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Abstract

We describe an interactive system featuring fluid-driven animation
that responds to moving objects. Our system includes a GPU-
accelerated Eulerian fluid solver that is suited for real-time use be-
cause it is unconditionally stable, takes constant calculation time
per frame, and provides good visual fidelity. We dynamically trans-
late the fluid simulation domain to track a user-controlled object.
The fluid motion is visualized via its effects on particles which re-
spond to the calculated fluid velocity field, but which are not con-
strained to stay within the bounds of the simulation domain. As
particles leave the simulation domain, they seamlessly transition to
purely particle-based motion, obscuring the point at which the fluid
simulation ends. We additionally describe a hardware-accelerated
volume rendering system that treats the particles as participating
media and can render effects such as smoke, dust, or mist. Taken
together, these components can be used to add fluid-driven effects
to an interactive system without enforcing constraints on user mo-
tion, and without visual artifacts resulting from the finite extents of
Eulerian fluid simulation methods.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;

Keywords: GPU computing, fluid simulation, particle simulation

1 Introduction

Within the field of computer graphics, a variety of successful algo-
rithms have been developed for high quality simulation of fluid phe-
nomena. These methods have been used with great effect in visual
effects and for other off-line applications. While many methods
have been demonstrated to run interactively in certain situations,
they have not been used in widely deployed interactive applications
such as video games. However, two recent developments have the
potential to alter the applicability of interactive fluid dynamics: the
rise of highly programmable high-throughput consumer GPUs, and
the development of high quality, efficient, and unconditionally sta-
ble methods for evolving 3D fluid systems in time.

This paper presents an approach that exploits these recent algorith-
mic and architectural advances in order to enhance interactive ap-
plications with fluid-driven effects. Our contribution is not simply a
collection of algorithms from the existing literature, but a complete
system-level view of the various issues involved in making fluid
simulation practical and visually impressive on modern hardware.
In particular, we develop an algorithmic framework that will allow
for increasing visual fidelity over the next several hardware gener-
ations as the throughput of consumer parallel processors increases.

Many existing methods will not hold up under the extreme per-
formance and robustness requirements of interactive systems like
games. For example, while preconditioned conjugate gradients is
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a good choice for many applications, multigrid methods are in-
herently more parallel. Consequently, they perform very well on
modern parallel platforms, allowing for medium size problems to
be solved at interactive rates on current consumer hardware. As
another example, many popular numerical methods are formally
stable, but actually decay to stable white noise under certain condi-
tions. Care must be taken to avoid all such instances of instability,
while maintaining realistic response to user inputs. The system we
present has been shown to be extremely robust, capable of running
for several hours under constant use without any noticeable insta-
bilities.

In addition to high visual quality and stability, simulation algo-
rithms used in interactive applications must have predictable and
constant computation time and robustness to all possible user in-
puts. For deployment in popular applications such as games or on-
line virtual worlds, ease of integration with existing software archi-
tectures and scalability across a range of consumer hardware plat-
forms are required. Even more important than these practical con-
siderations is the aesthetic desire to get beyond the “fluid-in-a-box”
look typically associated with performing complex fluid calcula-
tions inside a fixed rectilinear domain, where the fluid effects stop
at the edge of the domain.

Particle-based methods like Smoothed Particle Hydrodynamics
(SPH) are attractive because they do not suffer from the limitation
to be inside a box. However, exactly enforcing incompressibility is
important for accurate production of turbulence, and SPH methods
have a hard time enforcing incompressibility efficiently. They also
can have difficulty allocating computational elements throughout
space efficiently. For these reasons, they have not been demon-
strated to be effective for calculating single phase flows such as
air around a car. Vortex-based Lagrangian methods enforce incom-
pressibility easily and can produce turbulent effects. But they are
difficult to implement in 3D, especially for the types of complex
dynamic boundary conditions that we are interested in.

Eulerian methods can be made interactive for complex flows [Crane
et al. 2007] and can efficiently generate turbulent effects. However,
they typically are confined to a finite rectilinear domain and there-
fore are hard to use in large environments with unconstrained fluid
motion. Grid reshaping and adaptive resolution techniques exist for
Eulerian methods, but these techniques are slower than regular grid
methods due to their use of sparse data structures, and to date have
not been demonstrated to run at interactive rates.

We demonstrate a method that combines the high fidelity and high
performance of modern Eulerian methods with the flexibility and
controllability of particle systems. By moving all data-intensive
computation onto the data-parallel processor, the GPU, we achieve
results that will scale nearly linearly with the number of GPU pro-
cessing cores. As demonstrated in this paper, current high-end
GPU solutions are capable of producing high quality fluid motion at
around 25 frames per second. Since GPU core counts are increasing
roughly with Moore’s Law (doubling every hardware generation),
and the performance of our system will scale linearly with floating
point throughput, our approach will become increasingly practical
due to hardware trends. While our system could be dropped into
current games at low resolution, because we are riding an expo-
nential performance curve, these methods will be practical on mid-
range consumer hardware at high quality in a few years.



The major contributions of this paper are:

• a collection of techniques for decoupling grid-based fluid cal-
culations from a grid-free particle simulation,

• a highly robust Eulerian fluid simulation algorithm designed
to run efficiently on parallel GPU architectures, and

• an optimized particle engine suitable for parallel architec-
tures.

We begin with a review of related work before explaining the algo-
rithms used in our system and their implementations.

2 Related Work

Since Stam’s Stable Fluids paper [Stam 1999], there have been sev-
eral real-time applications for 3D fluid solvers, including follow-up
work by Stam himself [Stam 2003]. Real-time simulation tech-
niques based on a variety of other methods have been developed,
including particle-based hydrodynamics [Muller et al. 2003], Lat-
tice Boltzman models [Zhao et al. 2007], wave particles [Yuksel
et al. 2007], model reduction [Wicke et al. 2009], and pseudo-
compressible schemes [West 2007].

We make the simplifying assumption that the fluid velocity field
can be split into near-field region which requires simulation, and a
far-field region which can be handled via boundary conditions. Sep-
arations of this type are used in a number of scientific applications,
for example to track local atmospheric features such as hurricanes
or tornadoes [Klemp and Wilhelmson 1978].

A number of authors have described GPU implementations of in-
compressible inviscid Navier-Stokes or other fluid models At first,
implementing a numerical algorithm on a GPU required mapping
different stages of the algorithm to graphics operations, and using
a graphics API as the programming model [Goodnight et al. 2003;
Bolz et al. 2003; Crane et al. 2007]. The fire simulation method
presented in [Horvath and Geiger 2009] achieves impressive perfor-
mance and quality by using an OpenGL-based fluid solver. How-
ever, it is designed to work from only a single camera view and
therefore would not be appropriate for most interactive 3D applica-
tions.

More recent APIs such as NVIDIA’s CUDA allow for direct control
over the GPU hardware. This had led to a large number of GPU-
based fluid dynamics implementations, primarily in the engineering
and scientific computing fields [Phillips et al. 2009]. This body of
literature is growing rapidly, and we only cite one representative
article.

We use particles to visualize our fluid simulations. Particle sys-
tems have been implemented on GPUs for interactive applica-
tions [Drone 2007; Kipfer et al. 2004] There are hundreds of im-
plementations of particle systems for interactive applications and
cinematic visual effects systems, but most implementation details
are unpublished.

Volume rendering is often paired with fluid simulation as a means
to visualize fluid motion or visualize scalar field quantities because
it aids in understanding complex 3D motion. Stam implemented
a simple scattering model for real-time visualization and used ray
casting to calculate self-shadowing [Stam 1999]. This work was
expanded into a more realistic model [Fedkiw et al. 2001]. Deep
shadow maps [Lokovic and Veach 2000] are often used to precom-
pute attenuation along light rays for volume rendering. While we
traverse the volumetric elements in an order that allows for only a
single slice of the shadow map to be stored at a time, several au-
thors have demonstrated how to map similar algorithms to graphics

hardware by calculating and storing the entire shadow map [Kim
and Neumann 2001; Hadwiger et al. 2006].

3 System Overview

The user freely moves an object, in our case a vehicle, through a
virtual world. Our goal is to create the visual illusion that the car is
moving through an infinite fluid, and to simulate the effects arising
from the car’s displacement of air. Rather than fill the entire world
with an enormous simulation grid, we only perform a simulation
in a small region around the object of interest. Other dynamic ob-
jects that are not under direct user control, such as dust particles
or debris, are influenced by the simulated fluid when they are near
the object of interest, and are animated via simpler methods when
farther away. Figure 1 shows screen captures from our interactive
car simulator, with the extent of the fluid simulation domain visu-
alized in panels (a) and (b). As can be seen in panel (c) and on the
accompanying video, visible artifacts due to the finite extents of the
simulation domain are minimal and typically not distracting.

Figure 2 shows a schematic overview of our system. The system
consists of three components: a GPU-optimized Eulerian incom-
pressible inviscid Navier-Stokes solver, a GPU-optimized particle
engine, and a hardware volume rendering system. The Navier-
Stokes solver, described in Section 5, uses numerical methods that
have guaranteed stability and constant per-frame computation time,
but are accurate enough to capture visually important flow features.
By exploiting Galilean invariance, we allow the fluid domain to
translate so as to follow the moving car. The particle system, de-
scribed in Section 6, is driven by the calculated fluid velocity field
for particles inside the fluid domain, and follows other rules such
as Newtonian dynamics for particles outside the fluid domain. Be-
cause the transition from inside to outside is seamless, the actual
extents of the fluid domain are visually obscured. When the parti-
cles are used to simulate participating media such as dust or smoke,
we render the particles via a volume rendering system, described in
Section 7.

4 GPU Architecture

Our solver is implemented using the CUDA 2.0 parallel program-
ming platform from NVIDIA [NVIDIA Corporation 2008] and is
designed to run on GT200-series NVIDIA GPUs [Lindholm et al.
2008]. The GT200 architecture consists of an array of 240 stream
processors, divided into 30 multiprocessors with 8 cores each.
GT200 is optimized for overall computational throughput rather
than the latency experienced by any particular thread. Up to 30,720
threads may be in flight simultaneously, with the large amount of
multithreading used to hide latency for accessing off-chip RAM.
CUDA programs are called kernels, and are executed in Single-
Program, Multiple-Data (SPMD) mode, with all threads running
the same program simultaneously.

Most of the routines in our fluid solver are memory bandwidth-
limited. Therefore our optimizations focus on organizing memory
accesses to use available bandwidth as efficiently as possible. On
GT200, threads are grouped into batches of 32 called warps that
execute in lockstep SIMD fashion. A warp is made up of two half-
warps, threads 0-15 and threads 16-31. If threads in the same half-
warp read from the same 64-byte cache line in the same cycle, these
reads are batched into a single vector load via a process known as
memory coalescing. Consequently, uncoalesced loads and stores
waste 15/16ths of off-chip bandwidth.

GT200 also has a small read-only cache called the texture cache,
and a small managed cache called shared memory. With thousand
of simultaneous active threads, data will only live in the cache for



Figure 1: Screen captures from our interactive car simulator. The red box indicates the extent of the Eulerian simulation grid (resolution is
128× 32× 132).
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Figure 2: Schematic overview.

a few cycles before being ejected. On a cache miss, reads via the
texture cache are higher latency than uncached reads. Therefore it
is only worthwhile to enable the texture cache if it can reduce off-
chip bandwidth by enough to offset this increased latency. Because
on-chip caches are beneficial only if threads scheduled to the same
processor access the same cache lines at roughly the same time,
optimizing for coalescing and texture cache performance both re-
quire arranging work so that threads in the same warp will access
sequential memory locations at the same time (coalescing alone) or
at almost the same time (texture cache).

5 Incompressible Navier-Stokes Solver

5.1 Numerical Method

The single-phase incompressible inviscid Navier-Stokes equations,
suitable for approximating air moving at low speeds, are

∂u

∂t
= −(u · ∇)u−∇p (1)

∇ · u = 0 (2)

where u = (u, v, w) is the fluid velocity field and p is the fluid
pressure field. An overview of our numerical method for solving
these equations is given in Algorithm 1.

We solve Equations 1-2 over a regular staggered grid using the sta-
ble second-order MacCormack scheme proposed in [Selle et al.
2008] because it preserves detail well, is stable for any time step
size, is trivially parallelizable, and is efficient on a GPU. That paper
mentions two limiters for enforce unconditional stability. We found
that the limiter of reverting to first-order in the case of overshoot

Figure 3: The stable MacCormack method (right) produces visu-
ally superior results to first order semi-Lagrangian (left), even with-
out restricting the time step based on a CFL condition.

to be quite stable in practice, while the limiter of clamping extrema
often leads to bounded but unstable oscillations. We take a single
time step per interactive frame, regardless of the CFL time-step re-
striction. As demonstrated in [Selle et al. 2008], the MacCormack
method is only guaranteed to be second-order accurate when the
time step is restricted based on the CFL condition. Because we
drop this restriction, our solver will not necessarily be second-order
accurate in space. However, in practice the MacCormack method
yields visually superior results to first-order semi-Lagrangian. Fig-
ure 3 shows images from an identical simulation computed with
both advection schemes. Please see the video for an animated com-
parison.

We use a multigrid pressure solver, treating internal solid bound-
ary conditions via the Iterated Orthogonal Projection (IOP) frame-
work [Molemaker et al. 2008]. We believe multigrid is a superior
method for interactive GPU implementation because it converges
extremely quickly, with a convergence rate independent of grid size.
Furthermore, the individual steps of multigrid are all inherently data
parallel, resulting in an efficient mapping onto a GPU [Cohen and
Molemaker 2009]. FFT-based solvers, while fast and parallel, are

Algorithm 1 Fluid Simulation Algorithm

1: u← SelfAdvection (u) (using MacCormack scheme)
2: for i = 1 to iop do
3: Enforce solid boundary conditions on u

4: Apply impulses directly to u

5: p← 0
6: Solve∇2p = ∇ · u using multigrid method
7: u← u−∇p
8: end for



only suitable for periodic boundary conditions. Long and Rein-
hard have demonstrated a fast pressure solver based on sine and
cosine transforms that can enforce full-slip wall boundaries [Long
and Reinhard 2009]. Such a solver may be suitable for use in our
system, although we are not aware of GPU implementations of gen-
eral sine and cosine transforms.

In IOP, the boundary conditions are enforced, then divergence-free
projection is applied, and the process repeats until the boundary
conditions are met to the desired level of accuracy. As shown
in [Molemaker et al. 2008], this is guaranteed to converge to the
correct solution, although the rate of convergence may be poor. IOP
is a particularly attractive method for handling boundary conditions
because it allows for arbitrary impulses to be applied to u prior
to the projection step. We use these impulses, for example, to ap-
ply jets behind each wheel in the moving car. Because we apply
the divergence-free projection after applying impulses in each iter-
ation, it does not matter if the impulses are incompatible with the
condition that∇·u = 0. This also allows for very clean decoupling
between fluid impulses, boundary conditions, and pressure solver in
the source code. In our examples, we have found a single IOP it-
eration is enough – additional iterations do not noticeably improve
visual quality.

Our multigrid solver uses the over-relaxation scheme described
in [Yavneh 1996] and always performs a fixed number of multigrid
cycles without checking for convergence: 1 full multigrid (FMG)
cycle followed by 2 v-cycles with 2 pre and post-sweeps. This en-
forces a constant simulation time and still converges very well over
a range of resolutions, as shown in Table 1.

A subtle issue can arise when using a fixed number of multigrid
iterations rather than checking for convergence. To improve the er-
ror obtained with an iterative solver such as multigrid, it is common
practice to use the pressure solution from the previous time step as
a starting point for the iterative solver in the current time step. If we
performed multigrid cycles until convergence, this would not be a
problem. However, without a guarantee of convergence, which we
do not have due to performing a fixed number of iterations, reusing
the previous pressure can lead to a mode in the pressure error that is
not damped sufficiently by our 1-FMG+2-vcycle scheme. We have
observed that after running the simulation for several minutes, the
error in pressure may eventually grow to the same magnitude as the
velocity field itself, resulting in a velocity field dominated by ran-
dom noise. Simply initializing p to zero before beginning multigrid
iterations prevents this from happening.

5.2 Tracking a Region of Interest

Our system is designed to be used in an interactive setting, where
the user controls a dynamic object such as a vehicle. For physical
correctness, we would need to create simulation grid large enough
to encompass all of the volume that the vehicle may travel through,
which is impractical even for small environments. To make this
problem tractable, we make the following simplifying assumption:
there is some region of interest local to vehicle within which the
fluid motion will be influenced by the vehicle. Outside this region-
of-interest, we assume u = 0. While more sophisticated models
could be used, we have found this assumption to work remarkably
well.

We dynamically translate the simulation grid to be centered on the
vehicle. At the edge of the simulation domain, we enforce the far-
field boundary condition. To apply translational motion to the sim-
ulation domain’s coordinate frame, we can exploit Galilean invari-
ance to calculate the simulation on a fixed simulation grid using
a method similar to [Shah et al. 2004]. Shah et al. exploit the
fact that expressing the incompressible Navier-Stokes equations in

(a) (b) (c)

Figure 4: In incompressible flows, Galilean invariance says that
translating an object with velocity t (a) is equivalent to forcing a
flow past an object with velocity −t in a coordinate frame trans-
lating with velocity t (b). With full-slip boundary conditions, this
is equivalent to specifying the flux across domain boundaries (c).
Arrows represent either object motion or fluid flow relative to the
coordinate frame.

a translating coordinate frame induces an apparent uniform flow in
the direction opposite to the motion of the domain. Figure 4 depicts
this relationship graphically.

We will use a subscript world to denote vector quantities relative
to a global fixed reference frame, and the subscript local to denote
vector quantities relative to the moving reference frame that tracks
a region of interest. In reference frame translating with velocity t,
fluid velocities are related to world-space velocities via the expres-
sion

uworld = ulocal + t. (3)

We wish to enforce the boundary condition uworld = 0 at the edge
of the simulation domain. This is equivalent to setting ulocal = −t.
For full-slip boundary conditions, this can be achieved by setting
the Dirichlet boundary conditions for the fluxes over the external
faces as ulocal = −tx on the±x-faces of the domain, vlocal = −ty

on the ±y-faces, wlocal = −tz on the ±z-faces. This is depicted
in Figure 4(c). We use these boundary conditions to induce uni-
form flow, rather than the explicit method employed in [Shah et al.
2004], because it allows us to skip the explicit update step. Note
that inducing uniform flow via boundary conditions will only work
with an accurate pressure solver, since the changes to the domain
boundaries must propagate instantaneously throughout the entire
velocity field due to the Poisson equation’s elliptic nature. If the
pressure solver does not fully converge, the induced flow will be
(incorrectly) non-uniform. The choice to handle domain translation
this way therefore goes hand-in-hand with the choice of pressure
solver.

5.3 Parallel Fluid Solver Optimizations

Overall, the incompressible Navier-Stokes solver spends about 35%
of its time calculating advection (line 1 in Algorithm 1), and 65%
enforcing incompressibility (lines 2-8). Many kernels in our system
compute finite difference stencils with small support, for example
computing the divergence of u. For these kernels threads will ac-
cess nearby memory locations within a few cycles. Therefore read-
ing data via the texture cache is a net win, improving performance
by a factor of 1.1× to 2.0×. In our application, the extra logic re-
quired to utilize shared memory frequently makes it more expensive
than using the texture cache, even though it may result in greater
bandwidth savings.

The memory layout of a 3D computational grid is depicted in Fig-
ure 5. Grids are represented as k-major linear arrays, where the
index calculations are performed explicitly by the kernels. For ex-
ample, to access an element i, j, k from grid u, the kernel calculates

address = ubase + i ∗ istride + j ∗ jstride + k

where ubase is the pointer to the grid location (0, 0, 0), istride is
the offset between adjacent cells in the i direction, and jstride is



Grid Size Mean Time Std Dev Time Time / N Error Reduction

64× 16× 64 14.8 ms 0.2 ms 22.6 × 10−5 ms 8, 567×
128× 32× 128 26.4 ms 0.2 ms 5.0× 10−5 ms 11, 079×
256× 64× 256 84.6 ms 0.5 ms 2.0× 10−5 ms 11, 856×

Table 1: Computation time and error reduction for the incompressible Navier-Stokes solver over several seconds of a simulation at different
resolutions. Timings recorded on a dual NVIDIA GTX285 GPU system, although the simulation runs on only one GPU. The fourth column
shows the simulation time per computational grid cell, which decreases as the amount of available parallelism increases. The error reduction
in the right-most column is the ratio of the maximum divergence measured before and after the multigrid pressure solver runs, indicating a
typical L∞ error reduction of 5 orders of magnitude.

. . .

- 1 0 1 2 3 4 3 0 3 1 3 2

0 1 2 3 4 3 1

W a r p  0 W a r p  1

. . . . . . X

Y

Z

. . .

P a d d e d  t o  m u l t i p l e  o f  6 4  b y t e s

. . .

P a d d i n g

6 4  b y t e

b o u n d a r y

3 0 0

Figure 5: Memory layout of a computational grid, showing how
CUDA threads and warps are mapped to grid elements.

the offset between adjacent cells in the j direction. We allocate
a ring of ghost cells around the exterior of the grids to facilitate
handling of boundary conditions. To perform a calculation over the
entire grid, we assign one CUDA thread per grid cell, with threads
in the same warp assigned to sequential grid cells in k. We pad the
arrays so that for every i, j column, the cell at k = 0 will start at
a 64-byte cache line boundary, reducing the number of coalesced
loads required to service all threads in a warp for regular memory
accesses. Proper alignment improves performance of most kernels
by over 2×.

Because we use a staggered grid, the u, v, w, and p grids will have
different dimensions. However, we pad them so that istride and
jstride will be the same for all grids. This allows a thread to calcu-
late the offsets from the base pointer once and reuse it for multiple
grids. This optimization reduces instruction count by 10-15% for
kernels which access multiple grids.

CUDA does not support writing directly to 3D texture objects be-
cause hardware 3D textures are laid out in memory in an opaque
way. However, it is possible to write directly to 1D textures by be-
cause they are laid out as linear arrays (in CUDA you read from a
1D texture via a texture fetch call, but you can also directly mod-
ify the underlying bytes via a C pointer). Therefore, we do not use
texture filtering hardware to implement the trilinear interpolation
required in the point sampling routine for the advection scheme.
Rather, we read the 8 values at the corners of the grid cell contain-
ing the sample location from a 1D texture, performing the index
calculation and interpolation in software. Reading values via 1D
textures rather than directly from memory improves performance
by about 2× because the texture cache can exploit coherency in
these accesses. We tried copying our linear data structure into a

Algorithm 2 Particle System Update

1: for all i do
2: Velinside ← interpolated world-space velocity at Pos[i]
3: Veloutside ← Vel[i] + ∆t · Force[i]
4: w← blend weight at Pos[i]
5: Vel[i]← w · Velinside + (1− w) · Veloutside

6: Pos[i]← Pos[i] + ∆t · Vel[i]
7: end for

hardware 3D texture, and then using the texture filtering hardware
to perform trilinear interpolation, but the overhead of the copy made
this slower overall.

6 Particle Engine

6.1 Particle Dynamics

Rather than render a density field that is driven by the fluid simu-
lation via a grid-based technique such as ray marching, we render
particles which have been advected through the fluid velocity field.
Particles allow the rendering to be decoupled from the simulation,
which enables high quality rendering even while using lower res-
olution fluid simulation grids. This decoupling means that parti-
cles are not constrained to lie inside the simulation grid, which is
an important aesthetic criteria. It also enables a particle system to
be driven by multiple fluid simulation grids, as described in Sec-
tion 6.2.

Although we choose the far-field approximation uworld = 0 for the
fluid simulation, enforcing this rule on the particle system would
freeze particles as soon as they left the simulation domain. How-
ever, there is no requirement that the particle system obey the same
rules as the fluid simulation. We can choose any plausible behavior
for the particles outside the simulated region, as long as we transi-
tion smoothly to following the fluid motion while inside the simu-
lated region.

Using the scheme in Algorithm 2, particles move under the influ-
ence of the fluid velocity field as massless marker particles when
inside the region of interest, and follow simple Newtonian dynam-
ics with momentum, gravity, and drag when outside the region of
interest. Both the interpolated velocity and blend weight depend on
the position of each particle relative to the simulation domain. For
a particle at position Pos, the blend weight in the x dimension is
calculated as

wx = clamp

(

0, 1, min

(

Posx −Minx

β
,

Maxx − Posx

β

))

.

(4)
where Minx and Maxx are the extents of the (axis-aligned) simula-
tion domain in world space, and the parameter β controls the width
of the blend region. Because the simulations grids lie coincident



Figure 6: Two cars interacting. The red and orange boxes indicates
the extents of the simulation grids.

with the ground plane, wy does not fall off to zero in the negative y
direction. The final weight is then min(wx, wy , wz). We typically
choose β to be the width of a few grid cells, but the simulation re-
sults are fairly insensitive to varying this value. Furthermore, as
long as the transition from inside to outside velocities is smooth, it
does not appear to matter much how u behaves towards the bound-
aries of the simulation domain. This allows us to use trivial far-field
boundary conditions when computing u.

6.2 Multiple Fluid Simulations

A particle can move under the influence of any number of Eulerian
fluid simulations. Say we have two uncoupled simulations, uA and
u

B , which are calculated in different reference frames that have
different positions and velocities. We replace w in Algorithm 2,
Line 4, with

w = max(wA, wB)

where wA and wB are the weights of the particle position relative
to the two simulation grids given by Equation 4. The interpolated
velocity becomes a weighted blend

Velinside =
wAVelAinside + wBVelBinside

wA + wB
.

Note that when the particle overlaps only one of the simulations,
this is equivalent to the single-simulation case. Larger numbers of
simulation grids are handled similarly.

This simple blending rule has the benefit of being efficient and sta-
ble, but it is not physically motivated and in many cases it could
produce incorrect results. Other options include choosing the ve-
locity vector with the highest magnitude or some other non-linear
blending rule. We have experimented with a variety of such rules,
and overall it is hard to say which method is superior – they all
break down in certain cases. However, a simple linear combina-
tion works remarkably well and serves to obscure the boundaries
of the different simulation domains, so we have chosen it for our
implementation.

A consequence of visualizing multiple simulations via their effects
on particles is that we do not require the fluid simulations be cou-
pled. Rather, as the data flow in Figure 2 shows, the simulations all

respond to the same set of (world space) boundary conditions re-
sulting from the moving car via the IOP method. As demonstrated
in Figure 6 and on the accompanying video, multiple moving ob-
jects can all appear to interact with particle systems, even without
any coupling of the fluid dynamics calculations.

6.3 Parallel Particle System Optimizations

Our particle system is optimized for GPU implementation so that all
particles may be processed in parallel, with no global communica-
tion. Particle life cycles are controlled by 2 attributes: Age, elapsed
time since a particle was born, and Lifespan, age at which a particle
will die. To mark a particle as dead, we use lazy in-place deletion
by setting Lifespan to zero. In the rendering stage described below,
we sort dead particles to the end of the list by considering dead par-
ticles to be infinitely far away, and then do not render them at all.
This allows us to avoid resizing any buffers when particles are born
or die, which would be a serialization point.

We process each particle on a separate CUDA thread, so there is
a correspondence between particle i and thread i. “New” particles
can be created by reanimating dead particles, which involves set-
ting their Lifespan to something non-zero, setting Age to zero, and
initializing their dynamic state (such as position and velocity) based
on some initialization rules. We could keep track of a total number
of particles to reanimate at each time step and increment a global
counter for every particle that is reanimated until the desired num-
ber is reached. However, this approach requires global information
to be updated by all threads as they process their particles. A more
parallel approach is to set a probability that dead particles will be
reanimated in a given frame. When a dead particle is processed
by a thread, we calculate pseudo-random number between zero and
one, and if that number is less than the per-frame probability, the
particle will be reanimated. Since particles are now independent,
the particle simulation loop can be performed in parallel.

As explained in Section 4, threads in CUDA are grouped into
batches of 32 called warps which all execute in lockstep SIMD fash-
ion. If threads within the same warp take different paths through
conditional code, the performance will drop by a factor equal to the
number of divergence code paths taken by threads in that warp. To
reduce intra-warp execution divergence, we ensure that Lifespan
and Age are the same for all particles in processed by threads in
the same warp. Furthermore, the decision as to whether to reani-
mate a particle is made at the per-warp granularity, rather than for
each particle individually. This optimization decreases the particle
simulation time by an average of 15% in our test cases. Enforcing
that particles are born and die at warp-level granularity does not re-
sult in visible artifacts because we use 524, 288 particles. With a
128 × 32 × 128 simulation grid, the particle simulation takes be-
tween 1.1 ms and 4 ms, depending on how many particles are alive
at any given time.

7 Volume Rendering

Data stored in CUDA arrays can be bound to OpenGL vertex buffer
objects for rendering, which allows us to keep all particle data on
the GPU without any transfers across the PCI-express bus. To sup-
port a dual GPU configuration, we can run the fluid and particle
simulations on one GPU, and the rendering on a separate GPU. In
this case, we must transfer the particle data from the first GPU to
the CPU memory, then copy this data to the second GPU as a ver-
tex buffer object. Because these transfers can run asynchronously
with CUDA kernel execution or OpenGL rendering calls, we sched-
ule the transfers to overlap computation and rendering via double
buffering. We achieve roughly 1.6× scaling across two GPUs.



2 GPUs (1 GPU)

64 × 16 × 64 128 × 32 × 128 256 × 64 × 256

1 car 26 (20) 25 (16) 11 (8)
2 cars 26 (15) 16 (11) 5 (NA)
3 cars 19 (12) 11 (8) NA (NA)

Table 2: Frame/second achieved for a variety of configurations
of our car simulator. All timings were recorded on a system with
two NVIDIA GTX285 GPUs and an Intel Core2Duo running at
3.17GHz. Times in parenthesis are run with only one GPU enabled.
Some of the highest resolution simulations did not run due to lack
of memory. All simulations use 524, 288 particles.

If no shadows are desired, particles can be sorted back-to-front us-
ing a fast GPU radix sort [Satish et al. 2009] then rendered in order
as semi-transparent sprites. Rather than sort the particle data di-
rectly, we sort an array of indices, which we then treat as an index
buffer in OpenGL. Motion blur is handled with a geometry shader
that generates a small quadrilateral oriented along the screen-space
projection of each particle’s velocity vector.

The alpha transparency for a particle is defined in a pixel shader via
the function

α(x, y) = clip(noise(x, y)− |r|+ offset, cutoff ).

The function clip(a, cutoff ) is defined as a if a > cutoff , other-
wise 0. The cutoff value is typically set to something small but
just above zero, such as 0.1, in order to give the particles a crisper
edge. The texture map noise(x, y) stores several octaves of Perlin
noise that have been precomputed, and subtracting the normalized
distance from the center of the sprite |r| causes it to fall off radially.
The value offset is animated from zero to -1 as the particle’s Age
approaches Lifespan via the function

offset = −

(

Age

Lifespan

)

3

.

Consequently, α will erode away smoothly from the outside inward
as the particle ages, but in an irregular way. Particle transparency
functions such as this are used in cinematic visual effects appli-
cations, but we are unaware of previous publications that describe
these approaches in detail.

To support shadows, we use the half-angle algorithm introduced
by [Ikits et al. 2004] and described in detail by [Green 2009]. This
algorithm only supports a single light source, but requires less tem-
porary storage and achieves much higher performance than direct
volume rendering techniques such as ray marching. Because of
the diffuse nature of volumetric shadows, the shadow buffer can
be much lower resolution than the display. In the demo we use a
shadow buffer 512 or 1024 pixels square to cover the whole scene.

8 Application Details

We have implemented this system in the context of a car simulator,
shown in Figures 1 and 6. The goal is to create the appearance of
a turbulent wake around a moving car as it kicks up dust or debris.
Table 2 shows the total system speeds for different configurations
of the application.

Motion of a point on a rigid object can be decomposed as v =
v̄ + ω × r where v̄ is the velocity of the center of mass, ω is the
angular velocity, and r is the vector from the point to the center
of mass. We position the center of a simulation grid at the center
of mass of each car, with one grid per car. In order to translate a

(a) Leaf simulation. (b) The smoke responds interac-

tively to the solid sphere.

Figure 7: Example applications.

Resolution Present Work Crane 2007 Long 2009

323 182 233 96.3

643 86 65 14.3

1283 22 10 1.6

Table 3: Frames per second of the current algorithm compared
against previous work, ignoring rendering times. The results for
the present work and Crane et al. were both obtained running on
an NVIDIA GTX285. The results for Long and Reinhard are as
reported in their paper, and were obtained on a quad-core CPU.

domain so that it stays centered on the car’s center of mass, we set
t = v. By Equation 3, motion of a point on the car relative to
the simulation’s coordinate frame becomes vlocal = ω × r. We
therefore enforce interior boundary conditions ulocal = ω × r in
the grid cells which overlap the car’s geometry via IOP. We also
apply impulses to create jets of fluid behind the four wheels along
a vector opposite the car’s velocity.

To simulate tire smoke, we generate particles in regions under the 4
wheels and under the entire car body. The birth probability depends
on acceleration and velocity. The Lifespan attributes are set to a
few seconds, and are randomized slightly at per-warp granularity.
Since they do not affect flow-of-control, gravity and drag forces are
randomized per-particle to enhance the visual appearance.

We have implemented two additional applications to demonstrate
the generality of our system. In the first application, shown in
Figure 7(a), we have implemented a simple lift model for blow-
ing around leaves. Leaves are attached to particles that are initially
scattered over the entire ground plane and have infinite Lifespan
values. Leaves are transported by the fluid when the fluid is mov-
ing fast enough, otherwise they fall under the influence of gravity.
Outside the simulation domain, leaves always fall. In the second
application, shown in Figure 7(b), we have added a simple Boussi-
nesq thermodynamics model, which requires additionally advect-
ing a temperature field and adding a thermal buoyancy force to the
right-hand side of Equation 1.

Table 3 compares performance of the solver portion only
against [Crane et al. 2007] and [Long and Reinhard 2009]. The
results for Crane et al. were obtained using 60 Jacobi iterations,
which is not enough to produce a divergence-free vector field, and
therefore has poor visual quality at high resolutions. Our solver
shows better performance scaling to high resolutions, while main-
taining high visual quality across all grid sizes.

9 Conclusion and Future Work

We have presented a system for creating interactive fluid-driven ef-
fects that does not suffer from the “fluid-in-a-box” look common to



other Eulerian methods. Rather than use an enormous simulation
grid, we calculate an incompressible Navier-Stokes solution only
in the vicinity of an object of interest. This exploits the idea that
turbulent fluid effects only occur in the presence of moving objects
– for a largely static environment, we assume the fluid is motion-
less away from moving objects. We have also described an efficient
GPU-based particle simulation and rendering algorithms.

The technology that makes our system possible is programmable
many-core GPU processors. Amdahl’s Law says that the advantage
of parallelism will be limited by serial bottlenecks. Since trans-
fers across the PCI-express bus are a serial bottleneck, we therefore
structure our code to perform as much computation on the GPU as
possible. This leads us to choose algorithms which will perform
well on a GPU, such as the IOP-based pressure solver, particle sys-
tem dynamics that prevent intra-warp divergence, and an entirely
GPU-based volume renderer.

We could improve the visual quality of the Eulerian simulation
in a number of ways, for example by tracking high vorticity re-
gions [Pfaff et al. 2009]. The difficulty of combining vorticity con-
finement and other similar forcing terms is that they are not guaran-
teed to be unconditionally stable, but may inject unbounded kinetic
energy into the flow. One area for future work is to derive uncondi-
tionally stable vortex forcing terms suitable for interactive use.
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