation), defined by

3 + 3 + 3 = 9 parameters. This transformation converts planes into

planes, thus not changing the structure of the optimized polyhedron, but

allowing us to non-uniformly stretch and skew it.

(3) A simplified form of the linear transformation, allowing only scaling along

three principle component axes of the perimeter vertices. The rationale for

this is that these axes represent a natural framework for the analyzed body

as far as we measure everything with respect to the perimeter between good

and bad faces.

(4) If the number of faces in the current polyhedron is small, we could also

consider adding an extra face, optimizing its placement through the search

in the corresponding [−0.5, 0.5]3 space.
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If optimization in one of these spaces was successful, we reverted to the face-

based optimization using the best found polyhedron as a new starting point for

the DIRECT method (i.e., the center of the new hypercube). If not — we tried

to increase the number of the function evaluations. If this did not help, we then

aborted the current pursuit, continuing with a random initial sample.

Fig. 6. Left: typical evolution

of one of the planes defining
the polyhedron; each 3D point

represents three plane parame-

ters at a given iteration (out of
60 overall parameters). Right:

reduction in the cost value with

respect to the number of tested
polyhedra.
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Figure 6 shows a typical evolution of one of the planes, defining a particular

polyhedron: on the left as a 3D point, and on the right as the corresponding change

in the cost function. Top of the chart on the right also shows optimization techniques

(as described in this section), at which improvements in the cost function were

achieved.

We do not plot the complete simulation, as it typically requires about 10 billion

function evaluations and the cost function chart would be L-shaped (quick initial

progress and then very slow convergence to 0).

We did not try genetic algorithms in our optimization, but observed that our ap-

proach to the simulation — when small changes in parameters could have dramatic

consequences — exhibits many features of a genetic optimization17.

2.4. Post-processing

Once a unistable polyhedron is found, we could try improving it. The obvious

choice is to increase the safety margin, defined as the minimum distance between

the centroid projections onto all faces and the corresponding face edges, divided

by volume1/3. This could be achieved by continuing the DIRECT optimization.

Previously, we have defined the cost function to be 0 for unistable bodies (and

positive for other ones). It could be redefined for unistable bodies to be equal to

the negative value of the safety margin. Accordingly, the optimization process will

try to minimize this value, i.e. maximize the safety margin, once a unistable body

is found.

Figure 7 shows such projections for a 15-faced polyhedron after the optimization

process. We did not show a 14-faced polyhedron, as all projections for such a body

appear to land on edges due to the very small margins. Table 1 provides the best

found margins for different polyhedra. When optimization process first produces
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Fig. 7. Centroid projections on face planes of 15-faced polyhedron. The only stable face (i.e. one
that contains the centroid projection) is a gray one on the top. Projections have the same color as

the corresponding face (zoomed up section on the right).

a unistable body, safety margins are typically less than 10−6. The safety margin

improvements are needed to allow 3D printing of real unistable bodies (section 4).

faces 14 15 16 17

safety 0.0012 0.0042 0.0067 0.0094

Table 1. Best-found safety margins (relative distances to edges from centroid projections) for

unistable polyhedra with different number of faces.

Another possibility for post-processing is to make one of the faces as small

as possible without destroying unistability. We then can exclude this face and re-

optimize the new body in the hope of reducing the lower bound. It turned out that

this is the most efficient way of achieving this goal. We obtained a 15-faced body

through direct search only a few times. The face reduction allowed us to create

many more such bodies, in one case sequentially reducing the number of faces from

19 to 15.

2.5. Unistable Dekatesserahedron

The face reduction process (see the previous section) was not successful for 15 →
14 improvement without revisiting the basic simulation principles.

First, the distance×area cost function (section 2.2), severely penalizes bodies

with two or more bad groups, quickly causing the creation of a polyhedron with

one good and one bad group. This is great for expediently purging unpromising

configurations, but once we are very close to the minimum, it locks the independent

variables in a very narrow range, not allowing bigger (but potentially more advan-

tageous) changes. In effect, by analyzing Figure 7, the centroid projections become

almost planar and lie on a circle. Accordingly, any variable changes that violate this

will be rejected (because they will drastically increase the cost). There is still room
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to maneuver for 15-to-17 faceted bodies, but those with 14 faces are significantly

more constrained (see Figure 2).

Thus, while optimizing 14-faced bodies we switched to the distance-based cost,

using the square of the distances to the perimeter (Figure 5). Beginning the search

process with this cost function yields flattened bodies, but it is useful late in the

search process, when we are near a solution. It allows the search variables to vary

in a greater interval without the significant increase in the cost.

Another way to fight the apparent dimensionality reduction near the minimum

is to learn it. We did this by finding a new minimum along the line connecting the

last two found minimums, let’s say p0 and p1, f(p1) < f(p0). We employed a rather

trivial strategy, evaluating the cost at p2 = p1 + 0.1 (p1 − p0) t for t = 1 . . . n,

continuing the process while the function value is still improving. In effect, we tried

to explore the steep canyon punctuated by the last two minima.

The difficulty is in integrating this with the DIRECT method16, in which the

function is evaluated at multiple regular hyper-rectangle vertices, reusing the older

values while sequentially splitting the rectangles. We just used the found value f(p2)

when DIRECT was expecting f(p1). Arguably, this is not a very smart approach, as

it replaces a regular target function with a non-deterministic procedure. The only

consolation is that it actually worked, due to the overall robustness of the DIRECT

method.

3. Mathematical Proof

In half-space representation of polyhedra, vertices are not included in the defini-

tion by itself, and only computed as an intersection of the corresponding planes.

Accordingly, we could always consider a given representation as one with infinite

precision, which just happens to be described by decimal numbers.

Each such float number can be converted to a ratio of two integers, and we can

carry out all computations using rational arithmetic. This is essential in proving

the unistable property, as safety margins of the found bodies can be very small,

sometimes below float epsilon.

The only catch is that each operation with rational numbers essentially doubles

the number of digits in the enumerator/denominator. We wrote a Mathematica

program, which computes the centroid projections onto faces of a given body and

verifies that only one such projection is inside the face. We had expected that it

would crash (most likely scenario), or would be very slow. Instead, it finished in

0.6 seconds, conclusively proving the unistable property. The computed centroid

representation had about 25 thousand digits.

Since the unistable property is invariant with respect to rotation, translation,

and uniform scaling, it is possible to find the transformation after which all plane

variables become integers and the overall representation will have a minimum

length. One such representation for a 14-faced unistable polyhedron is given in Ap-

pendix A as a Mathematica notebook. To verify unistability, it computes signed
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distances to the nearest edge from projections of the body’s centroid onto all faces.

It is interesting to note that the shortest representation is actually achieved for a

15-faced body and contains just 64 digits.

Through the ages, it was assumed that any mathematical proof could, in prin-

ciple, be checked by a competent mathematician to confirm its validity18. In our

case, the math is elementary and we could easily generate a manuscript containing

all calculations in rational arithmetic. It is significantly more difficult though to

find a mathematician who would really go over it. So, our belief in the existence

of 14-faced unistable polyhedra is solely based on the correctness of the computer

program Mathematica. It is not that big a stretch though, given that thousands of

people are flying on airplanes every day.

This belief is also corroborated by creating a real world unistable polyhedra

through 3D printing.

4. 3D Printing

3D printers have a limited precision, 0.1 mm at most. For about 10 cm dimensions,

it corresponds to a relative accuracy of 10−4. Given low safety margins for the

found polyhedra (Table 1), an interesting question is whether it is actually possible

to print and verify such models.
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(a) The probability to get a unistable polyhe-

dron for different 3D printing accuracy settings.

(b) Three 3D-printed models of unistable poly-

hedra on a glass surface with 15 (orange),

16 (brown), and 17 (blue) faces.

Fig. 8. Making unistable polyhedra.

In Figure 8(a), we tried to predict the outcome of such an experiment by perturb-

ing planes of the found polyhedra and checking the unistable property for different

precision settings. It can be seen that a 17-faced polyhedron can be reliably printed

with the current technology.

In addition to limited precision, very thin details could break during printing

or handling of a model. For resin material, which generally has higher precision

than plastic, this thickness restriction is about 2 mm. All our models have rather

acute areas near polar regions. An obvious way to fight this is to make a model big-

ger. Another possibility is to penalize elongated bodies during the post-processing

optimization (section 2.4), while simultaneously preserving safety margins at an

acceptable level.



May 13, 2014 16:29 WSPC/Guidelines polytop-ijcga

14 Alexander Reshetov

We have printed 15, 16, and 17-faced bodies using unpolished plastic material

(Figure 8(b)). All these bodies are unistable.

5. Discussion

When we started this work, we were hoping that we would be able to re-create

models similar to ones shown in Figure 1(b) and (if we were very lucky) reduce the

number of faces. Instead, quite unexpectedly, we discovered a new type of unistable

polyhedra. It brings into focus a series of rather interesting problems.

Why were prior art bodies never discovered during the simulation?

Our contention is that such bodies are too artificial and not very well correlated with

their immediate neighborhood in the parametric space. On the contrary, the general

outline of bodies, which we discovered, emerges rather quickly during our simula-

tions, followed by steady improvement over multiple iterations. This is how natural

selection works, and our approach resembles this, including sharp cost improvements

due to beneficial mutations. We refer readers to Várkonyi and Domokos 19, in which

the importance of stability for natural and human-made creations is discussed in

greater detail.

What is the real complexity of the problem? We do not know. We were

able to find a solution after about 1010 function evaluations (corresponding to 2-3

days work on an eight core machine), which is significantly less than 23 × 20 ≈ 1018,

the number of sample points when each dimension is sampled only twice. This

seems to indicate that unistable bodies are distributed more or less densely in

the parametric space. It is shown by Das and Goodrich20 that many optimization

problems involving convex polyhedra are NP-hard or NP-complete. Apparently,

searching for unistable bodies is not one of them.

Does a 13- (or fewer) faceted unistable polyhedron exist? Bender21

gives an asymptotic expression for the number of combinatorially distinct convex

polyhedra as a function of the number of faces, see Table 2. Our polyhedra are not

combinatorially equivalent even within a class with the same number of faces, but

all our unistable polyhedra look similar when watched with a human eye. This may

be a consequence of the chosen cost function, or it may represent a class of objects

wherein unistability is most robust.

13 14 15 16 17 18

2.3304 × 107 3.5830 × 108 6.9132 × 109 1.0705 × 1011 2.1122 × 1012 3.9914 × 1013

Table 2. Estimation of number of combinatorically distinct polyhedra with a given number of

faces.

We surmise that 14 faces is a limit for this class, but there could be other

possibilities. Since the number of distinct polyhedra with the number of faces less

or equal to 13 is so small, it might even be possible to employ a different search

strategy by describing a plurality of bodies in each group, using a significantly
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smaller number of parameters.

A considerably more difficult problem is to disprove the existence of a unistable

property for smaller number of faces. Inspired by Figure 7, we speculate that from

any monostatic polyhedron, another monostatic polyhedron can be derived, in which

the projections of the centroid on the faces’ planes lie in a plane on a circle. If this is

correct, we might try disproving existence of such simplified monostatic polyhedra

and then transfer it to a general case.

Another interesting problem is to find unistable polyhedra in which the stable

face is the smallest. Conway pointed out that in 3D space by increasing the number

of faces one can modify any unistable polyhedron so that it is stable on its smallest

area face22. The challenge is to find such body with minimum number of faces. We

surmise that the approaches described in this paper are directly suitable for tackling

this problem.

6. Conclusions

We researched equilibrium properties of a certain class of polyhedra. Stability is the

most ubiquitous property of bodies in the real world, while polygonal mesh models

are the preferred geometric representation in computer graphics. The discovery of

unistable polyhedra with a minimum number of faces was made possible through

the interplay of the following ideas:

• We contend that in complex optimization problems correlation between

function values at sparsely located samples is one of the most important

properties, allowing the construct of an agile optimization process.

• Alternative descriptions of the problem can be used to intelligently move

the solution out of local minima.

• Non-continuity of the goal function can be a blessing in disguise, allowing

sharp cost improvements, similar to genetic optimization.

• The DIRECT optimization technique survives non-deterministic goal func-

tions, allowing the use of local optimization methods underneath it.

We hope that some of these ideas could be beneficial in other application areas

as well.
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Appendix A. Prove of unistable property for the found

polyhedron with 14 faces (Mathematica notebook)

(∗ v e r t e x i s an i n t e r s e c t i o n o f 3 p lanes
de f ined by t h e i r v [ [ i ] ] i n d i c e s in t o l i s t o f normals n

∗)
Vertex [ i I n t e g e r , v L i s t , n L i s t ] :=
Module [{ x , y , z , p = {x , y , z }} ,

p / . First [ Solve [Thread [Dot [ p − #, #]&/@ n [ [ v [ [ i ] ] ] ] == 0 ] , p ] ]
] ;

(∗ geometr ic cen te r o f f [ [ i ] ] f a ce ∗)
VertexCenter [ i I n t e g e r , f L i s t , v L i s t , n L i s t ] :=
Module [{ c = {0 ,0 ,0} , j } ,
For [ j = 1 , j <= Length [ f [ [ i ] ] ] , j ++,

c += Vertex [ f [ [ i , j ] ] , v , n ] ;
] ;
(∗ re turn ∗) c/Length [ f [ [ i ] ] ]

] ;

Centroid [ f L i s t , v L i s t , n L i s t ] :=
Module [{ c = {0 ,0 ,0} , m = 0 , v0 , v1 , v2 , a2 , i , j } ,
For [ i = 1 , i <= Length [ f ] , i ++,

v0 = Vertex [ f [ [ i , 1 ] ] , v , n ] ;
v1 = Vertex [ f [ [ i , 2 ] ] , v , n ] ;
For [ j = 3 , j <= Length [ f [ [ i ] ] ] , j ++,

v2 = Vertex [ f [ [ i , j ] ] , v , n ] ;
a2 = Abs [ v2 . ( v0 \ [Cross ] v1 ) ] ;
c += ( v0 + v1 + v2 ) ∗ a2 ;
m += a2 ;
v1 = v2 ;

] ;
] ;
(∗ re turn ∗) c /(4∗m)

] ;

(∗ re turn the p ro j e c t e d ∗ po in t ∗ in the p lane ∗)
ProjectToPlane [ p L i s t , n L i s t ] := p + ( ( n−p ) . n/n . n) ∗ n ;

(∗ re turn the ∗ vec t o r ∗ from the l i n e to the po in t ∗)
ProjectToLine [ p L i s t , l 0 L i s t , l 1 L i s t ] :=

(p−l 0 ) − (Dot [ l1−l0 , p−l 0 ] /Dot [ l1−l0 , l1−l 0 ] ) ∗ ( l1−l 0 ) ;
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(∗ minimal s i gned d i s t ance ˆ2 from edges o f the po lygon f [ [ i ] ]
to the p r o j e c t i on o f po in t c to f [ [ i ] ] p lane .
I f and only i f the d i s t ance i s p o s i t i v e ,
the p r o j e c t i on i s i n s i d e the po lygon .

∗)
Distance [ i I n t e g e r , c L i s t , f L i s t , v L i s t , n L i s t ] :=
Module [{

pc = ProjectToPlane [ c , n [ [ i ] ] ] ,
f c = VertexCenter [ i , f , v , n ] ,
l en = Length [ f [ [ i ] ] ] ,
d2min = Infinity ,
d2 , e2 fc , e2pc , v0 , v1 , j } ,

(∗ see i f the p r o j e c t i on pc can be separa ted from
the cen te r f c by an edge ∗)

v0 = Vertex [ f [ [ i , l en ] ] , v , n ] ; (∗ l a s t one ∗)
For [ j = 1 , j <= len , j ++, (∗ i t e r a t e ∗)

v1 = Vertex [ f [ [ i , j ] ] , v , n ] ;
e 2 f c = ProjectToLine [ fc , v0 , v1 ] ;
e2pc = ProjectToLine [ pc , v0 , v1 ] ;
d2 = e2pc . e2pc ∗ Sign [ e2pc . e 2 f c ] ;
d2min = I f [ d2min < d2 , d2min , d2 ] ;
v0 = v1 ;

] ;
(∗ re turn ∗) d2min

] ;

(∗ v e r i f y t h a t
1 . l i s t s f , v , n d e f i n e a convex po lyhedron
2 . i t i s a un i s t a b l e one

∗)
Valid [ f L i s t , v L i s t , n L i s t ] := Module [{ points , px , pn , c , dp} ,
(∗ check i f t h e r e are i n v a l i d {0 ,0 ,0} normals ∗)
I f [Fold [Or , False , Thread [ Plus@@#&/@Abs [ n ] == 0 ] ] ,
Return [ False ] ] ;

(∗ can a l l v e r t i c e s be r e s o l v e d ? ∗)
I f [Length [ Position [Det [ n [ [ v [ [ # ] ] ] ] ] & /@
Range [Length [ v ] ] , 0 ] ] != 0 , Return [ False ] ] ;

(∗ f o r each face , i t s v e r t i c e s ( de f i ned by i n t e r s e c t i o n o f
3 p lanes ) have to have one and only one
common plane == face p lane

∗)
px = Intersection @@ v [ [ f [ [ # ] ] ] ] & /@ Range [Length [ f ] ] ;
I f [Fold [And, True , Thread [Length /@ px == 1 ] ] == False ,
Return [ False ] ] ;

(∗ are a l l v e r t i c e s on one s i d e o f a l l f a ce p lanes ? ∗)
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po in t s = Vertex [# , v , n ] & /@ Range [Length [ v ] ] ;
pn = Outer [(#1 − #2).#1 &, n , po ints , 1 ] ;
I f [Fold [And, True , Thread [ Flatten [ pn ] >= 0 ] ] == False ,
Return [ False ] ] ;

(∗ compute margins ∗)
c = Centroid [ f , v , n ] ;
dp = Distance [# , c , f , v , n ] & /@ Range [Length [ f ] ] ;
(∗ v e r i f y t h a t t h e r e i s on ly one s t a b l e f ace

( f o r which the d i s t ance > 0)
∗)

Length [ Select [ dp , (# > 0) &] ] == 1
] ;

(∗ d e s c r i b e 14− f aced po lyhedron and v a l i d a t e i t s p r o p e r t i e s :
f a c e s f are g iven by l i s t s o f t h e i r v e r t i c e s ;
v e r t i c e s v are im p l i c i t l y s p e c i f i e d by t r i p l e t s o f
i n c i d e n t a l f a ce normals ( i . e . as i n t e r s e c t i o n o f 3 p lanes ) ;
each normal n d e f i n e s a face p lane or thogona l to v e c t o r n [ [ i ] ]
and pass ing through po in t n [ [ i ] ] .

∗)
f = {{16 ,10 ,14 ,1 , 7 , 17} ,{13 ,1 , 14} ,{23 ,5 , 3 , 19 ,18 ,9 ,8 , 24} ,

{12 ,7 , 1 , 13} ,{21 ,19 , 3 , 2 , 6 , 22} ,{6 ,2 , 4} ,{4 ,2 , 3 , 5} ,{22 ,6 , 4 , 5 , 23} ,
{17 ,7 ,12 ,11 ,9 ,18} ,{24 ,8 ,15 ,20} ,{15 ,8 ,9 , 11 ,10 ,16} ,
{10 ,11 ,12 ,13 ,14} ,{20 ,15 ,16 ,17 ,18 ,19 ,21} ,{20 ,21 ,22 ,23 ,24}} ;

v = {{1 ,2 , 4} ,{5 ,6 , 7} ,{3 ,5 , 7} ,{6 ,7 , 8} ,{3 ,7 , 8} ,{5 ,6 , 8} ,{1 ,4 , 9} ,
{3 ,10 ,11} ,{3 ,9 ,11} ,{1 ,11 ,12} ,{9 ,11 ,12} ,{4 ,9 ,12} ,{2 ,4 ,12} ,
{1 ,2 ,12} ,{10 ,11 ,13} ,{1 ,11 ,13} ,{1 ,9 ,13} ,{3 ,9 ,13} ,{3 ,5 ,13} ,
{10 ,13 ,14} ,{5 ,13 ,14} ,{5 ,8 ,14} ,{3 ,8 ,14} ,{3 ,10 ,14}} ;

n = {{19 ,70 ,−410} ,{0 ,289 ,−186} ,{−26 ,−389 ,−2} ,{−6 ,207 ,−331} ,
{13 ,−329 ,101} ,{1 ,−167 ,233} ,{−5 ,−263 ,181} ,{0 ,−73 ,253} ,
{ −27 ,−85 ,−443} ,{0 ,107 ,201} ,{0 ,181 ,103} ,{0 ,287 ,−27} ,
{32 ,−394 ,−134} ,{0 ,18 ,244}} ;

(∗ prove t ha t g i ven f a c e s / v e r t i c e s /normals
form a un i s t a b l e po lyhedron

∗)
Valid [ f , v , n ]

True

(∗ v i s u a l i z e ∗)
po in t s = Vertex [# , v , n ] & /@ Range [Length [ v ] ] ;
Graphics3D [ GraphicsComplex [ po ints , Polygon [ f ] ] ]
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(∗ The expre s s i on f o r ’ po in ts ’ above y i e l d s an e x p l i c i t
r e p r e s en t a t i on f o r mesh v e r t i c e s . Togeather wi th
the face i n d i c e s de f ined by ’ f ’ , i t can be used to
expor t the model i n t o 3D formats l i k e Wavefront ob j .
Note t ha t normals d i r e c t l y computed from ’ f ’ and ’ po in ts ’
w i l l have an oppo s i t e d i r e c t i o n to normals
de f ined by ’n ’ , i . e . f o r each face f i

f i = 1 ;
Normalize [ Cross [ po in t s [ [ f [ [ f i , 2 ] ] ] ] − po in t s [ [ f [ [ f i , 1 ] ] ] ] ,

p o in t s [ [ f [ [ f i , 3 ] ] ] ] − po in t s [ [ f [ [ f i , 2 ] ] ] ] ] ] ==
−Normalize [ n [ [ f i ] ] ]
∗)

points = {{-1118133957, -301190593, 623525659} / -1718803,
{297975816, -223307064, 98118468} / 735612,
{-673030086, -728705334, 37612818} / 1979526,
{344354332, 36422102, -38695074} / -179536,
{-2975105691, -151380717, 201240609} / 893661,
{-905270226, 37256484, -58391328} / -252282,
{1864529864, -95609436, 1904301748} / -4337944,
{-5177816860, 87797320, 123350760} / 659360,
{26431456633, -621334533, -141516979} / -2929163,
{-4227479168, -184871596, 49277412} / -654512,
{-6712500320, 262712268, -70025796} / 930096,
{-8483513296, 443720094, -322851786} / 1637400,
{-1137363884, 73602414, -59305542} / 273474,
{2990380819, 233074311, -187800883} / 866001,
{-6384315680, -108058240, -151816320} / -811520,
{24428105528, 689051524, 16838532} / 2915672,
{-4855682872, 2469404080, 4349744016} / -9822248,
{-5290136854, -3977405774, -4048118406} / 11137102,
{-298814190, 1629846402, 501450570} / -4126578,
{-4895427080, -19825280, -175095040} / -719680,
{8206447740, -75757896, 351156552} / 1408596,
{-1501838894, 23060596, -73032232} / -290758,
{-2720846106, -46121192, 146064464} / 581516,
{3670446990, -16108040, -142264720} / -584740};

(∗ The f o l l ow i n g e xp r e s s i on s d e f i n e 15 , 16 , and 17 faced
un i s t a b l e po lyhedra ( see a l s o Figure 8 f o r 3D pr in t ed models ) .
n∗ v a r i a b l e s comp l e t e l y d e f i n e the bod i e s ;
f ∗ and v∗ v a r i a b l e s are prov ided f o r conv in ience .

∗)

f15 = {{3,2,1,4},{25,16,15,26},{5,4,1,6},{23,8,9,14,17,24},{11,6,1,2,12},{12,2,3,13},{22,13,3,4,5,7,8,23},
{10,7,5,6,11},{9,8,7,10},{24,17,16,25},{26,15,18,19},{21,14,9,10,11,12,13,22},
{20,18,15,16,17,14,21},{19,18,20},{19,20,21,22,23,24,25,26}};

v15 = {{1,3,5},{1,5,6},{1,6,7},{1,3,7},{3,7,8},{3,5,8},{7,8,9},{4,7,9},{4,9,12},{8,9,12},{5,8,12},
{5,6,12},{6,7,12},{4,12,13},{2,11,13},{2,10,13},{4,10,13},{11,13,14},{11,14,15},{13,14,15},
{12,13,15},{7,12,15},{4,7,15},{4,10,15},{2,10,15},{2,11,15}};

n15 = {{-64,0,-37},{80,0,0},{-46,0,-52},{29,0,-47},{-74,-2,-18},{-84,0,6},{-90,7,40},{-23,0,-61},
{2,0,-61},{63,0,-30},{80,-1,35},{-75,-7,50},{40,-6,87},{66,-2,67},{24,8,107}};

f16 = {{25,13,9,5,26},{26,5,4,1,27},{20,1,4,3,8,14},{18,6,12,11,7,8,3,2,19},{17,6,18},{27,1,20,19,2,28},
{28,2,3,4,5,9,23,22,24},{16,10,12,6,17},{15,7,11,10,16},{14,8,7,15},{23,9,13,21},{10,11,12},
{24,22,21,13,25},{14,15,16,17,18,19,20},{21,22,23},{24,25,26,27,28}};
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v16 = {{2,3,6},{4,6,7},{3,4,7},{2,3,7},{1,2,7},{4,5,8},{4,9,10},{3,4,10},{1,7,11},{8,9,12},{4,9,12},
{4,8,12},{1,11,13},{3,10,14},{9,10,14},{8,9,14},{5,8,14},{4,5,14},{4,6,14},{3,6,14},{11,13,15},
{7,13,15},{7,11,15},{7,13,16},{1,13,16},{1,2,16},{2,6,16},{6,7,16}};

n16 = {{6,-7,-60},{8,-29,-46},{8,-42,-20},{-23,34,88},{-5,3,80},{-3,79,0},{-18,82,-25},{-1,-23,72},
{6,-56,29},{8,-57,5},{3,14,-63},{1,-44,57},{0,47,-50},{-3,33,74},{0,32,-60},{-1,60,-37}};

f17 = {{21,11,10,2,4,22},{12,2,10,9,13},{25,1,26},{24,3,5,1,25},{14,8,7,15},{28,26,1,5,29},{15,7,6,16},
{18,16,6,19},{13,9,8,14},{30,4,2,12,20,27},{23,3,24},{29,5,3,23,22,4,30},{19,6,7,8,9,10,11,17},
{20,12,13,14,15,16,18,17,11,21},{17,18,19},{27,20,21,22,23,24,25,26,28},{27,28,29,30}};

v17 = {{3,4,6},{1,2,10},{4,11,12},{1,10,12},{4,6,12},{7,8,13},{5,7,13},{5,9,13},{2,9,13},{1,2,13},{1,13,14},
{2,10,14},{2,9,14},{5,9,14},{5,7,14},{7,8,14},{13,14,15},{8,14,15},{8,13,15},{10,14,16},{1,14,16},
{1,12,16},{11,12,16},{4,11,16},{3,4,16},{3,6,16},{10,16,17},{6,16,17},{6,12,17},{10,12,17}};

n17 = {{0,-11,92},{49,0,-39},{-79,4,-41},{-89,1,-21},{70,0,3},{-52,2,-63},{69,0,20},{63,-1,41},{64,0,-18},
{20,0,-52},{-95,1,4},{-91,-11,36},{29,-8,79},{28,8,85},{50,-3,62},{-94,12,35},{-21,1,-71}};
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