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Abstract

A novel algorithm for solving in parallel a sparse triangular linear sys-
tem on a graphical processing unit is proposed. It implements the solution
of the triangular system in two phases. First, the analysis phase builds
a dependency graph based on the matrix sparsity pattern and groups the
independent rows into levels. Second, the solve phase obtains the full so-
lution by iterating sequentially across the constructed levels. The solution
elements corresponding to each single level are obtained at once in par-
allel. The numerical experiments are also presented and it is shown that
the incomplete-LU and Cholesky preconditioned iterative methods, using
the parallel sparse triangular solve algorithm, can achieve on average more
than 2× speedup on graphical processing units (GPUs) over their CPU
implementation.

1 Introduction

The solution of sparse triangular linear systems is an important building block
of many numerical linear algebra algorithms. It arises in the direct solution of
linear systems and least squares problems [22]. It also arises in splitting based
iterative schemes, such as Gauss-Seidel, and in the preconditioning of iterative
methods using incomplete-LU and Cholesky factorizations [18]. In the former
case the solution is often performed once, while in the latter it is computed
multiple times for a single or multiple right-hand-sides.
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Although the forward and back substitution is an inherently sequential algo-
rithm for dense triangular systems, the dependencies on the previously obtained
elements of the solution do not necessarily exist for the sparse triangular sys-
tems. For example consider a diagonal matrix, where the solution elements
corresponding to all rows are independent and can be computed at once in par-
allel. The realistic sparse triangular matrices often have sparsity patterns that
can also be exploited for parallelism.

The parallel solution of sparse triangular linear systems has been considered
by many authors with two overarching strategies. The first strategy takes ad-
vantage of the lack of dependencies in the forward and back substitution due
to the sparsity of the matrix directly. It often consists of a preprocessing step
where the sparsity pattern is analysed and a solve step that uses the computed
information to exploit available parallelism [2, 8, 13, 14, 17, 19, 23]. The second
strategy expresses the triangular matrix as a product of sparse factors. The dif-
ferent partitioning of the triangular matrix into these factors results in different
numerical algorithms [1, 10, 12, 16]. A related work for parallel solution of dense
and banded triangular linear systems has also been done in [9, 5, 20].

In this paper we focus on the situation where we need to solve the same
linear system multiple times with a single right-hand-side. For example, this
situation arises in the preconditioning of iterative methods using incomplete-LU
and Cholesky factorizations. We pursue the first strategy described above and
split the solution process into two phases. The analysis phase builds the data
dependency graph that groups independent rows into levels based on the matrix
sparsity pattern. The modified topological sort, breadth-first-search and other
graph search algorithms can be used to construct this directed acyclic graph
[4, 6, 7]. The solve phase iterates across the constructed levels one-by-one and
computes all elements of the solution corresponding to the rows at a single level in
parallel. Notice that by construction the rows within each level are independent
of each other, but are dependent on at least one row from the previous level.
The analysis phase needs to be performed only once and is usually significantly
slower than the solve phase, which can be performed multiple times.

The sparse triangular linear system solve is implemented using CUDA paral-
lel programming paradigm [11, 15, 21], which allows us to explore the computa-
tional resources of the graphical processing unit (GPU). This new algorithm, the
well studied sparse matrix-vector multiplication [3, 24] as well as other standard
sparse linear algebra operations are exposed as a set of routines in the CUS-
PARSE library [25]. Also, it is worth mentioning here that the corresponding
dense linear algebra operations are exposed in the CUBLAS library [25].

Although, the parallelism available during the solve phase depends highly
on the sparsity pattern of the triangular matrix at hand. In the numerical

2



experiments section it will be shown that in an iterative scheme the CUSPARSE
library parallel implementation of the sparse triangular solve can outperform the
MKL algorithm [26]. Moreover, it will be shown that the incomplete-LU and
Cholesky preconditioned iterative methods can achieve on average more than 2×
speedup using the CUSPARSE and CUBLAS libraries on the GPU over their
MKL implementation on the CPU.

Since the solution of the lower and upper triangular linear systems is very
similar, we focus only on the former in the next sections, where we describe the
analysis and solve phases of the algorithm as well as its implementation.

2 Analysis and Solve Phases

We are interested in solving the linear system

Lx = f (1)

where L ∈ Rn×n is a nonsingular lower triangular matrix and x, f ∈ Rn are
the solution and right-hand-side vectors, respectively. In further discussion, we
denote the elements of the lower triangular coefficient matrix L = [lij ], with
lij = 0 for i < j.

We can represent the data dependencies in the solution of a lower triangu-
lar linear system as a directed graph, where the nodes represent rows and the
arrows represent the data dependencies between them. This directed graph is
constructed so that there is an arrow from node j to node i if there is an ele-
ment lij 6= 0 present in the matrix. Notice that because the matrix is triangular
there are no circular data dependencies in it, consequently there are no cycles
in the graph. Also, notice that because the matrix is nonsingular lii 6= 0 for
i = 1, . . . , n, in other words, each row contains at least one non-zero element on
the matrix main diagonal.

Let us consider the following linear system as an example

l11
l22

l33
l41 l44
l51 l55

l62 l66
l73 l77

l84 l85 l88
l94 l95 l99





x1
x2
x3
x4
x5
x6
x7
x8
x9


=



f1
f2
f3
f4
f5
f6
f7
f8
f9


(2)
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The directed acyclic graph (DAG) illustrating the data dependencies in the
lower triangular coefficient matrix in (2) is shown in Fig. 1. Notice that even
though the sparsity pattern in (2) might look sequential at first glance, there is
plenty of parallelism to be explored in it.

Figure 1: The data dependency DAG of the lower triangular linear system

In practice we do not need to construct the data dependency DAG because
it is implicit in the matrix. It can be traversed using for example a modified
breadth-first-search (BFS) shown in Alg. 1. Notice that in this algorithm the
node’s children are visited only if they have no data dependencies on the other
nodes. The independent nodes are grouped into levels, which are shown with
dashed lines in Fig. 1. This information is passed to the solve phase, which can
process the nodes belonging to the same level in parallel.

Algorithm 1 Analysis Phase

1: Let n and e be the matrix size and level number, respectively.
2: e← 1
3: repeat . Traverse the Matrix and Find the Levels
4: for i← 1, n do . Find Root Nodes
5: if i has no data dependencies then
6: Add node i to the list of root nodes.
7: end if
8: end for
9: for i ∈ the list of root nodes do . Process Root Nodes

10: Add node i to the list of nodes on level e.
11: Remove the data dependency on i from all other nodes.
12: end for
13: e← e + 1
14: until all nodes have been processed.
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In the solve phase we can explore the parallelism available in each level using
multiple threads, but because the levels must be processed sequentially one-by-
one, we must synchronize all threads across the level boundaries as shown in
Alg. 2.

Algorithm 2 Solve Phase

1: Let k be the number of levels.
2: for e← 1, k do
3: list← the sorted list of rows in level e.
4: for row ∈ list in parallel do . Process a Single Level
5: Compute the element of the solution corresponding to row.
6: end for
7: Synchronize threads. . Synchronize between Levels
8: end for

In the next section we focus on the details of the implementation of the
analysis and solve phases using CUDA parallel programming paradigm.

3 Implementation on the GPU

We assume that the matrix and all the intermediate data structures are stored in
the device (GPU) memory, with the exception of a small control data structure
stored in the host (CPU) memory. Also, we assume that the matrices are stored
in the compressed sparse row (CSR) storage format [18].

For example, the coefficient matrix in (2) is stored as

rowPtr =
(

1 2 3 4 6 8 10 12 15 18
)

colInd =
(

1 2 3 1 4 1 5 2 6 3 7 4 5 8 4 5 9
)

V al =
(
l11 l22 l33 l41 l51 l55 l62 l66 l73 l77 l84 l85 . . . l99

)
The analysis phase generates a set of levels, the sorted list of rows belonging

to every level and a small control data structure that we call chain.
The first two data structures are obtained by traversing the matrix to find

the root nodes, the rows that do not have data dependencies, and grouping them
into levels. In practice to find the root nodes, we do not need to visit all rows at
every iteration as shown in Alg. 1, because we can keep track of a short list of
root candidates and visit only them, in all but the first iteration. This approach
requires us to keep two separate buffers for storing the root nodes. The first
buffer is used for reading the current root nodes, while the second is used for

5



writing the next level root nodes. Notice that in order to avoid copying memory
between these buffers, we can flip-flop the corresponding pointers at the end of
every iteration.

Let us now understand the purpose of the chain data structure, assuming
that we have already obtained a set of levels and the sorted list of rows belonging
to every level. Recall that we can explore the parallelism available in each level
using a single or multiple CUDA thread blocks, but we must synchronize all
threads across the level boundaries.

On one hand, if we are using a single thread block to process all levels, then
we can use syncthreads() to synchronize across levels, but we must assign the
threads in a cyclic fashion between the rows of each level. On the other hand, if
we are using multiple thread blocks, we can assign each thread to a single row,
but we must return to the host (CPU) and then launch a new kernel to process
the following level.

There is a tradeoff between parallelism and light-weight synchronization
above. The former approach is well suited for sparsity patterns with limited
parallelism, while the latter performs well when there are thousands of rows
belonging to a single level. The realistic sparsity patterns however often show
a mix of levels with a few and many rows. For example, the distribution of
rows into levels for the incomplete-LU lower and upper triangular factors of the
matrix atmosmodd from Tab. 2 is shown in Fig. 2.

(a) Lower triangular factor (b) Upper triangular factor

Figure 2: The distribution of rows into levels for atmosmodd matrix

Therefore, we would like to combine these two approaches. It turns out
that in practice the distribution of rows into levels is often such that there
are prolonged groups of levels with a few rows in them. Hence, if there exist
consecutive levels, such that each of them contains only enough parallelism for
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a single thread block, we group these levels into a chain. This chain of levels is
processed with a single kernel call and inside of it the synchronization across the
levels is performed using syncthreads(). On the other hand, the synchronization
across different chains is performed by returning to the host and then launching
a new kernel.

The chain data structure allows us to significantly reduce the number of
kernel calls without sacrificing parallelism. For example, the ratio between the
number of levels and chains, in other words, the ratio between the number of
kernel calls without and with the chain data structure for the matrix atmosmodd
is shown in Tab. 1. Notice that for the lower triangular factor we are making
almost 8× less kernel calls with the new approach.

Matrix Lower triangular factor Upper triangular factor

atmosmodd 7.76 1.05

Table 1: Ratio between number of levels and chains for atmosmodd matrix

Finally, the resulting analysis phase pseudo-code that obtains all three data
structures is shown in Alg. 3 and 4.

Algorithm 3 Analysis Phase (Part 1)

1: Let b and e be the number of thread blocks and level number, respectively.
2: Let levelInd[] contain the list of sorted rows in each level.
3: Let levelP tr[] contain the starting index (into the array levelInd) of each

level (and an extra element to indicate the end of the last level).
4: Let chainPtr[] contain the starting index (into the array levelP tr) of each

chain (and an extra element to indicate the end of the last chain).
5: Let rRoot[] and wRoot[] be the read and write root buffers, respectively.
6: Let cRoot[] be the list of candidate nodes for being roots.

7: e← 1
8: find roots≪ b, . . . ≫(e, rRoot)
9: repeat . Find the Levels

10: analyse≪ b, . . . ≫(e, rRoot, cRoot, levelInd, levelP tr, chainPtr)
11: find roots in candidates≪ b, . . . ≫(cRoot, wRoot)
12: Flip-flop rRoot[] and wRoot[] buffer pointers.
13: e← e + 1
14: until all nodes have been processed.
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Algorithm 4 Analysis Phase (Part 2)

15: procedure find roots . CUDA Kernel
16: ...
17: end procedure

18: procedure analyse . CUDA Kernel
19: ...
20: end procedure

21: procedure find roots in candidates . CUDA Kernel
22: ...
23: end procedure

The output of the analysis phase are the arrays chainPtrHost, levelPtr and
levelInd that have the beginning and end of the chains, levels and the list of
sorted rows belonging to every level, respectively. The array chainPtrHost de-
termines the properties and the number of kernels to be launched in the solve
phase and therefore must be present in the host (CPU) memory. It is usually
a relatively short array when compared to the matrix size and is the only data
structure present in the host memory.

For example, for (2) these arrays are

chainPtrHost =
(

1 4
)

levelP tr =
(

1 4 8 10
)

levelInd =
(

1 2 3 4 5 6 7 8 9
)

Notice that in this particular example there are only a few rows belonging to
every level, so that all of the levels are linked into a single chain, and consequently
can be processed with a single kernel in the solve phase.

The solve phase accepts as an input a set of levels, the sorted list of rows
belonging to every level and the chain data structure. It determines the optimal
number of thread blocks b needed to process each chain and launches a single
b = 1 or multiple b > 1 thread block kernels in a loop until all chains have been
processed. Notice that multiple thread blocks kernel always processes a single
level, while a single thread block kernel can process one or more levels.

It is worth mentioning that in general rows might be grouped into levels
without preserving their original ordering, in other words, an earlier row can
be assigned to a latter level (consider for example the coefficient matrix in (2)
augmented with an extra row with a single diagonal element in it). Although
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we do not have control over assignment of rows across levels, the sorting of
rows within a level that is done in the analysis phase improves the coalescing of
memory reads without affecting parallelism.

Finally, the resulting solve phase pseudo-code is shown in Alg. 5.

Algorithm 5 Solve Phase

1: Let b and k be the number of thread blocks and chains, respectively.
2: Let levelInd[] contain the list of rows in each level.
3: Let levelP tr[] contain the starting index (into the array levelInd) of each

level (and an extra element to indicate the end of the last level).
4: Let chainPtrHost[] contain the starting index (into the array levelP tr) of

each chain (and an extra element to indicate the end of the last chain).

5: for i← 0, k do . Process the Chains
6: start← chainPtrHost[i]
7: end ← chainPtrHost[i + 1]
8: if single block is enough then
9: process level singleblock≪ 1, . . . ≫(start, end)

10: else
11: process level multiblock≪ b, . . . ≫(start)
12: end if
13: end for

14: procedure process level singleblock(start, end) . CUDA Kernel
15: for e← start, end do
16: . . .
17: syncthreads()
18: end for
19: end procedure

20: procedure process level multiblock(e) . CUDA Kernel
21: . . .
22: end procedure

4 Numerical Experiments

In this section we study the performance of the parallel sparse triangular solve
as a standalone algorithm and as a part of a preconditioned iterative method.
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We use twelve matrices selected from The University of Florida Sparse Matrix
Collection [27] in our numerical experiments. The seven symmetric positive
definite (s.p.d.) and five nonsymmetric matrices with the respective number of
rows (m), columns (n=m) and non-zero elements (nnz) are grouped and shown
according to their increasing order in Tab. 2.

# Matrix m,n nnz s.p.d. Application

1. offshore 259,789 4,242,673 yes Geophysics
2. af shell3 504,855 17,562,051 yes Mechanics
3. parabolic fem 525,825 3,674,625 yes General
4. apache2 715,176 4,817,870 yes Mechanics
5. ecology2 999,999 4,995,991 yes Biology
6. thermal2 1,228,045 8,580,313 yes Thermal Simulation
7. G3 circuit 1,585,478 7,660,826 yes Circuit Simulation
8. FEM 3D thermal2 147,900 3,489,300 no Mechanics
9. thermomech dK 204,316 2,846,228 no Mechanics
10. ASIC 320ks 321,671 1,316,085 no Circuit Simulation
11. cage13 445,315 7,479,343 no Biology
12. atmosmodd 1,270,432 8,814,880 no Atmospheric Model.

Table 2: Symmetric positive definite (s.p.d.) and nonsymmetric test matrices

In the following experiments we use the hardware system with NVIDIA
C2050 (ECC on) GPU and Intel Core i7 CPU 950 @ 3.07GHz, using the 64-
bit Linux operating system Ubuntu 10.04 LTS, CUSPARSE library 4.0 and
MKL 10.2.3.029. The MKL NUM THREADS and MKL DYNAMIC environ-
ment variables are left unset to allow MKL to use the optimal number of threads.

4.1 Sparse Triangular Solve (as a Standalone Algorithm)

Let us first analyse the performance of the standalone sparse triangular solve
on the lower and upper triangular factors resulting from the incomplete-LU and
Cholesky factorizations with 0 fill-in obtained using MKL csrilu0 routine.

The absolute time in seconds (s) taken to solve the sparse triangular linear
systems on the CPU using the MKL csrsv routine and on the GPU using the
CUSPARSE library csrsv analysis and csrsv solve routines is given in Tab.
3. Notice that for the s.p.d. matrices we show the time taken to solve the
incomplete-Cholesky upper (R) triangular factor, while for the nonsymmetric
matrices we show the time taken to solve the incomplete-LU lower (L) and
upper (U) triangular factors. The total time taken by the CUSPARSE library
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sparse triangular solve is the sum of the time taken by the analysis and the solve
phases performed by csrsv analysis and csrsv solve routines, respectively.

CUSPARSE MKL

# csrsv analysis csrsv solve total csrsv

time (s) time (s) time (s) time (s)

1. (R) 0.06044 0.02567 0.08616 0.01287
2. (R) 0.09441 0.02635 0.12081 0.02754
3. (R) 0.03750 0.00207 0.03961 0.01166
4. (R) 0.04962 0.00738 0.05705 0.01533
5. (R) 0.06965 0.01441 0.08412 0.01931
6. (R) 0.08830 0.01427 0.10261 0.04060
7. (R) 0.10284 0.02042 0.12331 0.03342
8. (L) 0.05722 0.02417 0.08145 0.00702
8. (U) 0.05714 0.02423 0.08141 0.00624
9. (L) 0.02904 0.00458 0.03367 0.00829
9. (U) 0.02872 0.00403 0.03279 0.00907
10.(L) 0.02330 0.00288 0.02618 0.00703
10.(U) 0.02126 0.00145 0.02271 0.00727
11.(L) 0.04535 0.00415 0.04955 0.01775
11.(U) 0.04444 0.00445 0.04894 0.01609
12.(L) 0.08448 0.01099 0.09552 0.01636
12.(U) 0.08467 0.01109 0.09581 0.02664

Table 3: Time taken by MKL csrsv and CUSPARSE csrsv analysis and csrsv solve

In practice, we are often interested in solving the linear systems of the form
RTRx = f and LUx = f. The time taken by the CUSPARSE library and MKL
for this combination of the lower and upper triangular solves is summarized in
Fig. 3.

Although MKL outperforms the CUSPARSE library if we consider a full
single solve, there are many cases where the solution of the sparse triangular
linear system requires the solve phase to be performed multiple times, while the
analysis phase can be performed only once. In this case it is important to focus
on the speedup obtained by the solve phase, because it can offset the initial
slowdown resulting from the analysis phase. For this reason, we highlight in red
the fastest time between CUSPARSE csrsv solve and MKL csrsv in Tab. 3
and show the corresponding speedup in Fig. 4.

The estimated number of iterative steps needed to catch up with MKL,
defined as (analysis time)/(MKL - solve time), is shown in Fig. 5. Although as
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Figure 3: CUSPARSE (analysis and solve) and MKL (full solve) time

Figure 4: Speedup of CUSPARSE csrsv solve versus MKL csrsv

indicated by “N/A” for offshore and FEM 3D thermal2 matrices we are unable
to match MKL, notice that for the majority of other matrices we are able to
catchup with MKL in a few steps and will ultimately outperform it.
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Figure 5: Estimated number of iterative steps needed to catchup with MKL

4.2 Sparse Triangular Solve (in the Iterative Method)

Let us now analyse the performance of the sparse triangular solve, in the context
of solving the linear system

Ax = f (3)

using preconditioned Bi-Conjugate Gradient Stabilized (BiCGStab) and Con-
jugate Gradient (CG) iterative methods for nonsymmetric and s.p.d. systems,
respectively. We precondition these methods using the incomplete-LU A ≈ LU
and Cholesky A ≈ RTR factorizations computed by the MKL routines csrilu0
and csrilut with 0 and threshold fill-in, respectively.

In the csrilut routine we allow three different levels of fill-in denoted by
(5, 10−3), (10, 10−5) and (20, 10−7). In general, the (k, tol) fill-in is based on
nnz/n + k maximum allowed number of elements per row and the dropping of
elements with magnitude |lij |, |uij | < tol × ||aTi ||2, where lij , uij and aTi are
the elements of the lower L, upper U triangular factors and the i-th row of the
coefficient matrix A, respectively.

We compare the implementation of the BiCGStab and CG iterative methods
using the CUSPARSE and CUBLAS libraries on the GPU and MKL on the CPU.
In our experiments we let the initial guess be zero, the right-hand-side f = Ae
where eT = (1, . . . , 1)T , and the stopping criteria be the maximum number of
iterations 2000 or relative residual ||ri||2/||r0||2 < 10−7, where ri = f − Axi is
the residual at i-th iteration.
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ilu0 CPU GPU Speedup

# fact. copy solve
||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it. vs.

time(s)time(s)time(s) time(s) ilu0

1 0.38 0.02 0.72 8.83E-08 25 1.52 8.83E-08 25 0.57
2 1.62 0.04 38.5 1.00E-07 569 33.9 9.69E-08 571 1.13
3 0.13 0.01 39.2 9.84E-08 1044 6.91 9.84E-08 1044 5.59
4 0.12 0.01 35.0 9.97E-08 713 12.8 9.97E-08 713 2.72
5 0.09 0.01 107. 9.98E-08 1746 55.3 9.98E-08 1746 1.92
6 0.40 0.02 155. 9.96E-08 1656 54.4 9.79E-08 1656 2.83
7 0.16 0.02 20.2 8.70E-08 183 8.61 8.22E-08 183 2.32
8 0.32 0.02 0.13 5.25E-08 4 0.52 5.25E-08 4 0.53
9 0.20 0.01 72.7 1.96E-04 2000 40.4 2.08E-04 2000 1.80
10 0.11 0.01 0.27 6.33E-08 6 0.12 6.33E-08 6 1.59
11 0.70 0.03 0.28 2.52E-08 2.5 0.15 2.52E-08 2.5 1.10
12 0.25 0.04 12.5 7.33E-08 76.5 4.30 9.69E-08 74.5 2.79

Table 4: csrilu0 preconditioned CG and BiCGStab methods

ilut(5, 10−3) CPU GPU Speedup

# fact. copy solve
||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it. vs. vs.

time(s) time(s) time(s) time(s) ilut(5, 10−3) ilu0

1 0.14 0.01 1.17 9.70E-08 32 1.82 9.70E-08 32 0.67 0.69
2 0.51 0.03 49.1 9.89E-08 748 33.6 9.89E-08 748 1.45 1.39
3 1.47 0.02 11.7 9.72E-08 216 6.93 9.72E-08 216 1.56 1.86
4 0.17 0.01 67.9 9.96E-08 1495 26.5 9.96E-08 1495 2.56 5.27
5 0.55 0.04 59.5 9.22E-08 653 71.6 9.22E-08 653 0.83 1.08
6 3.59 0.05 47.0 9.50E-08 401 90.1 9.64E-08 401 0.54 0.92
7 1.24 0.05 23.1 8.08E-08 153 24.8 8.08E-08 153 0.93 2.77
8 0.82 0.03 0.12 3.97E-09 2 1.12 3.97E-09 2 0.48 1.10
9 0.10 0.01 54.3 5.68E-03 2000 24.5 1.58E-01 2000 2.21 1.34
10 0.12 0.01 0.16 4.89E-11 4 0.08 6.45E-11 4 1.37 1.15
11 4.99 0.07 0.36 1.40E-08 2.5 0.37 1.40E-08 2.5 0.99 6.05
12 0.32 0.03 39.2 7.05E-08 278.5 10.6 8.82E-08 270.5 3.60 8.60

Table 5: csrilut(5, 10−3) preconditioned CG and BiCGStab methods

The results of the numerical experiments are shown in Tab. 4 – 7, where
we state the speedup obtained by the iterative method on the GPU over CPU
(speedup), number of iterations required for convergence (# it.), achieved rel-

ative residual ( ||ri||2
||r0||2 ) and time in seconds taken by the factorization (fact.),
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ilut(10, 10−5) CPU GPU Speedup

# fact. copy solve
||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it. vs. vs.

time(s) time(s) time(s) time(s) ilut(10, 10−5) ilu0

1 0.15 0.01 1.06 8.79E-08 34 1.96 8.79E-08 34 0.57 0.63
2 0.52 0.03 60.0 9.86E-08 748 38.7 9.86E-08 748 1.54 1.70
3 3.89 0.03 9.02 9.79E-08 147 5.42 9.78E-08 147 1.38 1.83
4 1.09 0.03 34.5 9.83E-08 454 38.2 9.83E-08 454 0.91 2.76
5 3.25 0.06 26.3 9.71E-08 272 55.2 9.71E-08 272 0.51 0.53
6 11.0 0.07 44.7 9.42E-08 263 84.0 9.44E-08 263 0.59 1.02
7 5.95 0.09 8.84 8.53E-08 43 17.0 8.53E-08 43 0.64 1.68
8 2.94 0.04 0.09 2.10E-08 1.5 1.75 2.10E-08 1.5 0.64 3.54
9 0.11 0.01 53.2 4.24E-03 2000 24.4 4.92E-03 2000 2.18 1.31
10 0.12 0.01 0.16 4.89E-11 4 0.08 6.45E-11 4 1.36 1.18
11 28.9 0.09 0.44 6.10E-09 2.5 0.48 6.10E-09 2.5 1.00 33.2
12 0.36 0.03 36.6 7.05E-08 278.5 10.6 8.82E-08 270.5 3.35 8.04

Table 6: csrilut(10, 10−5) preconditioned CG and BiCGStab methods

ilut(20, 10−7) CPU GPU Speedup

# fact. copy solve
||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it. vs. vs.

time(s) time(s) time(s) time(s) ilut(20, 10−7) ilu0

1 0.82 0.02 47.6 9.90E-08 1297 159. 9.86E-08 1292 0.30 25.2
2 9.21 0.11 32.1 8.69E-08 193 84.6 8.67E-08 193 0.44 1.16
3 10.4 0.04 6.26 9.64E-08 90 4.75 9.64E-08 90 1.10 2.36
4 8.12 0.10 15.7 9.02E-08 148 22.5 9.02E-08 148 0.78 1.84
5 8.60 0.10 21.2 9.52E-08 158 53.6 9.52E-08 158 0.48 0.54
6 35.2 0.11 29.2 9.88E-08 162 80.5 9.88E-08 162 0.56 1.18
7 23.1 0.14 3.79 7.50E-08 14 12.1 7.50E-08 14 0.76 3.06
8 5.23 0.05 0.14 1.19E-09 1.5 2.37 1.19E-09 1.5 0.70 6.28
9 0.12 0.01 55.1 3.91E-03 2000 24.4 2.27E-03 2000 2.25 1.36
10 0.14 0.01 0.14 9.25E-08 3.5 0.07 7.19E-08 3.5 1.28 1.18
11 218. 0.12 0.43 9.80E-08 2 0.66 9.80E-08 2 1.00 247.
12 15.0 0.21 12.2 3.45E-08 31 4.95 3.45E-08 31 1.35 5.93

Table 7: csrilut(20, 10−7) preconditioned CG and BiCGStab methods

iterative solution of the linear system (solve), and cudaMemcpy of the lower and
upper triangular factors to the GPU (copy). We include the time taken to com-
pute the incomplete-LU and Cholesky factorization as well as to transfer the
triangular factors from the CPU to the GPU memory in the computed speedup.
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The comparison of the speedup obtained for BiCGStab and CG iterative
methods preconditioned with different incomplete factorizations is shown in Fig.
6, where “*” indicates that the method did not converge to the required toler-
ance. Notice that for iterative methods preconditioned with incomplete-LU and
Cholesky factorizations with 0 fill-in, the obtained speedup is usually similar to
the one obtained for the solve phase in Fig. 4. The difference is due to the
presence of other linear algebra operations, such as matrix-vector multiplica-
tion, in the iterative method and also the time taken by the analysis phase and
factorization, which is included in these results.

Also, notice that the best speedup is obtained for the incomplete-LU and
Cholesky factorization with 0 fill-in. In general, the speedup for the incomplete
factorizations decreases as the threshold parameters are relaxed and the factor-
ization becomes more dense, thus inhibiting parallelism due to data dependencies
between rows.

Figure 6: Speedup of BiCGStab and CG with incomplete-LU/Cholesky preconditioning

Although the incomplete factorizations with a more relaxed threshold are
often closer to the exact factorization and thus result in fewer iterative steps, they
are also much more expensive to compute. Moreover, notice that even though the
number of iterative steps decreases, each step is more computationally expensive.
As a result of these tradeoffs the total time, the sum of the time taken by the
factorization and the iterative solve, for the iterative method shown on Fig. 7
does not necessarily decrease with a more relaxed threshold in our numerical
experiments.
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Figure 7: Total time taken by the preconditioned iterative method on the CPU

Figure 8: Speedup of prec. BiCGStab & CG on GPU (with csrilu0) vs. CPU (with all)

The speedup based on the total time taken by the preconditioned iterative
method on the GPU with csrilu0 preconditioner and CPU with all four pre-
conditioners is shown in Fig. 8. Notice that for majority of matrices in our
numerical experiments the implementation of the iterative method using the
CUSPARSE and CUBLAS libraries does indeed outperform the MKL.
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Figure 9: Average speedup of BiCGStab and CG on GPU (with csrilu0) and CPU (with all)

Finally, the average of the obtained speedups is shown in Fig. 9, where we
have excluded the runs with cage13 matrix for ilut(10, 10−5) and runs with off-
shore and cage13 matrices for ilut(20, 10−7) incomplete factorizations because
of their disproportional speedup. However, the speedup including these runs
is shown in parenthesis on the same plot. Consequently, we can conclude that
the incomplete-LU and Cholesky preconditioned BiCGStab and CG iterative
methods obtain on average more than 2× speedup on the GPU over their CPU
implementation.

5 Conclusion

A novel parallel algorithm for solution of sparse triangular linear systems was
developed. It splits the solution of a triangular linear system in two phases. The
slower analysis phase needs to be performed only once, while the faster solve
phase can be performed multiple times. The performance of the sparse triangular
solve depends highly on the sparsity pattern of the triangular matrix at hand.
Although, there are sparsity patterns for which the computation is inherently
sequential (consider for example a bidiagonal matrix), there are many other
realistic sparsity patterns where enough parallelism is available.

The new algorithm is ideally suited for the splitting based iterative schemes
and incomplete-LU and Cholesky preconditioned iterative methods. In this set-
ting the CUDA implementation of the algorithm on the GPU can outperform
the MKL implementation of the sparse triangular solve on the CPU. Also, in
our numerical experiments the incomplete-LU and Cholesky preconditioned it-
erative methods implemented on the GPU using the CUSPARSE and CUBLAS
libraries achieved an average of 2× speedup over their MKL implementation.

To conclude, it is worth mentioning that the use of multiple-right-hand-sides
would increase the available parallelism and can result in a significant relative
performance improvement in the sparse triangular solve. Also, the development
of incomplete-LU and Cholesky factorizations using CUDA parallel program-
ming paradigm can further improve the speedup obtained by the preconditioned
iterative methods on the GPU.
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