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ABSTRACT

We describe a second order double precision finite volume Boussinesq code
designed to run on the CUDA architecture. We perform detailed validation of
the code on a variety of Rayleigh-Bénard convection problems and show second
order convergence. We obtain matching results with a Fortran code running on
an eight-core CPU. The CUDA-accelerated code performs approximately eight
times faster than the Fortran code on identical problems. As a result, we are
able to run a simulation with a grid of size 3842 × 192 at 1.6 seconds per time
step on a machine with a single GPU.

INTRODUCTION

Because GPUs are designed for total computational throughput rather than
fast execution of serial calculations, they offer the potential for dramatic speedups
over multicore CPUs for scientific computing applications. To achieve high com-
putational throughput, GPUs have hundreds of lightweight cores and execute
tens of thousands of threads simultaneously, switching between them to hide
latencies to off-chip memory. To feed this large number of computational units,
GPUs have much higher off-chip bandwidth than do CPUs. For these reasons,
they often can achieve high performance for data intensive problems.

While GPUs have a large theoretical performance advantage over CPUs for
many problems of interest to the CFD community, there are a number of barriers
to their adoption in real-world codes. Modern real-world CFD codes are highly
complex software systems representing man-decades or more of development.
Because CFD codes require such a large investment, they are designed to last
for several hardware generations. Therefore, the potential upside from porting
to a new architecture must be large enough to justify the cost of development,
and must be expected to persist over multiple hardware generations.

In the short term, many complex numerical codes may adopt an “accelerator”
design, where GPUs are used as “bolt-on” units to accelerate performance of
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key bottlenecks. In this design, the majority of computation happens on the
CPU. For certain expensive operations, data is copied across the PCI-Express
(PCIE) bus to the GPU, where the operation is performed. The result is then
copied back to the CPU and the rest of the code proceeds as before. This
design has the advantages that it requires minimal changes to an existing code,
is straightforward to verify, and allows for an easy fall back path in the case that
GPU hardware is not available. However, it suffers from the major problem that
data transfers across the PCIE bus are relatively slow, offsetting much of the
advantage of high GPU performance.

The accelerator design also suffers from a lack of scalability. Because GPU
throughput is roughly linear in the number of floating point units on the chip,
it is increasing proportional to Moore’s Law, which implies a doubling of tran-
sistor density every 12-18 months. Bus bandwidth, on the other hand, is not
growing as fast. Therefore, the cost of data transfers is increasing relative to
the speed of computation. As this gap between bus speed and transistor density
increases, codes which use the accelerator design will fall behind codes that take
full advantage of the GPU

The goal of the present work is to explore the use of manycore GPUs to
accelerate a globally second order accurate structured CFD code in double pre-
cision. We want to look beyond the accelerator approach and design a code from
the ground up to run on a GPU. Our code is implemented using CUDA C and is
designed to run on an NVIDIA Tesla C1060 GPU. The Tesla C1060 consists of a
single GT200 GPU with 240 cores and 4GB of memory GT200 supports IEEE-
compliant double precision math with peak throughput of 87 GFLOPS/sec.
Detailed benchmarking of our code shows that it is approximately 8 times faster
than a comparable multithreaded code running on an 8-core dual-socket Intel
Xeon E5420 at 2.5GHz. See Table III for a summary of relative performance.

RELATED WORK

Before programming models like CUDA and similar platforms from other
vendors were introduced, fluid dynamics applications running on GPUs were
implemented using graphics APIs such as OpenGL or DirectX by recasting nu-
merical problems in terms of rasterization and shader calculations. Despite the
difficulty of implementating complex algorithms via graphics APIs, early work
in this field such as [9, 2, 10] demonstrated the potential of GPUs for high
performance computing.

Since the introduction of CUDA, a number of researchers have demonstrated
scientific applications that use GPUs to achieve high performance. In the field
of CFD, this includes work on structured grids [20, 25], unstructured grids [4],
multiblock codes [5], Euler solvers [3], multilevel methods [6], and discontinuous
Galerkin methods [12]. In the related field of atmospheric sciences, [15] demon-
strated the use of GPUs to accelerate calculation of a cloud microphysics model
in the Weather Research and Forecasting code. While most of this work has fo-
cused on the single precision capabilities of GPUs, work by Göddeke et al. [8, 7]
explored issues with mixed precision solvers for Finite Element calculations on
GPUs and other high performance architectures.



NUMERICAL METHOD

We solve the incompressible Navier-Stokes equations using the Boussinesq
approximation:

∂u

∂t
= −(u · ∇)u + ν∇2u−∇p+ αgTz

∂T

∂t
= −(u · ∇)T + κ∇2T

∇ · u = 0

where u = (u, v, w) is the fluid velocity field, T is the fluid temperature, p is the
fluid pressure field, α is the coefficient of thermal expansion, g is the magnitude
of gravity, ν is kinematic viscosity, and κ is thermal diffusivity.

We solve these equations on a staggered regular grid (Arakawa C-grid) using
a second order finite volume discretization. The advection terms are discretized
using centered differencing of the flux values, resulting in a discretely conserva-
tive second order advection scheme. All other spatial terms are discretized with
second order centered differencing.

For time step ∆t, we first calculate a new velocity field ignoring the pressure
gradient term using a second order Adams-Bashford method:

∂u∗
∂t

= −(u · ∇)u + ν∇2u + αgTz
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∗ = un + ∆t
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Pressure is treated via a projection method to enforce ∇ · u = 0 at the end
of the time step by solving the Poisson equation

∆t∇2p = ∇ · un+1
∗ (1)

and then subtracting the gradient of p

un+1 = un+1
∗ −∆t∇p.

Equation 1 is solved using a multigrid method [27].
While we have chosen simple discretizations for ease of implementation and

validation, our code is designed to support a wide variety of higher-order dis-
cretizations and stencils. For wider stencils, the sweep-based technique described
in [16] would be more appropriate than the optimizations described in Sec-
tion 6.6. We note that sweep-based approaches are compatible with the data
layout used in our system.

CUDA OVERVIEW

The goal of this work is to demonstrate an implementation of a non-trivial
structured CFD code on a GPU. Our implementation uses the CUDA archi-
tecture from NVIDIA via the CUDA C front-end. Other front ends such as
CUDA Fortran [24] and other GPU programming models such as OpenCL [11]
are similar.
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Figure 1. Schematic of the GT200 GPU.

The GT200 GPU [14] consists of a hierarchical array of processors and asso-
ciated memories, as shown in Figure 1. GT200 consists of 30 Streaming Multi-
processors (SMs). Each SM contains 8 cores called Streaming Processors (SPs),
for a total of 240 cores. Threads are grouped into batches of 32 called warps
that execute in lockstep Single Instruction Multiple Data (SIMD) fashion by
running across the 8 cores of an SM at the same time. In this configuration, a
single instruction can be executed across 32 threads in 4 clock cycles. Threads
within a warp are free to execute any code path. However, because the 8 SPs
within an SM share the same instruction fetch, issue, and decode logic, within
a 4-clock cycle period only a single instruction can be issued to the 32 threads
in a warp. When threads within a warp follow different code paths, there is
a performance penalty equal to the number of unique code paths taken. This
execution model is referred to as Single Instruction Multiple Thread (SIMT).

The Tesla C1060 card consists of a GT200 chip paired with 4GB of global
off-chip high-speed DRAM. All SMs can access any value stored in this global
memory via load and store instructions. The global off-chip memory, also called
device memory because it is on the GPU device, has a separate address space
from the host CPU’s memory. Data can be transferred between host and device
memory by crossing the PCIE bus, which typically has lower bandwidth than
either the CPU-to-host memory or GPU-to-device memory interfaces.

On the Tesla C1060 card, the GPU-to-device memory bandwidth is about
102 GB/sec (bidirectional). However, this peak bandwidth can only be achieved
when all lanes of the DRAM bus are utilized. In order to maximize memory
bandwidth, it is necessary to pay careful attention to memory access patterns.
A warp can be divided into 2 half-warps of 16 threads each. If threads in a
half-warp read from the same 64-byte memory region in the same cycle, these
reads are batched into a single operation via a process known as memory coa-
lescing. Because coalescing operates at half-warp granularity, uncoalesced loads
and stores waste 15/16ths of available memory bandwidth. Therefore the most
important optimization for memory-bound applications is to arrange work so
that threads in the same warp will access sequential memory locations at the
same time.

In addition to the device-side off-chip memory, GT200 has two small on-chip
caches: a read-only L1 cache called the texture cache, and a read/write software
managed cache called shared memory. With thousand of simultaneous active



threads, on-chip caches are beneficial only if threads scheduled to the same SM
access the same cache lines at the same time. Therefore optimizing for cache
performance is very similar to optimizing for memory coalescing. The texture
cache can be thought of as a “bandwidth aggregator” because it is designed to
aggregate memory requests over several cycles so that coalescing will be more
efficient. For more information on design of the GT200 caches, see [26].

The CUDA architecture may be programmed via a C/C++ front-end called
CUDA C that extends C/C++ with data parallel concepts designed to support
easy creation and management a large number of threads. A program that runs
on the GPU is called a kernel. A kernel is executed by threads, which are divided
into a 2-level hierarchy. Individual threads are grouped into batches of up to
1024 called thread blocks. Threads within the same thread block are guaranteed
to run on the same SM at the same time. There are no ordering, locality, or
scheduling guarantees between threads in different blocks. The set of all thread
blocks is called a thread grid.

Only a single grid may be active on the GPU at the same time, and all threads
in a grid must execute the same kernel. A grid of threads is launched via an
extended function call syntax that specifies the kernel function, its parameters,
the number of threads in each block (which can be specified as a 3D range), and
the number of blocks in the grid (which can be specified as a 2D range). The
index of a thread within its block, the index of a block within the grid, and the
dimensions of the block can all be read by each thread via built-in registers. For
more details on the CUDA programming model, see the CUDA programming
guide [19].

IMPLEMENTATION

We have explored a number of GPU-specific optimizations for structured
CFD codes. We evaluated these optimizations in terms of performance, ease of
programming and maintenance, scalability to future hardware, and scalability
across difference sizes of data sets. Our goal is to balance all of these factors in
order to implement a maintainable but high performance code. Based on our
analysis, we recommend the following design strategies:

• remove serial bottlenecks,

• avoid unnecessary PCI-Express transfers,

• run small problems on the CPU,

• layout arrays for maximum memory throughput,

• use congruent padding, and

• use on-chip caches appropriately.

These strategies are described below.

Remove Serial Bottlenecks

We can categorize routines in our code into two types: those whose costs
scale with the size of a dataset (computational routines), and those whose costs



are fixed regardless of the size of the dataset (control routines). In order to make
our code scalable to future hardware and to larger data sets, all computational
routines are written to take advantage of the parallel GPU architecture.

As the sizes of data sets grow, the fixed cost of control routines will become
asymptotically small. Therefore, there is little to gain by parallelizing these rou-
tines. On the other hand, any serial implementation of computational routines
will come to dominate the total running time. This will limit total possible
speedup from improved performance of other computational routines running
on parallel GPUs as predicted by Amdahl’s Law.

Because of this scaling argument, we want to implement all computational
routines to run on the GPU, and all control routines to run on either the CPU
or GPU as is convenient. This will give us a maximally scalable code, both to
larger data sets and to future GPU architectures with more execution units.

Avoid PCI-Express Transfers

A particular serial bottleneck that we wish to avoid is data transfers across
the PCIE bus (PCIE x16 Gen 2 runs at a peak bandwidth of 8 GB/sec). Fur-
thermore, even small data transfers suffer from latency on the order of a few
microseconds, regardless of the size of the data payload. While computation
can be overlapped with data transfer using CUDA’s asynchronous API, this is
little help for an iterative solver such as ours running on a single node. Since
we cannot easily hide the cost of PCIE transfers, we instead try to remove them
entirely. We can achieve this by copying all data to the GPU at the beginning
of calculation, and leaving it there for the entire run of the algorithm. We can
pull data off for writing to disk using the asynchronous transfer API, which will
not slow down computations if properly overlapped.

The consequence of this design decision is that all routines which process
simulation data must be implemented to run on the GPU. This includes certain
control routines, which may actually run faster on the CPU. In some cases, the
performance advantage of the CPU may be high enough to justify the cost of a
data transfer, but this has to be evaluated on a case-by-case basis. Our general
principal is “first implement on the GPU, then optimize if needed.” This is in
direct contrast to an accelerator design, where the default is to implement all
routines on the CPU and only port computationally expensive routines to the
GPU.

Run Small Problems on CPU

CPUs exhibit a non-linear performance curve based on the size of a data set.
When the data set required for computation fits entirely in the on-chip caches,
CPU performance can be very high. GPUs, on the other hand, are designed to
run large numbers of threads and process large datasets. When given a small
amount of work with an insufficient amount of parallelism, they can be relatively
inefficient. We can exploit these relative performance characteristics by running
computational routines on the CPU when it will beat the GPU’s performance.

One place in our code where this is relevant is relaxation of the coarse grids
in our multigrid solver. As shown in Figure 2, the CPU version of the relaxation
routine is 15 times faster on a 43 array. For small grids, the time the GPU
spends performing actual calculation is small enough that the total elapsed time
is dominated by overhead. Therefore, the GPU time stays roughly constant until
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Figure 2. Elapsed time for running 100 relaxation steps on the CPU and the GPU
for different grid sizes. Cubic grids were used, so the horizontal labels indicate the
lengths of all 3 dimensions.

the 243 grid, while the CPU cost grows linearly with the number of total grid
cells, crossing over at around 123. While the cost of a single relaxation step on
the coarse grid is negligible, we perform a large number of coarse grid relaxations
in order to solve the Poisson system exactly at this scale. Running the coarsest
grid on the CPU results in a 5% reduction in total running time for the 2562×128
Rayleigh-Bénard convection problem described in Section 8.

Array Layout

GT200 is designed to run tens of thousands of threads simultaneously, using
the large amount of parallelism to hide latencies for off-chip memory reads and
writes. The Tesla C1060 has a peak bandwidth to device memory of approxi-
mately 102 GB/sec, which corresponds to an optimal balance of just over 6 math
operations per double precision value loaded from memory. Because most of our
kernels perform a small amount of math, performance of our code is mainly lim-
ited by memory bandwidth. Therefore we focused on optimizing memory access
patterns to take advantage of GT200’s streaming memory architecture.

Most data is stored in 3D arrays. Therefore, it is important to choose a layout
for arrays so that the memory system will perform optimally under typical access
patterns. We consider small finite difference stencils to be the “typical” case and
optimize for them.

To perform array-wide calculation in a data parallel way, each thread updates
a single position in the destination array. We can think of every thread as having
a 3D index, equal to the index of the element in the array that it will update.
Say we choose a thread block size of (bx, by, bz). To update a 3D array of dimen-
sions (nx, ny, nz), we need to launch a thread grid of (dnx/bxe, d(ny/by) (nz/bz)e)
blocks. Note that thread grids are two dimensional, while threads blocks are
three dimensional. To overcome this limitation, the y and z dimensions of the
grid are folded together and unfolded by each thread using integer modulo and
divide.



We made the somewhat arbitrary choice for z to be the fastest changing axis,
then y, then x. Because CUDA groups threads into warps based on adjacency in
x then y then z, we must transpose between our conceptual thread indices and
the hardware notion of thread and block indices. Therefore, in the discussion
below we will refer to sequential threads in z as adjacent, even though the
hardware considers this dimension to be x.

For simplicity of handling boundary conditions, we pad arrays with (gx, gy, gz)
ghost cells in the x, y, and z directions, respectively. This lets us write stencils
that access out-of-bounds values at the border of the array as long as gx, gy,
and gz are are greater than or equal to the stencil radius. We enforce boundary
conditions by filling in these out-of-bounds ghost cells via a separate kernel in-
vocation, which cleanly separates boundary condition handling from the stencil
computations. This mechanism could also be used to cleanly insert inter-GPU
communication via exchange of ghost values, although we have not yet imple-
mented this feature.

3D arrays are laid out in memory as shown in Figure 3. We choose a simple
mapping from 3D array index to memory location that will achieve maximum
coalescing when multiple threads access their corresponding array elements at
the same time. We pad the beginning of the array so that cell (−gx,−gy, 0) is
aligned to start at a 64-byte boundary. We pad each z row so that the distance
between successive cells in the y direction (which we refer to a ystride) is a
multiple of 64 bytes. The distance between successive cells in the z direction
(referred to as xstride) is unconstrained. Therefore, cell (i, j, 0) will always start
at a 64-byte boundary, for all i and j. Given the memory location of cell (0, 0, 0),
which we call basepointer , the location of cell (i, j, k) is

basepointer + i ∗ xstride + j ∗ ystride + k. (2)

Because basepointer starts at a 64-byte boundary, mapping subsequent threads
to subsequent z values will result in maximum coalescing when all threads read
to or write from their matching array locations.

As an example, consider the kernel that calculates thermal diffusion κ∇2T ,
and adds it to the ∂T

∂t
term, the source code of which is given in Figure 4. Because

we use a second order centered discretization, thread (i, j, k) reads 7 values,
Ti±+1,j,k, Ti,j±1,k, Ti,j,k±1, and Ti,j,k. It calculates a Laplacian from these values,
then adds the result to the ∂T

∂t
array at position (i, j, k). All reads and writes will

be perfectly coalesced, with the exception of the reads from Ti,j,k±1, which will
run at half-speed because they are misaligned. In addition to misaligned reads,
adjacent threads read overlapping data, which is wasteful of off-chip bandwidth.
Using on-chip caches as described below can mitigate both of these effects.

Congruent Padding

We say that two arrays are congruent if for all indices (i, j, k), the offset in
bytes between the memory location of element (0, 0, 0) and element (i, j, k) is the
same for both arrays. Given two arrays, we can pad them with extra elements
in x, y, and z to enforce congruency. We refer to this as congruent padding.
Figure 5 demonstrates congruent padding in two dimensions.

Threads translate from array indices to memory locations using Equation 2.
Because they run simultaneously, all threads must calculate all index transla-
tions for themselves. Because each thread performs a fairly small amount of



. . .

- 1 0 1 2 3 4 3 0 3 1 3 2

0 1 2 3 4 3 1

W a r p  0 W a r p  1

. . . . . . X

Y

Z

. . .

P a d d e d  t o  m u l t i p l e  o f  6 4  b y t e s

. . .

P a d d i n g

6 4  b y t e
b o u n d a r y

3 0 0

Figure 3. Memory layout of a 3D array, showing how CUDA threads and warps are
mapped to array elements. In this example, there is a single row of ghost cell padding
on all sides.

TABLE I. Congruent Padding Results

Kernel Original With Congruent Padding

Registers Instructions Registers Instructions
−(u · ∇)T 16 132 13 116
−(u · ∇)u 46 302 43 264

Multigrid Restriction 14 75 13 68
Multigrid Relaxation 20 327 20 323

work, the cost of this index translation can be high relative to the amount of ac-
tual computation performed by a thread. When a single thread accesses several
arrays, congruent padding amortizes the cost of index translation by calculating
the offset from location (0, 0, 0) to (i, j, k) once per thread, and then adding this
offset to the base pointer for each array. In the source code shown in Figure 4,
the T and ∂T

∂t
arrays are already congruent allowing for a single index calcula-

tion. However, this is not the case for the u, v, and w arrays because the velocity
is stored on a staggered grid.

In our system, all arrays are padded to be congruent, regardless of their
actual dimensions or the thickness of their ghost cell regions. Table I shows
resulting decrease in both register count and number of instructions for several
kernels. Reported register usage is the total number of registers used over the
entire kernel, and doesn’t take into account the reduction in the amount of live
registers at any one time. Future GPU architectures may be able to exploit a



__global__ void AddThermalDiffusion(
double *dTdt_baseptr, const double *T_baseptr,
int xstride, int ystride,
double invhx2, double invhy2, double invhz2,
double kappa,
int blocksInY)

{
unsigned int blockIdxz = blockIdx.y / blocksInY;
unsigned int blockIdxy = blockIdx.y % blocksInY;
unsigned int i = blockIdxz *blockDim.z + threadIdx.z;
unsigned int j = blockIdxy *blockDim.y + threadIdx.y;
unsigned int k = blockIdx.x*blockDim.x + threadIdx.x;
int idx = i*xstride + j*ystride + k;

double T_ijk = T_baseptr[idx];
double dTdt_ijk = dTdt_baseptr[idx];
double laplacianT =

invhz2 * (T[idx + 1 ] + T[idx - 1 ] - 2.0*T_ijk) +
invhy2 * (T[idx + ystride] + T[idx - ystride] - 2.0*T_ijk) +
invhx2 * (T[idx + xstride] + T[idx - xstride] - 2.0*T_ijk);

dTdt_baseptr[idx] = dTdt_ijk + kappa * laplacianT;
}

Figure 4. Source code for the thermal diffusion kernel.

reduction in live register count to improve overall throughput, but this is not
currently possible.

On-Chip Caches

GPU caches serve different purposes from CPU caches. On a multicore CPU,
caches perform several functions: capturing data reuse, supporting prefetching
to reduce apparent memory latency, and pulling an entire cache line on-chip
when the first byte in that cache line is touched to make efficient use of memory
interfaces. On a GPU, each thread typically has a small working set and is active
for a short period of time, so there is little data reuse to capture. Because a
GPU is inherently latency tolerant, there is little advantage to prefetching. The
coalescing hardware attempts to batch memory requests to make more efficient
use of memory buses.

In our code, we use caches to improve performance by capturing data reuse
between nearby threads rather than for a single thread. For many finite differ-
ence stencils, there is considerable overlap between the arrays values read by
adjacent threads. We can use either shared memory or the texture cache to
aggregate loads from several threads into a smaller number of requests, thus
reducing memory traffic.

While either texture or shared memory may be used for this purpose, they
have different performance characteristics. Because shared memory is software
managed, it is flexible enough to often result in optimal bandwidth reduction
with careful coding. However, it therefore requires threads to execute additional
logic to manage the cache. See [16] for details on how to use shared memory to
optimize large 3D finite difference stencils.



(a) A 2x2 array with 1 row of ghost cells
on all sides.

(b) A 4x3 array with no ghost cells.

Figure 5. An example of congruent padding in 2 dimensions. Both arrays have
the same physical layout in memory, even though they may have different logical
dimensions. Computational cells are white, ghost cells are light gray, and unused
padding is dark gray.

TABLE II. Calculated critical Rayleigh values for full-slip (aspect ra-
tio
√

2 : .5 : 1) and no-slip (aspect ratio π : .5 : 3.11) boundaries at differ-
ent resolutions.

Resolution Full Slip No Slip

Value Diff Value Diff
16× 8× 16 659.69 – 1674.29
32× 16× 32 658.05 1.64 1699.25 24.96
64× 32× 64 657.65 0.40 1705.59 6.34

128× 64× 128 657.54 0.11 1707.22 1.63
∞ 657.51 – 1707.76 –

The texture cache is hardware managed. While it may not reduce bandwidth
as much as shared memory, it is easier to use because it does not increase
code complexity. Because logic to manage the texture cache is implemented
in hardware, it can actually be faster than shared memory in some cases, even
when its bandwidth reduction is less.

In general, we have found that using the texture cache improves performance
of most finite different kernels by a factor of 1.5. We believe texture cache is a
good compromise between code complexity and performance, and therefore use
texture cache in almost every routine where there is overlap between adjacent
thread reads. These results are similar to those obtained by [1], which computed
sparse matrix-vector products with CUDA.

VALIDATION

To demonstrate the potential of GPU based codes for scientific applications
we have validated our code on a range of problems. We compared our results
with an existing CPU based code written in Fortran [18] as well as with published
analytical, numerical, and experimental results. Since our code implements the
Boussinesq equations we choose to examine whether it can reproduce known



(a) Perturbations appear in
the stratifications.

(b) Instabilities form. (c) Temperature mixes after
the onset of turbulence.

Figure 6. False color plot of T at the y = 0 plane for a 3842×192 resolution simulation
with Ra = 107.

solutions to different Rayleigh-Bénard convection problems in which a constant
temperature difference ∆T is maintained between the top and bottom bound-
aries of the domain. The most basic result for Rayleigh-Bénard convection is the
critical value of the dimensionless Rayleigh number Ra = gα∆T/κν. Below the
critical value Rac the solution is motionless and heat flux between top and bot-
tom is purely diffusive. When Ra > Rac the diffusive solution becomes unstable
to perturbations of arbitrarily small amplitude and a solution with non-trivial
flow and enhanced vertical heat transport ensues.

We estimated Rac in our codes by calculating positive and negative growth
rates of u for small perturbations around Rac and extrapolating to find the
value of Ra for which the growth rate would be zero. Our GPU and CPU
codes use identical numerical methods and therefore have matching values to
several decimal places. Table II shows calculated Rac values from our codes.
The third and fifth columns (labeled Diff) show the differences in Rac obtained
for subsequent resolutions. The reduction of this error by a factor of 4 for each
doubling of resolution shows the globally second order convergence character
of the numerical discretizations. For the 2D problem with the aspect ratios
chosen, analytical values are known [22] (we treat this as a 3D problem by
choosing a smaller aspect ratio and periodic boundaries in the y dimension).
Using Richardson extrapolation, we obtain a value of Rac = 657.51 for the
full-slip case, and Rac = 1707.76 for the no-slip case, both of which match the
analytical results.

To test a fully 3D problem, we also studied the onset of convection in a
cubic box with no-slip conditions on all sides and Dirichlet conditions for T on
the side boundaries. We found a critical Rayleigh number Rac = 6755 for this
case, matching published experimental [13] and numerical [17, 21] values. To
verify the nonlinear advection terms in the equations, we calculated the solution
for a supercritical value of Ra = 4.4 × 104. We then calculated the Nusselt
number Nu = (wT + κTz)/(κ∆T ). The Nusselt number is the ratio of vertical
heat transport to diffusive heat transport across a 2D interface of a motionless
solution. Nu also depends on the Prandtl number, Pr = ν/κ. For Ra = 4.4×104

and Pr = 0.71, Nu computed at the upper and lower boundaries is 2.05 (using
both CPU and GPU codes) and exhibits global second order convergence when
computed at increasing resolutions. This matches published results [21].



TABLE III. Relative performance of the CPU and GPU codes on the
Ra = 107 problem.

CPU Fortran Code
Resolution ms/step ms/step/node Scaling
642 × 32 47 37.0e-5 -
1282 × 64 327 31.2e-5 0.84x
2562 × 128 4070 48.5e-5 1.55x
3842 × 192 13670 48.3e-5 1.00x

GPU CUDA Code GPU Speedup
Resolution ms/step ms/step/node Scaling
642 × 32 24 18.3e-5 - 2.0x
1282 × 64 79 7.5e-5 0.41x 5.3x
2562 × 128 498 5.9e-5 0.79x 8.2x
3842 × 192 1616 5.7e-5 0.97x 8.5x

TABLE IV. Relative performance of double and single precision GPU
codes on a lock exchange problem.

Resolution seconds/step (fp64) seconds/step (fp32) Ratio
643 0.020912 0.014367 1.46
1283 0.077741 0.046394 1.68
2563 0.642961 0.387173 1.66

PERFORMANCE ANALYSIS

To generate a timing comparison, we ran an unsteady Rayleigh-Bénard con-
vection problem on our GPU and CPU codes with Ra = 107 and Pr = .71. The
simulation domain was set to [−1, 1]× [−1, 1]× [−.5.5], with periodic boundary
conditions in x and y, and no-slip boundaries in z. The pressure solver was run
until divergence was below 10−8.

As shown in Figure 6, the flow starts out motionless until instabilities form,
and then transitions to turbulence. To accelerate convergence of the multigrid
solver for pressure, we reuse the solution from the previous time step as an initial
guess. Consequently, the number of v-cycles required for convergence increases
as the flow becomes less steady. In order to characterize our performance fairly,
we only count the average time per step once the number of v-cycles per step
has stabilized.

Because of the different performance characteristics of the GPU and the
CPU, we have chosen different multigrid relaxations schemes for the two codes.
The GPU code, which uses a red-black Gauss-Seidel point relaxer, requires 1
full-multigrid step followed by 7 v-cycles at all resolutions. The CPU code uses
a red-black line relaxer and requires 1 full-multigrid step followed by 13 v-cycles.
Table III shows the relative timing of the two codes at different resolutions. GPU
times are for a single Tesla C1060 running on a Core2-Duo E8500 at 3.17GHz,
CPU times are for an 8-core dual-socket Xeon E5420 at 2.5GHz.

Figure V shows the ten most expensive routines of the CUDA code running



TABLE V. Ten most expensive routines in CUDA code

24.97% MultigridPressure3DDeviceD relax(256)
8.69% LaplacianCentered3DDevice stencil
8.02% Advection3DD apply stencil
7.36% MultigridPressure3DDeviceD calculate residual(256)
6.76% MultigridPressure3DDeviceD relax(128)
5.70% MultigridPressure3DDeviceD prolong(128)
5.51% Grid3DDevice linear combination
3.35% ThermalAdvection3D apply stencil
3.19% MultigridPressure3DDeviceD apply boundary conditions(256)
2.76% Grid3DDevice reduction

the 2562 × 128 problem. It is well balanced, with the most expensive routine,
multigrid relaxation, accounting for the largest percentage of time (approxi-
mately 35% including all grid levels and boundary condition updates). PCIE
transfers do not even appear in ten most expensive routines, indicating that we
have effectively removed them as a bottleneck. The profiling results justify our
design decision to use texture cache for many of the finite difference stencil rou-
tines even though it is less optimal than shared memory. For example, while the
LaplacianCentered3DDevice stencil routine could be optimized with careful
use of shared memory, the overall code speedup could be no more than 8.69%,
and would likely be much smaller. Because texture cache achieves reasonable
performance with almost no extra code complexity, we use it extensively.

We are also interested in understanding the suitability of the GT200 for
double precision calculations. In terms of theoretical peak performance, GT200
has 12 times more throughput in single precision (936 GFLOPS) than double
precision (78 GFLOPS). This is due to a smaller number of double precision
units (only 1 per SM, rather than 8 per SM), as well as a lower issue rate [19].
However, differences in theoretical peak performance do not tell the whole story,
and we are interested in actual numbers for a complete application.

To compare the relative performance of using double precision versus single
precision on GT200, we ran a lock exchange problem as a simple benchmark.
We use a unit cube box with no-slip boundaries on all sides, and set the initial
conditions to u = 0 and T = 2 tanhx, with κ = 1 and ν = 1. In order to make
a fair comparison, we chose a convergence tolerance of 10−4 for the multigrid
pressure solver, since this is achievable with single precision arithmetic. We
ran several time steps using both single precision (fp32) and double precision
(fp64) versions of the code, and calculated the average seconds per time step,
as reported in Table IV. Across the different resolutions, the double precision
version is only 46% to 66% slower than the single precision version, rather than
12 times slower.

CONCLUSIONS

Our results demonstrate that GPU-based codes can be powerful tools for
real scientific applications. We have demonstrated second order convergence in
double precision on buoyancy-driven turbulence problems using a GPU. Using
a single workstation that is equipped with a GPU, our code can integrate a



non-trivial flow at moderate resolutions up to 8 times faster than an 8-core
CPU. It is interesting to note that the speedup we see, about a factor if 8, is
similar to the speedups observed by Bell and Garland for sparse matrix-vector
multiplication [1].

We posit that this speedup is largely a result of the high bandwidth from
the GPU processors to the GPU memory. The GPU-to-device memory band-
width is approximately an order of magnitude higher than CPU-to-host memory
bandwidth. For large data sets, CPU caches do not reduce latencies because the
working set is too large to fit in even L3 cache. Because the numerical meth-
ods we use have fairly low arithmetic intensity, performance is largely limited
by bandwidth between processors and memory, which explains the performance
results we observe.

The difference between double precision and single precision tells a similar
story. Because we are limited by memory bandwidth, the floating point units
are not saturated, especially in single precision. Therefore, the performance
difference is largely explained by the fact that double precision requires twice as
much memory. This indicates that for bandwidth-limited applications, GT200
can be expected to perform well on double precision problems, despite the large
disparity in peak theoretical throughput of the floating point units.

Taking advantage of increased memory bandwidth and processing width re-
quires careful implementation to run at peak memory efficiency, and to avoid
serial bottlenecks which will come to dominate running time. An “accelerator”
design does not remove serial bottlenecks, and does not allow changes to data
layout which are necessary for taking advantage of the GPU memory system.
For these reasons, it would be difficult to obtain such high performance numbers
if we merely ported the bottlenecks of the Fortran code to CUDA. Rather, we
have demonstrated that a ground-up rewrite is possible, and leads to a design
that can achieve very high performance.

We intend to extend our work in several ways. First, we will implement
higher-order methods in both space and time. Second, we are interested in
numerical ocean and atmospheric models such as [23] that use logically regular
grids, but are geometrically irregular. Third, we will explore multiple GPU
configurations such as [25]. A single motherboard may have several PCIE buses,
each of which can connect to one or more GPUs. In addition to improving
performance for large computing clusters, this has the potential to dramatically
increase the resolution that people without access to clusters can achieve.
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