
VoxelPipe: A Programmable Pipeline for 3D Voxelization

Jacopo Pantaleoni∗

NVIDIA Research

Figure 1: A rendering of the Stanford Dragon voxelized at a resolution of 5123, with a fragment shader encoding the
surface normal packed in 16 bits. Max-blending has been used to deterministically select a single per-voxel normal, later
used for lighting computations in the final rendering pass.

Abstract

We present a highly flexible and efficient software pipeline for
programmable triangle voxelization. The pipeline, entirely
written in CUDA, supports both fully conservative and thin
voxelizations, multiple boolean, floating point, vector-typed
render targets, user-defined vertex and fragment shaders,
and a bucketing mode which can be used to generate 3D
A-buffers containing the entire list of fragments belonging
to each voxel. For maximum efficiency, voxelization is im-
plemented as a sort-middle tile-based rasterizer, while the
A-buffer mode, essentially performing 3D binning of trian-
gles over uniform grids, uses a sort-last pipeline. Despite
its major flexibility, the performance of our tile-based ras-
terizer is always competitive with and sometimes more than
an order of magnitude superior to that of state-of-the-art
binary voxelizers, whereas our bucketing system is up to 4
times faster than previous implementations. In both cases
the results have been achieved through the use of careful
load-balancing and high performance sorting primitives.

CR Categories: I.3.2 [Graphics Systems C.2.1, C.2.4,
C.3)]: Stand-alone systems—; I.3.7 [Three-Dimensional
Graphics and Realism]: Color,shading,shadowing, and
texture—Raytracing;

Keywords: voxelization, bucketing, binning,
programmable pipelines, rasterization, ray tracing

∗e-mail: jpantaleoni@nvidia.com

1 Introduction

Voxel representations are widely used across many fields of
computational science, engineering and computer graphics,
with applications ranging from finite-element stress, sound
and radative transfer simulation, to collision detection, ren-
dering [Nichols et al. 2010; Kaplanyan and Dachsbacher
2010] and 3D shape matching. The increasing ability to
perform many of these tasks interactively on dynamic mod-
els is putting more emphasis on real-time scan conversion,
or voxelization, the process necessary to create a voxel repre-
sentation from an input surface, typically described as a tri-
angle mesh. This process is in fact itself a compute-intensive
application that can take a significant fraction of the overall
computing time.

In recent years several algorithms have been proposed to
exploit the computing power of massively parallel GPUs to
perform triangle mesh voxelization, either relying on the ex-
isiting fixed-function rasterization pipeline or taking advan-
tage of the full programmability offered by CUDA [Nick-
olls et al. 2008]. While these studies provided custom al-
gorithms focusing on fast and efficient binary voxelization,
our work focuses on the creation of a flexible programmable
pipeline, supporting both fully conservative and thin vox-
elizations (with 26- and 6-separating planes between the
triangle and the voxel [Schwarz and Seidel 2010]), multiple
boolean, floating point and vector-typed render targets, ar-
bitrary user-defined fragment shaders and a bucketing mode
generating the full list of fragments touching each voxel. We
refer to the latter as A-buffer rasterization, as it solves the
task typically needed to generate A-buffers in the context of
2D rasterization.

A simple example where the kind of flexibility provided by
our system is needed can be found in the work of Crane et al
[2007]: in order to take into account the interactions between
a soft-body and a fluid, it’s sufficient to plug in the veloc-
ity field of the soft-body into the boundary conditions of a
Eulerian fluid solver. This can be easily accomplished vox-



elizing the soft-body into the same grid used by the solver,
producing for each voxel both a boolean indicating the pres-
ence of a surface and a vector indicating its average velocity.
Binary voxelization alone would not be sufficient. Similarly,
in dynamic stress or heat transport simulations it might be
desirable to voxelize the model together with an arbitrary
amount of local material properties.

The design tradeoffs of such a system are very similar to
those found in making a standard rasterizer with 2D out-
put, and we tried to explore these extensively. Given cur-
rent hardware capabilities, we found chunking (sort-middle)
pipelines to be the most efficient solution for blending-based
rasterization, whereas for A-buffer generation we found that
the best approach is a feedforward (sort-last) pipeline in
which the input triangles are first batched by size and ori-
entation. To sort triangles into tiles and fragments into
voxels, we relied on efficient sorting primitives [Merrill and
Grimshaw 2010], avoiding all inter-thread communication
that would have been necessary using queues. We have also
introduced improved algorithms for triangle/voxel overlap
testing, and new algorithms for careful load-balancing at all
levels of the computing hierarchy. The resulting system, im-
plemented in CUDA, is always competitive in performance
and sometimes greatly superior (up to 28 times) to state-of-
the-art binary voxelizers [Schwarz and Seidel 2010], despite
its major flexibility, whereas our bucketing solution is up
to 4 times faster than previous implementations of triangle
binning algorithms used to generate uniform grids in the con-
text of real-time ray-tracing [Kalojanov and Slusallek 2009;
Kalojanov et al. 2011].

2 Related Work

Voxelization: the state-of-the-art in surface voxelization is
the work by Schwarz and Seidel. Unlike previous systems re-
lying on the fixed function rasterization hardware found in
commodity GPUs [Zhang et al. 2007; Eisemann and Décoret
2006; Li et al. 2005; Dong et al. 2004; Fang and Chen
2000], their work implements accurate 6-separating and 26-
separating binary voxelization using CUDA. Our system dif-
fers from theirs in three main respects: first, we extend the
pipeline with support for arbitrary framebuffer types, adding
full programmability through vertex and fragment shaders;
second, unlike their system, which parallelizes work by as-
signing individual triangles to single threads, and uses global
memory atomics to write to a common 3d framebuffer, we
explicitly tackle potential load balancing issues using a tile-
based algorithm, obtaining huge savings in scenes with un-
even triangle sizes. Third, we further optimize their triangle
/ box overlap test.

Bucketing: most related to our bucketing / A-buffer ren-
dering mode is the work by Kalojanov et al [2009; 2011], that
describes how to bucket triangles in uniform grids for ray
tracing. In their application, Kalojanov et al don’t perform
strictly conservative rasterization, but bucket triangles to
all voxels overlapped by the triangle’s axis-aligned bounding
box. To the contrary, our bucketing mode supports accurate
6-separating and 26-separating voxelization. Furthermore,
while their system generates a plain list of triangle ids per
voxel, our fragment shaders can store any specific fragment
data, including interpolated attributes generated using the
fragment’s barycentric coordinates.

Another interesting observation is that in their initial work

Kalojanov and Slusallek generated the entire list of triangle-
voxel pairs upfront and sorted it in a second pass, whereas
in subsequent work Kalojanov et al [2011] showed how to
construct two-level grids with an approach that is similar
in spirit to our tile-based voxelization. While this was done
primarily to save storage and create a better structure for ray
tracing, this approach could also be seen as a load balancing
technique. However, even though we found this approach
to work well in the case of voxelization, where fragments
going to the same voxel are merged together on-the-fly and
the entire list of fragments is never stored, we found this
to be suboptimal in the case of bucketing, and propose an
alternative, faster algorithm.

3 Blending-Based Rasterization

Our standard voxelizer is built around a sort-middle tile-
based rasterization pipeline. As such, it is divided into two
stages: coarse raster, which divides the whole grid into rela-
tively coarse tiles, performs triangle setup and emits the list
of all triangles overlapping each tile; and fine raster, which
assigns each tile to a single core, generates all fragments cor-
responding to the tile’ s triangles, and performs blending in
shared memory. With enough on-chip memory, the advan-
tages of such a pipeline are two-fold: first, it performs load
balancing by breaking large triangles across multiple tiles;
second, it reduces expensive memory bandwidth by doing
most of the heavy-lifting in the upper parts of the mem-
ory hierarchy. The next subsections discuss these stages in
detail, along with our triangle/box overlap test.

3.1 Triangle / Box Overlap Test

Our triangle/box overlap test is essentially the one described
by Schwarz and Seidel [Schwarz and Seidel 2010], which itself
is an extension and improvement of the 2D variant proposed
by Möller and Aila [2005], except we factor computations
differently among triangle setup and the actual overlap test.
For fully conservative 26-separating rasterization, to deter-
mine whether an axis aligned box overlaps a triangle, we first
check whether the triangle plane intersects the box, and then
check the intersection of the 2d projections of the triangle
and the box along all three axis. In the thin 6-separating
case we just check the projection along the dominant axis
of the triangle normal. Using the XY plane as an example,
and denoting the triangle vertices by v0,v1,v2, the edges
by ei = vi⊕1 − vi, the normal by n, and the box diagonal
by ∆p, the setup phase starts by computing the 2d edge
normals:

nxy
i = (−ei,y, ei,x) · sgn(nz). (1)

Denoting the voxel with integer grid coordinates (u, v, w) as
the box with minimum corner p+(u, v, w)·∆p and maximum
corner p+ (u+ 1, v+ 1, w+ 1) ·∆p, we then precompute the
quantities:

nx
i = nxy

i x ·∆px

ny
i = nxy

i y ·∆py (2)

and

dxyi = −nxy
i · vi,xy + nxy

i · pi,xy+ max{0,∆pxn
xy
i,x} +

max{0,∆pyn
xy
i,y} (3)



P

dP

v0

v1

v2

n0

n1

n2

u=0 u=1

v=0

v=1

u=...

Figure 2: An example of our 2D overlap test. For each
edge, we highlight the point where we evaluate the edge
function with the same color. The single-voxel test can
be transformed to find the scanline intersections with an
entire grid of voxels anchored at p.

Finally, for any given (u, v, w) voxel, the 2d overlap test is
positive if:

∧
i=0,1,2

(dxyi + v · ny
i + u · nx

i ≥ 0) . (4)

As in [Schwarz and Seidel 2010], the quantities inside the
boolean test represent the value of the edge functions at
their critical point, i.e. the point which makes the function
most negative. This is shown schematically in Figure 2. In
practice, this means that by precomputing 9 floating point
values, the amortized cost of a 2d overlap test with each voxel
in a scanline becomes as little as 3 FMAs and 3 comparisons
(one for each edge i = 0, 1, 2, for each change in the scan-
line variable, e.g. u). Further on, we precompute the plane
equation, stored compactly as 3 coefficients by normalizing
the dominant axis coordinate to 1.

Scanline intersection: another optimization that we apply
in the inner loop of our 2d overlap tests is the computation
of conservative bounds for the intersection of a scanline and
a triangle. In fact, treating v as a constant, we can write:∧

i=0,1,2

(ci + u · nx
i ≥ 0) . (5)

Solving for u for each of i = {0, 1, 2} leads to the following
bounds on the minumum and maximum values of u for which
an intersection may occur:

ci + u · nx
i ≥ 0⇐⇒ nx

i > 0 : u ≥ −ci/nx
i

nx
i < 0 : u ≤ −ci/nx

i (6)

Intersecting the semi-intervals obtained for each i = {0, 1, 2}
we get a range of values spanning the scanline intersection.
If the range is degenerate, the scanline doesn’t intersect the
triangle. By precomputing 1/nx

i and testing only the voxels
in the given range of each scanline we can eliminate all per-
voxel tests, removing 3 FMAs and 3 comparisons per voxel
at the cost of three reciprocals per triangle and 3 FMULs
per scanline.

3.2 Coarse Raster

The purpose of the coarse rasterizer is to perform triangle
setup and emit a conservative list of all triangles touching
each tile. Our implementation differs from typical chunkers
in three main respects:

Triangle setup: our setup phase is fairly trivial, emitting
only the integer bounding box of the triangle and its domi-
nant axis. As discussed in the previous section, the setup
for our cheapest 6-separating triangle-voxel coverage test
requires computing 12 floats: given the high compute-to-
bandwidth ratio of modern GPUs, it turns out it’s cheaper
to recompute these quantities for each tile overlapped by
each triangle than to compute them once and read them
several times.

Tile sorting: rather than using queues to output per-tile
lists, we first output an unsorted list of (triangle, descriptor)
pairs, where the two lowest bits of the descriptor specify the
dominant axis and the higher bits specify the tile id, and
then we sort them by descriptor in a separate pass. Triangle
setup and triangle-descriptor pair emission are handled by a
single CUDA kernel which processes a triangle per thread.
Expensive tile coverage tests are avoided at this stage, and
we simply emit all tiles touched by the triangle bounding
box. After the sorting phase, we generate a compact list of
per-tile begin and end ranges to feed the fine raster stage.
Compared to approaches that use per-tile queues, such as
[Schwarz and Seidel 2010], we avoid the use of any inter-
thread communication primitives, relying on the efficiency of
the global radix-sort counting and scattering phases to dis-
patch each item to the corresponding list. This is generally
more efficient because of the relatively low data amplifica-
tion present in this stage: due to the large tile size, triangles
will often touch one or a few tiles only. Moreover, as we will
show in the next section, having the triangles sorted by dom-
inant axis inside each tile segment increases SIMD efficiency
in the following stage of the pipeline.

Tile splitting: In order to allow for better load balancing
during the fine raster stage, we split physical tiles containing
many triangles into virtual tiles with smaller triangle sets,
containing at most Mtile triangles. The name virtual refers
to the fact that the tiles produced by the splitting procedure
overlap on the voxel grid. Hence, during fine raster we create
a separate memory arena for each virtual tile, and perform
a final merging pass to blend all virtual tiles mapping to
the same physical entry in the output framebuffer. This is
especially useful on low-res voxelizations, where there might
be too few occupied tiles to fill the machine, or where triangle
distributions might be very skewed.

3.3 Fine Raster

Fine raster gets a list of per-tile (begin, end) triangle ranges
as input, and needs to generate all triangle fragments at
the finest scale while doing the final per-voxel blending. In
order to achieve maximum performance, we allocate a pool
of persistent thread blocks just as big as required to fill the
machine, where each thread block keeps fetching a single
tile at a time from a global queue (with one atomic per
block), loading the tile in shared memory before we start
the actual rasterization. During rasterization, we perform
all blending in shared memory, and then copy the tile back



to global memory. Inside each thread block, we implement a
further load balancing mechanism through persistent warps,
where each warp keeps fetching batches of 32 triangles to
process from the tile’s list, until there is no batches left.
The concurrent fetching can be handled with a single shared
memory atomic per warp. After the batch assignment, each
thread processes a single triangle, and performs the following
steps:

Triangle plane / tile overlap test: in order to avoid re-
dundant work, we first check whether the triangle plane in-
tersects the tile. If not, the thread is done processing the
triangle.

Triangle setup: after the plane test, when a thread is given
a triangle to process, we perform setup as described in sec-
tion 3.1, computing 9 coefficients for each involved 2d pro-
jection (1 for the 6-separating case, 3 for fully conservative
rasterization).

Fragment generation & blending: after setup is done, each
thread starts looping across all scanlines in the dominant
projection of its triangle, computes bounds on the scanline
intersection and loops across all pixels in the resulting range.
For 6-separating rasterization, for each pixel we perform the
2D overlap test for this projection only and eventually emit a
fragment. Assuming the dominant axis is Z, we compute the
fragment’s Z by evaluating the plane equation at the center
of the voxel, shade it and perform blending immediately with
shared memory atomics. For the 26-separating case, if the
first overlap test is passed, we compute the minimum and
maximum Z spanned by the triangle plane inside the voxel
by evaluating the plane equation at two corners of the voxel
projection, and then loop across all voxels in the column
defined by this Z range performing the additional 2D overlap
tests. If both tests pass, a fragment is again emitted, shaded
and blended immediately.

Relying on hardware atomics for framebuffer updates sets
constraints on the blending capabilities, and as a conse-
quence the only forms of blending currently supported are
taking the addition, maximum and minimum of the source
and destination values. For integer render targets, bi-
nary AND and OR operators are also available. Alterna-
tively, blending can be disabled, allowing faster but non-
deterministic replacement. The implementation of more so-
phisticated forms of blending is reserved as future work.

Multiple render targets: multiple targets are handled by
simply executing the fine raster phase once for each addi-
tional target, thus sharing the work done in coarse raster.
While in theory it would be possible to optimize this further
by sharing the work needed to perform voxel testing, the
amount of targets would be severely limited by the amount
of available shared memory. Moreover, this strategy allows
to render different targets at different resolutions.

Fragment shaders: the fine raster entry function is tem-
plated over an arbitrary user-defined functor required to im-
plement a simple fragment shader interface. The interface
must provide a single method to process individual frag-
ments and emit a value of the same type as that of the frame-
buffer. The input fragment is described by the triangle id,
its vertices, the geometric normal, and the barycentric coor-
dinates. A user-defined functor might hence implement any

B

v

1

5

6

9

6

10

9

13

v

1

5

6

6

9

9

10

13

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

fragment
emission

sorting blending

6

5

1

9

10

13

Bucketing

Full Rasterization

Figure 3: A conceptual view of the voxelization pipeline.
The blending stage (in pink), performing a data reduction
on the fragments belonging to the same voxel, is only part
of regular rasterization, and is not present in the bucketing
pipeline.

form of attribute interpolation and texture lookups, as well
as dispatch the call to per-triangle shader instances through
virtual methods or function calls.

Scanline redistribution: in order to reduce the number of
conflicts across the per-fragment-per-voxel shared memory
atomics, and to further improve load balancing and SIMT
utilization, we further tried to redistribute the scanlines in
the dominant axis projection of each triangle equally across
each warp. In order to do this, each warp kept a circular
queue of up to 64 triangles so as to make sure there were
always at least 32 scanlines to process. Unfortunately, the
overhead incurred by the redistribution mechanism was very
significant compared to the efficiency of our voxel overlap
tests, and resulted in a general slowdown.

4 A-buffer Rasterization

The generation of an A-buffer poses challenges substantially
different from the ones found in blending-based voxelization.
The first key difference is that the output size of the frame-
buffer is not limited, and in particular it’s not possible to
guarantee that a tile would entirely fit in shared memory.

The first strategy we employed to perform this kind of ras-
terization was hence based on a tiled renderer with a 2-
pass fine rasterization stage: a counting phase which kept
a shared memory scratchpad to count how many fragments
would go into each voxel (working in exactly the same way
as a blending-based fine raster pass with an integer frame-
buffer) was followed by a fragment emission phase to emit all
fragments at a unique offset. Unfortunately, this approach
suffered from two main problems: first, the amount of space
required to keep a tile of 32-bit integers in shared memory
limited the tile size to at most 163 voxels on current hard-
ware. Second, the approach required double computation of
the voxel overlap tests.

Analyzing the problem from an entirely different perspective



Figure 4: Our test scenes. From left to right: Conference, Stanford Dragon, Turbine Blade, Hair Ball and the XYZRGB
Asian Dragon.

we hence came up with a second approach. This form of ras-
terization can be seen as a special variant of sorting, where
the input data (i.e. the list of triangles) can be thought of
as a compressed representation of the final list of elements
to be sorted (the fragments), and where the decompression
involves a heavy data amplification phase with potentially
high variation in the per element input:output ratios. Un-
der this perspective, bucketing is equivalent to the sum of
two independent passes: fragment emission and fragment
sorting. This was not the case in standard voxelization,
which includes a further reduction stage - blending - that
removes the need to ever generate, sort and store the entire
list of fragments at once, and where interleaving these three
stages leads to a more work- and bandwidth-efficient pipeline
(because data corresponding to individual fragments can be
consumed right away without going through external mem-
ory).

As very work-efficient parallel sorting algorithms have al-
ready been devised, the main problem becomes that of load-
balancing the computations necessary for the potentially se-
vere data amplification in the fragment emission phase. In
order to tackle the problem we came up with a 4-stage strat-
egy:

triangle classification: in the first stage the triangles are
classified by size and dominant axis;

triangle sorting: in the second stage the triangles are sorted
by class;

unordered fragment emission: in the third stage all frag-
ments of all triangles are emitted in random order together
with their voxel id;

fragment sorting: the final stage performs a single global
radix-sort on the fragments to sort them by voxel id.

The crucial part of this pipeline is the triangle classifica-
tion and sorting phase, which gives us the ability to collect
similarly sized and similarly oriented triangles together, and
process them with ad-hoc load-balancing strategies in the
next stage of the pipeline. The next sections describe the
specific algorithms employed in these stages.

4.1 Triangle Classification

Triangle classification starts with a simple triangle setup
stage that emits the triangle bounding box and a single tri-
angle descriptor. In order to form the descriptor, we first
compute the 2D bounding box of the triangle’s projection

along its dominant axis. If either the horizontal or the ver-
tical side length of the bounding box is equal to 16 or more,
we classify the triangle as large, and set its descriptor as:

axis + 3 · (sizeu(bbox) ≥ sizev(bbox) ? 0 : 1). (7)

Otherwise, we set the descriptor as:

6 + log(sizeu(bbox)) · 4 + log(sizev(bbox)) + axis · 16 (8)

The constants involved in the expression have been deter-
mined to pack the resulting values tightly in the ranges [0, 6)
and [6, 54) respectively, so as to fit the entire descriptors in as
little as 6 bits (and ultimately requiring as few radix sorting
passes as possible).

4.2 Fragment Emission

We perform fragment emission with two separate kernels.
The first kernel processes all small triangles, while the sec-
ond processes the ones classified as large.

The small triangle processor implements warp-level load-
balancing in the same fashion used for the blending-based
fine raster. Each thread processes a single triangle and emits
fragments to a global queue. As the loop over the 2d voxel
overlap tests is executed synchronously within each warp,
the output location of each valid fragment in the queue is
determined with a single atomic per-warp, incrementing the
global queue size by the popcount of the number of posi-
tive tests. While one global memory atomic per-warp-per-
fragment might seem a substantial amount of inter-thread
communication, in practice we measured a minimal perfor-
mance impact.

In order to maximize SIMT utilization, the large triangle
processor adopts a different policy and assigns a single tri-
angle per warp, where the entire warp loops over all the scan-
lines of the 2d projection of the triangle’s bounding box, and
each thread processes a single pixel of the current scanline.
Again, the resulting fragments for each scanline are output
using a single atomic per-warp.

5 Compile-Time Code Specialization

Our library supports hundreds of possible configurations, as
the user can select among two types of voxelization, 6 blend-
ing modes, 25 framebuffer types, all possible framebuffer
sizes, and provide arbitrary vertex and fragment shaders.
Critical to obtaining maximum performance is to tune the
internal algorithms according to the selected configuration.
For example, the choice of the best tile size depends strongly
on the type of framebuffer. Similarly, the inner loop of the



Scene # of Triangles Grid Res Schwartz & Seidel VP Binary VP Float VP A-buffer

Conference 282k
1283 3.9 ms 3.3 ms 3.4 ms 3.8 ms
5123 59.3 ms 4.3 ms 8.3 ms 5.3 ms
10243 237.6 ms 8.5 ms 24.0 ms 10.1 ms

Dragon 871k
1283 3.5 ms 4.8 ms 5.0 ms 6.7 ms
5123 4.8 ms 5.0 ms 7.5 ms 8.7 ms
10243 13.6 ms 5.9 ms 13.2 ms 11.6 ms

Turbine Blade 1.76M
1283 3.6 ms 7.3 ms 7.9 ms 10.3 ms
5123 7.6 ms 6.9 ms 10.1 ms 11.6 ms
10243 16.6 ms 8.4 ms 14.9 ms 12.7 ms

Hairball 2.88M
1283 22.8 ms 12.8 ms 15.3 ms 23.8 ms
5123 95.0 ms 18.3 ms 38.9 ms 50.0 ms
10243 266.8 ms 33.7 ms 192.8 ms 102.0 ms

XYZ RGB Asian Dragon 7.21M
1283 11.4 ms 21.2 ms 26.0 ms 34.8 ms
5123 16.7 ms 22.0 ms 29.4 ms 39.9 ms
10243 18.2 ms 23.6 ms 31.4 ms 43.0 ms

Table 1: Voxelization timings for various scenes and different voxelization schemes. VP stands for VoxelPipe.

critical code path depends strongly on the type of voxeliza-
tion and the blending mode. In order to achieve this, we
made extensive use of compile-time code specialization, re-
lying heavily on the expressiveness of C++ templates: all the
user visible options of our library are in fact template param-
eters. Through meta-programming, the particular configu-
ration of options determines in turn the internal state of the
library and the particular code path that will be executed by
the rendering kernels. Without the extensive support of the
C++ feature set and the flexibility offered by the CUDA run-
time API developing such a library would have been highly
impractical.

6 Results

The source code for our pipeline is freely available at
http://code.google.com/p/voxelpipe/.

We have run our algorithms on a variety of scenes with var-
ious complexity: Conference, the Stanford Dragon, the Tur-
bine Blade, the Hair Ball and the XYZ RGB Asian Dragon
(Figure 4). Our benchmark system uses a GeForce GTX480
GPU with 1GB of GPU memory, and an Intel Core i7 860
@ 2.8GHz CPU with 4GB of main memory.

In Table 1 we report scan conversion times for the blending-
based voxelizer and for the A-buffer pipeline. Table 2 pro-
vides a more detailed breakdown of the timings of the indi-
vidual components of our binary voxelization pipeline for a
few of those scenes.

It can be noticed that scenes with very uneven geometric
density (e.g. Conference and Hairball) perform substantially
better than previous state-of-the-art, up to 28x faster. An
exception to the rule is the Hairball scene voxelized at high
resolutions in floating point buffers, performing less than 2x
better than the binary voxelization from [Schwarz and Seidel
2010], and taking substantially longer than all other scenes
and configurations with our own system. This is due to
the combination of two problems: first, with floating point
buffers, our tile size is limited to 163 due to shared memory
constraints. This leads to a much higher amount of work in
the coarse raster stage, which needs to sort more triangle/tile
pairs. Second, this scene contains many long and skinny tri-
angles generating highly variable fragment counts, leading to
low SIMT utilization in the fine raster stage. While the first
problem cannot be overcome without more capable hard-

Scene Stage 1283 5123 10243

Conference
coarse raster 0.5 ms 0.5 ms 0.6 ms

sorting 0.7 ms 1.2 ms 1.4 ms
fine raster 2.2 ms 2.6 ms 6.4 ms

Hairball
coarse raster 2.1 ms 2.3 ms 2.8 ms

sorting 2.4 ms 4.8 ms 6.9 ms
fine raster 7.9 ms 10.7 ms 24.0 ms

Asia Dragon
coarse raster 4.8 ms 4.8 ms 4.9 ms

sorting 4.2 ms 7.5 ms 8.6 ms
fine raster 14.0 ms 10.1 ms 10.1 ms

Table 2: Timing breakdown for binary voxelization of
three of our test scenes at different resolutions.

Scene # of Triangles KS VP

Conference 282k 13.5 ms 3.8 ms (3.55x)
Dragon 180k 4.0 ms 3.7 ms (1.08x)
Fairy 174k 12.0 ms 4.2 ms (2.85x)
Soda Hall 2.2M 65.0 ms 15.0 ms (4.33x)

Table 3: Comparison between bucketing with the system
from Kalojanov and Slusallek (KS) and VoxelPipe (VP).

ware, we think we have potential solutions for the second,
which we leave as future work.

For bucketing, we cannot compare our results to previ-
ous state-of-the-art thorouhgly, as Kalojanov and Slusallek
[2009] reported results for a limited set of grid resolutions
and used an NVIDIA GTX280. As our system exploits ca-
pabilities available only on GTX 480 and higher, we divided
their reported timings by 2x, which is roughly the improve-
ment in the overall compute performance between the two
GPUs. This is an optimistic estimate, as memory band-
width went up by a smaller margin, and the bulk of the
algorithm used by Kalojanov and Slusallek was bandwidth
bound. The results are reported in Table 3. We decided not
to compare with the more recent system from Kalojanov et
al [2011], as the output of this system is a different, hier-
archical data structure. However, their algorithm is similar
in spirit to our initial prototype based on a tiled approach,
that resulted being slower than our current solution.



Figure 5: A preview of a real-time global illumination system built on top of our pipeline. Here voxelization is used to
create a scene proxy that we use for tracing incoherent rays. As voxelization can complete in a few milliseconds even on
several million triangles, the proxy can be rebuilt every frame, allowing dynamic geometry, materials and lighting. This
scene runs at over 50 FPS at a resolution of 1024× 1024.

7 Summary and Discussion

We have presented a fully programmable pipeline to per-
form triangle voxelization. The pipeline supports both stan-
dard blending-based scan conversion and a bucketing / A-
buffer mode where each fragment is recorded separately. The
blending-based voxelizer further supports a variety of render
targets, single-pass multiple render targets, and user-defined
vertex and fragment shaders. Despite the additional flexi-
bility, its performance is competitive with that of state-of-
the-art binary voxelizers, when not superior. The A-buffer
voxelizer, which can be used to perform standard triangle-in-
grid binning, is 4 times faster than state-of-the-art binning
algorithms used for uniform grid generation in the field of
real-time ray-tracing.

Future Work: as work left for the future, we are consid-
ering to integrate memory friendly strategies to build oc-
trees in a spirit similar to [Schwarz and Seidel 2010], as well
as supporting geometry and tessellation shaders and more
general or programmable blending policies. Additional re-
search would also be needed to understand how to build a
power-efficient voxelization pipeline, aided by fixed function
hardware. As for standard rasterization it’s in fact clear
that an entirely software based solution could not achieve
the same performance/watt ratios obtained by a carefully
planned hardware design. Finally, in Figure 5 we show a
proof of concept of a real-time global illumination system
that we plan to disclose in the near future. The system re-
lies on our voxelization pipeline to create a proxy of the scene
geometry that is used to trace incoherent rays. The proxy
is rebuilt every frame, allowing support of fully dynamic ge-
ometry, materials and lighting.

Aknowledgements: we thank Michael Schwarz for his kind
support in providing all measurements of the system de-
scribed in [Schwarz and Seidel 2010] necessary for our com-
parisons. Special thanks go also to Eric Enderton and Timo
Aila for their precious reviews.

References

Akenine-Möller, T., and Aila, T. 2005. Conservative
and tiled rasterization using a modified triangle set-up.
Journal of Graphics Tools 10, 3, 1–8.

anonymous. 2011. AnonGI: novel algorithms for real-time
global illumination. Tech. rep., Anonymous.

Crane, K., Llamas, I., and Tariq, S. 2007. GPU Gems
3. First ed. Addison-Wesley Professional, ch. 30.

Dong, Z., Chen, W., Bao, H., Zhang, H., and Peng,
Q. 2004. Real-time voxelization for complex polygonal
models. In Pacific Conference on Computer Graphics and
Applications, 43–50.

Eisemann, E., and Décoret, X. 2006. Fast scene vox-
elization and applications. In Proceedings of the 2006
Symposium on Interactive 3D Graphics, SI3D 2006, ACM
SIGGRAPH.

Fang, S., and Chen, H. 2000. Hardware accelerated vox-
elization. Computers & Graphics 24, 3, 433–442.

Kalojanov, J., and Slusallek, P. 2009. A parallel al-
gorithm for construction of uniform grids. In Proceedings
of the Conference on High Performance Graphics 2009,
ACM, New York, NY, USA, HPG ’09, 23–28.



Kalojanov, J., Billeter, M., and Slusallek, P. 2011.
Two-level grids for ray tracing on GPUs. Computer
Graphics Forum (4).

Kaplanyan, A., and Dachsbacher, C. 2010. Cascaded
light propagation volumes for real-time indirect illumina-
tion. In I3D 2010.

Li, W., Fan, Z., Wei, X., and Kaufman, A. 2005. Flow
simulation with complex boundaries. In GPU Gems 2,
M. Pharr, Ed. Addison Wesley Professional, ch. 47, 747–
764.

Merrill, D., and Grimshaw, A. 2010. Revisiting sorting
for GPGPU stream architectures. Tech. Rep. CS2010-03,
Department of Computer Science, University of Virginia,
February.

Nichols, G., Penmatsa, R., and Wyman, C. 2010. Inter-
active, multiresolution image-space rendering for dynamic
area lighting. Comput. Graph. Forum 29, 4, 1279–1288.

Nickolls, J., Buck, I., Garland, M., and Skadron, K.
2008. Scalable parallel programming with cuda. ACM
Queue 6, 2, 40–53.

Schwarz, M., and Seidel, H.-P. 2010. Fast parallel
surface and solid voxelization on gpus. In ACM SIG-
GRAPH Asia 2010 papers, ACM, New York, NY, USA,
SIGGRAPH ASIA ’10, ACM Computer Society, 179:1–
179:10.

Zhang, L., Chen, W., Ebert, D. S., and Peng, Q. 2007.
Conservative voxelization. The Visual Computer 23, 9-11,
783–792.


