
Efficient Triangle Coverage Tests for Stochastic Rasterization

Samuli Laine Tero Karras∗

NVIDIA Research

Abstract

In our previous paper on stochastic rasterization [Laine et al. 2011],
we stated that a 5D triangle coverage test consumes approximately
25 FMA (fused multiply-add) operations. This technical report de-
tails the operation of our coverage test. We also provide variants
specialized for defocus-only and motion-only cases.

1 A Basic 5D Test

Let us denote the three moving input vertices as

v0(t) = (x0, y0, w0) + t ⋅ (Δx0,Δy0,Δw0)

v1(t) = (x1, y1, w1) + t ⋅ (Δx1,Δy1,Δw1)

v2(t) = (x2, y2, w2) + t ⋅ (Δx2,Δy2,Δw2)

and the related clip-space circles of confusion (CoC) as

C0(t) = c0 + t ⋅ Δc0

C1(t) = c1 + t ⋅ Δc1

C2(t) = c2 + t ⋅ Δc2

A simple and efficient way for performing the coverage test is to
instantiate the triangle at the given (u, v, t) coordinates1, and per-
form a standard 2D coverage test against pixel coordinates (x, y).
This leads to the following procedure. The number of FMAs on
each line is shown on the right in parentheses.

W0 = w0 + t ⋅ Δw0 (1)
W1 = w1 + t ⋅ Δw1 (1)
W2 = w2 + t ⋅ Δw2 (1)
C0 = c0 + t ⋅ Δc0 (1)
C1 = c1 + t ⋅ Δc1 (1)
C2 = c2 + t ⋅ Δc2 (1)
X0 = x0 + t ⋅ Δx0 −W0 ⋅ x + C0 ⋅ u (3)
X1 = x1 + t ⋅ Δx1 −W1 ⋅ x + C1 ⋅ u (3)
X2 = x2 + t ⋅ Δx2 −W2 ⋅ x + C2 ⋅ u (3)
Y0 = y0 + t ⋅ Δy0 −W0 ⋅ y + C0 ⋅ v (3)
Y1 = y1 + t ⋅ Δy1 −W1 ⋅ y + C1 ⋅ v (3)
Y2 = y2 + t ⋅ Δy2 −W2 ⋅ y + C2 ⋅ v (3)
d01 = X0 ⋅ Y1 − Y0 ⋅X1 (2)
d12 = X1 ⋅ Y2 − Y1 ⋅X2 (2)
d20 = X2 ⋅ Y0 − Y2 ⋅X0 (2)

Here, Wi are the vertices’ w coordinates interpolated according
to t, and Ci are the circles of confusion. Xi and Yi are the ver-
tices’ x and y coordinates, respectively, interpolated according to t,
sheared according to W and pixel (x, y) coordinates, and adjusted
by interpolated circles of confusion. Note that the resulting coordi-
nates remain in clip space. The shear is designed so that it makes
the clip-space ray towards pixel position (x, y, 1) point in direction
(0, 0, 1). This is equivalent to screen-space translation that moves
(x, y) to the viewport origin. What remains is testing the viewport
origin against the three edge functions. We only need the constant

∗e-mail: {slaine,tkarras}@nvidia.com

NVIDIA Technical Report NVR-2011-003, September 2011.
c⃝ NVIDIA Corporation. All rights reserved.

terms dij of the edge functions, and these give the edge evaluation
results directly.

The calculation of the edge evaluations in the end are equivalent
to a 3D ray vs triangle test, where the ray is always from (0, 0, 0)
towards (0, 0, 1), and the triangle lies in 3D clip space. The for-
mulas for the 3D determinants (corresponding to volumes between
ray and triangle edges) simplify to the 2D determinants above. The
shear has no effect on volumes, so perspective-correct barycentric
coordinates can be obtained directly by dividing dij by their sum.

In total, this method requires 30 FMAs. We assume that the com-
parison against zero is free, i.e., performed by the hardware, after
dij have been computed, so no other instructions are required. For
samples that pass the coverage test it is also necessary to check that
the z depth of the hit point is within the view frustum, but this is
not a part of the coverage test itself.

2 Optimizations for the 5D Test

The optimized 5D coverage test is based on the assumption that
CoC is linear in w in clip space, corresponding to the ubiquitous
thin-lens model. This linear dependence can be specified using two
constants A,B so that

C = A + B ⋅ w

We can now remove the interpolation of Ci saving 3 FMAs, but
we need to replace the corresponding terms in further rows by
(A + B ⋅Wi), as follows.

X0 = x0 + t ⋅ Δx0 −W0 ⋅ x + (A + B ⋅W0) ⋅ u
X1 = x1 + t ⋅ Δx1 −W1 ⋅ x + (A + B ⋅W1) ⋅ u
X2 = x2 + t ⋅ Δx2 −W2 ⋅ x + (A + B ⋅W2) ⋅ u

Expanding the product at the end yields

X0 = x0 + t ⋅ Δx0 −W0 ⋅ x + A ⋅ u + B ⋅ u ⋅W0

X1 = x1 + t ⋅ Δx1 −W1 ⋅ x + A ⋅ u + B ⋅ u ⋅W1

X2 = x2 + t ⋅ Δx2 −W2 ⋅ x + A ⋅ u + B ⋅ u ⋅W2

and collecting terms with W gives

X0 = x0 + t ⋅ Δx0 + W0 ⋅ (B ⋅ u− x) + A ⋅ u
X1 = x1 + t ⋅ Δx1 + W1 ⋅ (B ⋅ u− x) + A ⋅ u
X2 = x2 + t ⋅ Δx2 + W2 ⋅ (B ⋅ u− x) + A ⋅ u

This allows us to precalculate (A ⋅ u) and (B ⋅ u − x). However,
while precalculation of (A ⋅u) removes two multiplications, it does
not reduce the number of instructions in computing Xi because we
would have two terms without multiplication. Hence it is better to
precalculate only one of the terms as follows.

Ex = B ⋅ u− x
X0 = x0 + t ⋅ Δx0 + W0 ⋅ Ex + A ⋅ u
X1 = x1 + t ⋅ Δx1 + W1 ⋅ Ex + A ⋅ u
X2 = x2 + t ⋅ Δx2 + W2 ⋅ Ex + A ⋅ u

1To ensure that the CoCs appear circular on the screen, we need to ac-
count for the aspect ratio of the viewport. This can be done, e.g., by scaling
u or v according to the aspect ratio in the sample generation phase. In the
coverage tests that assume thin-lens CoCs (Section 2), this scaling can also
be accomplished by having separate CoC coefficients A,B for x and y axes.

1



Let us now look at the entire coverage test exploiting this optimiza-
tion.

W0 = w0 + t ⋅ Δw0 (1)
W1 = w1 + t ⋅ Δw1 (1)
W2 = w2 + t ⋅ Δw2 (1)
Ex = B ⋅ u− x (1)
Ey = B ⋅ v − y (1)
X0 = x0 + t ⋅ Δx0 + W0 ⋅ Ex + A ⋅ u (3)
X1 = x1 + t ⋅ Δx1 + W1 ⋅ Ex + A ⋅ u (3)
X2 = x2 + t ⋅ Δx2 + W2 ⋅ Ex + A ⋅ u (3)
Y0 = y0 + t ⋅ Δy0 + W0 ⋅ Ey + A ⋅ v (3)
Y1 = y1 + t ⋅ Δy1 + W1 ⋅ Ey + A ⋅ v (3)
Y2 = y2 + t ⋅ Δy2 + W2 ⋅ Ey + A ⋅ v (3)
d01 = X0 ⋅ Y1 − Y0 ⋅X1 (2)
d12 = X1 ⋅ Y2 − Y1 ⋅X2 (2)
d20 = X2 ⋅ Y0 − Y2 ⋅X0 (2)

The speedup is rather disappointing, as we have succeeded in re-
moving only one FMA, yielding 29 FMAs in total. However, we
can now exploit the fact that all computations of Xi share a com-
mon term (A ⋅ u), and similarly for Yi. The idea is to compute
X0 as above, but instead of X1 and X2 calculate their differences
to X0 (respectively for Y1 and Y2). This corresponds to operating
on the side vectors of the triangle instead of position vectors of its
vertices.

Denoting difference values with primes, the calculation of, e.g., X ′1
is then carried out as follows

X ′1 = x1 + t ⋅ Δx1 + W1 ⋅ Ex + A ⋅ u
− (x0 + t ⋅ Δx0 + W0 ⋅ Ex + A ⋅ u)

= (x1 − x0) + t ⋅ (Δx1 − Δx0) + (W1 −W0) ⋅ Ex

For this to be efficient, we need to form t-dependent side vectors at
triangle setup. We therefore need

x′1 = x1 − x0 Δx′1 = Δx1 − Δx0

y′1 = y1 − y0 , Δy′1 = Δy1 − Δy0
w′1 = w1− w0 Δw′1 = Δw1− Δw0

and similarly for x′2,Δx′2, etc. Now we can compute, e.g., X ′1 as
follows

W ′1 = w′1 + t ⋅ Δw′1 (1)
X ′1 = x′1 + t ⋅ Δx′1 + W ′1 ⋅ Ex (2)

which is one FMA less work than before.

Evaluating the edge functions is equivalent to evaluating three
scalar triple products where the last vector is always (0, 0, 1). De-
noting the translated, sheared vertex positions as Vi = (Xi, Yi),
each result is obtained directly from the well-known two-
dimensional analog of cross product2 between Vi. With some no-
tational sleight of hand, our original calculation can therefore be
symbolically represented as

d01 = V0 × V1

d12 = V1 × V2

d20 = V2 × V0

Now instead of V1 and V2 we compute V ′1 = (X ′1, Y
′
1 ) and V ′2 =

(X ′2, Y
′
2 ), so that V1 = V0 + V ′1 and V2 = V0 + V ′2 . Therefore, the

cross products above can be written as

d01 = V0 × (V0 + V ′1 )

d12 = (V0 + V ′1 ) × (V0 + V ′2 )

d20 = (V0 + V ′2 ) × V0

Expanding the cross products, reordering the calculations and sim-
plifying yields

d01 = V0 × V ′1

d20 = V ′2 × V0

d12 = V ′1 × V ′2 − d01 − d20

The entire coverage test can now be written as follows.

W0 = w0 + t ⋅ Δw0 (1)
W ′1 = w′1 + t ⋅ Δw′1 (1)
W ′2 = w′2 + t ⋅ Δw′2 (1)
Ex = B ⋅ u− x (1)
Ey = B ⋅ v − y (1)
X0 = x0 + t ⋅ Δx0 + W0 ⋅ Ex + A ⋅ u (3)
X ′1 = x′1 + t ⋅ Δx′1 + W ′1 ⋅ Ex (2)
X ′2 = x′2 + t ⋅ Δx′2 + W ′2 ⋅ Ex (2)
Y0 = y0 + t ⋅ Δy0 + W0 ⋅ Ey + A ⋅ v (3)
Y ′1 = y′1 + t ⋅ Δy′1 + W ′1 ⋅ Ey (2)
Y ′2 = y′2 + t ⋅ Δy′2 + W ′2 ⋅ Ey (2)
d01 = X0 ⋅ Y ′1 − Y0 ⋅X ′1 (2)
d20 = X ′2 ⋅ Y0 − Y ′2 ⋅X0 (2)
d12 = (X ′1 ⋅ Y ′2 − d01) − (Y ′1 ⋅X ′2 + d20) (2*)

The total cost of this calculation is 25 FMAs, assuming that com-
paring d12 against zero is in reality performed by comparing the
two terms it is composed of against each other. The comparison
of two floating-point terms is much cheaper in hardware than a full
floating-point subtraction, so this is a more efficient solution. Only
if the sample is covered, the subtraction has to be carried out in or-
der to calculate barycentric coordinates. Note that the use of side
vectors instead of position vectors for v1 and v2 does not increase
the amount of input data required.

3 Defocus-Only Coverage Test

By setting t = 0 in the above coverage test and optimizing, we ob-
tain a defocus-only coverage test as follows.

Ex = B ⋅ u− x (1)
Ey = B ⋅ v − y (1)
X0 = x0 + w0 ⋅ Ex + A ⋅ u (2)
X ′1 = x′1 + w′1 ⋅ Ex (1)
X ′2 = x′2 + w′2 ⋅ Ex (1)
Y0 = y0 + w0 ⋅ Ey + A ⋅ v (2)
Y ′1 = y′1 + w′1 ⋅ Ey (1)
Y ′2 = y′2 + w′2 ⋅ Ey (1)
d01 = X0 ⋅ Y ′1 − Y0 ⋅X ′1 (2)
d20 = X ′2 ⋅ Y0 − Y ′2 ⋅X0 (2)
d12 = (X ′1 ⋅ Y ′2 − d01) − (Y ′1 ⋅X ′2 + d20) (2*)

The cost of this test is 16 FMAs, with the same reservations as
above regarding the comparison between d12 and zero. If we set
t = 0 in the basic coverage test shown in Section 1, we obtain a test
that supports arbitrary per-vertex CoCs but requires 18 FMAs.

4 Motion-Only Coverage Test

If there is no defocus, CoC coefficients A and B are zero, leading
to the following solution.

2To assure ourselves that this two-dimensional analog of cross prod-
uct follows the same algebraic rules as the usual three-dimensional cross
product, we note that u× v = a in two dimensions is equivalent to
(ux,uy , 0)× (vx,vy , 0) = (0, 0, a) in three dimensions. Therefore, any
identities involving three-dimensional cross products are also valid for the
two-dimensional analog.

2



W0 = w0 + t ⋅ Δw0 (1)
W1 = w1 + t ⋅ Δw1 (1)
W2 = w2 + t ⋅ Δw2 (1)
X0 = x0 + t ⋅ Δx0 − x ⋅W0 (2)
X1 = x1 + t ⋅ Δx1 − x ⋅W1 (2)
X2 = x2 + t ⋅ Δx2 − x ⋅W2 (2)
Y0 = y0 + t ⋅ Δy0 − y ⋅W0 (2)
Y1 = y1 + t ⋅ Δy1 − y ⋅W1 (2)
Y2 = y2 + t ⋅ Δy2 − y ⋅W2 (2)
d01 = X0 ⋅ Y1 − Y0 ⋅X1 (2)
d12 = X1 ⋅ Y2 − Y1 ⋅X2 (2)
d20 = X2 ⋅ Y0 − Y2 ⋅X0 (2)

The total cost is 21 FMAs, and there is no benefit in using side
vectors instead of position vectors for the vertices of the triangle.

References

LAINE, S., AILA, T., KARRAS, T., AND LEHTINEN, J. 2011.
Clipless dual-space bounds for faster stochastic rasterization.
ACM Trans. Graph. 30, 4, 106:1–106:6.

3


