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ABSTRACT 

 

 

 

 

 

 

 

The wide data-parallelism of GPU processor design facilitates the execution of many 

concurrent, fine-grained tasks with unprecedented performance and efficiency.  However, 

contemporary opinion regards GPU architecture as being poorly suited for many 

parallelizations that impose dynamic dependences between processing elements.  This 

dissertation specifically attends to problems whose efficient solutions require cooperative 

allocation, i.e., their dependences stem from dynamic data placement within shared 

structures.  The contribution of this thesis is a set of design patterns and reusable, tunable 

software primitives that foster the construction of cooperative, allocation-oriented 

parallelizations that are significantly faster, more efficient, more flexible, and more 

performance-portable than the state of the art.   

Whereas concurrent CPU programs typically leverage fine-grained atomic 

operations for coordinating data placement, we demonstrate the advantages of parallel 

prefix sum as a high performance, bulk-synchronous alternative for cooperative 

allocation.  We construct very efficient algorithms for global and local prefix sum by 

employing flexible granularity coarsening techniques for properly balancing serial and 

parallel workloads.  The resulting efficiency gains permit kernel fusion techniques 
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whereby application-specific logic can be incorporated within our prefix sum constructs 

with little or no overhead.   

To demonstrate the viability of our methods, we construct cooperative GPU 

implementations for a variety of parallel list-processing primitives including reduction, 

prefix scan, duplicate removal, histogram, and reduce-by-key.  We evaluate their 

performance across a wide spectrum of problem sizes, types, and target architectures.  To 

achieve performance-portability, we present a policy-based autotuning design idiom in 

which we leave implementation decisions having opaque performance consequences 

unbound within the program text.  Finally, we showcase high performance 

implementations for two archetypal problems in computer science: sorting and breadth-

first search (BFS).  We achieve excellent performance for both genres, demonstrating 

multiple factors of speedup over prior parallelizations for GPU and conventional multi-

core platforms. 
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Chapter 1  

 

Cooperative Allocation 

 

 

 

 

 

 

1.1 INTRODUCTION 

Efficiency.  We use the term to describe how well we spend our time and effort.  

Computer science is in many regards a study of efficiency.  The algorithm encodes how 

to solve a problem, the machine automates the solution for us, and the efficiency of their 

pairing determines the practicality of the whole endeavor. 

In order to improve machine efficiency, the current trend in processor architecture 

is to embrace wider parallelism.   With an emphasis on more processing elements per 

chip, microprocessors can deliver increasingly higher throughput while maintaining 

energy efficiency.  Contemporary graphics processors – GPUs – are at the leading edge 

of this trend.  GPUs have evolved from fixed-function hardware into fully-programmable 

processors capable of general-purpose computation.  In contrast to mainstream CPU 

architecture, GPUs provision tens of thousands of data-parallel threads.   

GPUs have captured mindshare for their impressive peak throughput.  Modern 

GPUs are capable of trillions of floating point operations per second (teraFLOPS) from a 

single microprocessor.  They deliver very high throughput on parallel computations, but 
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require large amounts of fine-grained concurrency to do so.  Unfortunately the physical 

design tradeoffs for such wide parallelism can penalize algorithms having irregular, 

dynamic, and cooperative behavior.  GPU architecture is particularly sensitive to load 

imbalance among processing elements and serialization from contended accesses to 

memory.  

This dissertation focuses on a particular class of problems for which GPUs are 

perceived as being poorly-suited.  The common theme amongst these problems is that 

their solutions require cooperative allocation.  We use this term to convey the notion that 

dynamic data placement within shared structures plays a central role in their operation.  

Parallel sorting, graph traversal, search space exploration, and duplicate removal are 

commonplace examples of this problem genre.  These problems all expose abundant fine-

grained concurrency, but their allocation (or relocation) behavior imposes global task 

dependences upon otherwise independent operations.  Threads must cooperate with each 

other simply to determine where they can write their outputs. 

Although the hardware is very efficient at scale, the traditional algorithmic 

techniques for solving these problems are often not.  Parallel programming coursework 

typically illustrates multithreaded cooperation using fine-grained synchronization, 

specifically atomic read-modify-write operations.  These mechanisms work by serializing 

updates within shared data structures.  This type of serialization is particularly expensive 

for GPUs in terms of efficiency and performance.  Although mutual exclusion may be 

suitable for the coarse-grained parallelism common to conventional CPU processors, it 

does not scale well to tens of thousands of threads.  Furthermore, the occurrence of 

localized serialization between threads is typically more costly for GPU hardware.  In 
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particular, many threads may be penalized when only a few are forced to wait for 

contended access. 

As a result, straightforward implementations of many cooperative problems often 

demonstrate poor performance, particularly when compared to their CPU-based 

counterparts.  The underlying goal of this work is to distill efficient allocation-oriented 

algorithms and design idioms for GPU processor architecture.  

In particular, we focus on prefix sum as an alternative mechanism for data 

placement.  Parallel prefix sum is an algorithmic primitive that can be used to compute 

space reservations for threads given their individual allocation requirements.  Once these 

output offsets are known, threads can perform contention-free writes into shared 

structures.  Cooperative allocation using local and global applications of efficient prefix 

sum is the central theme of this dissertation.    

Prefix sum is also useful within optimization steps meant to improve GPU 

utilization by reorganizing sparse and uneven workloads into dense and uniform ones.  

Any mechanism for reorganization must be efficient: the opportunistic performance 

benefits must outweigh the additional overhead.  When such optimizations become 

worthwhile, the GPU performance landscape for many irregular problems can be 

drastically improved.  

However, prior implementations for GPU prefix sum were inflexible and 

inefficient.  They existed at the global level to be invoked by the host CPU program, 

serving as black-box subroutines around which application-specific computation needed 

to be suspended and resumed.  They were expensive because their inputs and outputs had 
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to be placed in off-chip global memory, making them suitable only for problems large 

enough to warrant enlisting the entire processor. 

Furthermore, reusable implementations of prefix sum for small problems residing 

in on-chip shared memory were virtually non-existent.    The scalability of many 

problems often hinges on hierarchical algorithms and data structures, and the ability to 

allocate within small structures shared by a localized group of threads is often as 

desirable as for large global ones. 

In the absence of efficient and convenient GPU prefix sum, common practice for 

allocation-oriented parallelizations is to either (a) implement them using inefficient 

atomic operations; (b) avoid dynamic placement altogether by using work-inefficient 

data-parallel algorithms instead; or (c) simply not bother using the GPU at all.  As 

processor design evolves towards wider data parallelism, all three would make poor 

usage of GPU-like throughput computing cores. 

This dissertation is characterized by two overlapping research agendas.  The first 

is the development of techniques for prefix scan that are several factors more efficient 

than prior work.  The second is the practical application of these techniques and other 

idioms within a variety of algorithmic primitives and applications, substantially 

improving their performance.   

In particular, we showcase our efforts by addressing two dynamic problems 

fundamental to computer science: sorting and breadth-first search (BFS).  Both are 

common building blocks for more sophisticated algorithms.  Both have abundant 

concurrency.  Both elicit workloads representative of many problem genres: sorting 

encompasses list processing, partitioning, and ordering behavior; and BFS exemplifies 
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dynamic workload management and pointer-chasing.  And both and are simple enough 

that we can analyze their behavior in depth. 

1.2 DISSERTATION ROADMAP 

This dissertation is organized into the following chapters: 

• Chapter 1 continues with a discussion of cooperative parallelization idioms for 

GPUs.  We characterize the types of problems that benefit from efficient 

allocation-oriented design.  Furthermore, we illustrate the inefficiency of atomic 

operations, the traditional mechanism for dynamic allocation.   

• Chapter 2 describes the GPU abstract machine model, programming model, and 

performance pitfalls that guide the design patterns and idioms we develop in this 

dissertation.  We also review the contemporary attitude regarding the use of GPUs 

for cooperative problems, underscoring the need for better solution strategies.  

• Chapter 3 describes two prominent design idioms that we incorporate throughout 

this dissertation.  We leverage granularity coarsening to balance the ratio of serial 

versus parallel workloads such that concurrency scales with processor width rather 

than problem size.  Policy-based tuning allows us to tailor the granularity and 

other algorithm configuration options to match the specific input and target 

processor via the programming language’s type system. 

• Chapter 4 presents our investigation of global and local algorithms for prefix scan1.  

By improving the efficiency of prefix scan past the point of being memory-bound, 

we leverage the kernel fusion design idiom to construct more sophisticated list-

                                                                 
1 Whereas prefix sum specifically incorporates the addition operator, prefix scan is the generalization for arbitrary 

binary associative combining operators 
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processing primitives (e.g., segmented scan, duplicate removal, histogram, and 

reduce-by-key) with little or no extra overhead. 

• Chapter 5 describes our parallelization of high performance radix sorting.   

• Chapter 6 presents our parallelization of breadth-first search for sparse graphs.   

• Chapter 7 concludes by summarizing the contributions and limitations of the work 

presented within this dissertation, commenting on opportunities for future 

research. 

1.3 COOPERATIVE ALGORITHM DESIGN 

GPUs are designed for data-parallel transformations, i.e., threads within kernel programs 

read input items from a global memory, process them independently, and write their 

results back to memory.   

In particular, the GPU machine and programming models favor stencil kernel 

designs.  This fundamental parallelization idiom is output-oriented. The stencil kernel is 

written such that each thread produces a specific item in the output dataset, regardless of 

what is computed by other threads.  For stencil threads, the output location for each result 

is expressed as a static function of thread identifier.  (E.g., “thread t6 produces output6”.)   

Furthermore, a given stencil thread is typically not intended to reference the entire 

input.  The specific inputs needed by each thread to compute the stencil operation are 

either (a) referenced directly via thread identifier, or (b) referenced indirectly by other 

directly-referenced inputs.  As illustrated in Fig. 1, the stencil inputs for each thread are 

often regular and structured, belonging to a small finite neighborhood within the input 

dataset.   
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would still require each thread to inspect O(n) other inputs simply to determine where to 

begin its output.    

Regardless of input/output-oriented thread assignment, we would prefer to avoid 

the overall quadratic workload for cooperative problems that arises when each thread 

must independently inspect O(n) input items.  In the following subsections, we describe 

the suitability of three strategies for doing just that: (1) input-oriented atomic updates; (2) 

output-oriented iterative stencil application; and (3) input-oriented prefix sum. 

1.3.1 Suitability of atomic operations  

Fine-grained synchronization is attractive for solving many problems having allocation 

dependences.  We can use atomic addition to trivially implement our input-oriented 

example of run-length decoding (with relaxed ordering of output-runs).  With a global 

counter initialized to zero, threads can determine locations for their output-runs via 

atomic addition on the shared counter using their repeat-count as the addend.  The 

operation returns the counter’s previous value which can then be used as a base scatter 

offset for the calling thread.   

Although atomics often provide ease of implementation, they can incur dramatic 

processor underutilization.  We illustrate atomic overhead by coupling it with a trivial 

“copy” kernel whose threads simply read and write their 32-bit elements from global 

input and output arrays.  After loading an input, each thread performs an atomic addition 

on a shared counter in off-chip global memory to provide a corresponding allocation 

workload.  We use 32M-element arrays, large enough to saturate the processor cores of 

the last three generations of NVIDIA GPU architectures (GF100, GT200, and G92). 



10 

 

The plots in Fig. 3 illustrate the response of overall copy throughput as we 

geometrically decrease the global atomic workload.  This workload ranges from fine-

grained synchronization (where every thread performs an atomic addition after loading its 

input) to only one atomic addition for every 2
18

 threads.  As the atomic workload 

decreases, we observe a transition from being rate-limited by atomic addition to being 

rate-limited by global memory bandwidth.   

By progressively relieving the memory subsystem from atomic overhead, 

GTX480 copy throughput increases until it saturates at 151 GB/s (the peak achievable 

bidirectional bandwidth for the processor).  However, the copy kernel only achieves 650 

MB/s at the finest granularity of atomic synchronization, a 233x slowdown versus 

memory-saturated throughput.  Fig. 3b reveals the situation is even worse for the older 

GTX280: fine-grained synchronization incurs a 3,970x slowdown.   

On the other hand, atomic usage can be harmless when used sparingly.  We 

observe the GTX480 is rate-limited at 82M global atomics/sec.  As atomic workload is 

decreased past bandwidth saturation, the average thread latency no longer decreases 

correspondingly.  Instead it is locked to the rate at which items can be copied through 

 

(a) NVIDIA GTX480 (GF100 architecture) 
 

(b) NVIDIA GTX280 (GT200 architecture) 

 

Fig. 3.  Copy throughput as a function of decreasing global atomic workload.  (Shown in log-log scale.) 
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memory.  When atomic addition is no longer the limiting factor, measured atomic 

throughput begins to decrease along with decreased atomic workload.  These sparse 

atomic operations have negligible overall performance impact: copy throughput remains 

at a plateau regardless of shrinking atomic workload. 

Because processor cores can perform infrequent atomic reservation without 

penalty, we can leverage software combining [109] to batch many local requests into a 

single atomic operation.  For example, threads local to a processor core would aggregate 

local counts into a single addend.  On the GTX480, one thread can then perform a single 

global atomic reservation representing counts from 256 others without reducing overall 

throughput.  As described further in Chapter 6, we make use of global atomics for 

aggregating allocation requests in our methods for GPU graph traversal. 

The challenge for such “reservation-in-bulk” is computing the local aggregate 

addend.  Unfortunately local atomic operations within on-chip shared memory are also 

not particularly efficient.  Fig. 4 plots similar rate-limit transitions, this time with 

decreasing shared-memory atomic workloads.  For both GTX480 and GTX280, we see 

  
 

(a) NVIDIA GTX480 (GF100) 

 

(b) NVIDIA GTX280 (GT200) 

 

Fig. 4.  Copy throughput as a function of decreasing shared atomic workload.  (Shown in log-log scale.) 
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that copy throughput suffers a 24x slowdown when every resident thread performs a 

shared memory atomic operation.   

The implication is that fine-grained contention, in global or nearby shared 

memory, is simply too expensive for practical application.  In Chapter 4, we show that we 

can construct functionality comparable to fine-grained shared-memory atomics using 

local prefix sum, and do so with zero slowdown under the cover of memory I/O. 

Atomic operations have a second drawback in that access order is arbitrary.  In 

our example, the output-runs may not appear in the same order as their corresponding 

inputs.  This issue of unstable ordering precludes atomic operations from many problems.  

Many list-processing problems have stable ordering constraints where a given output 

allocation must be relative to the location of the input item (e.g., variants of array 

compaction, duplicate-removal, counting sort, etc.).  Even when stable ordering is not 

required, an arbitrary ordering of output items can often destroy any inherent localities 

that were present in the input dataset. 

1.3.2 Suitability of iterative stencil application 

In short, we prefer parallelizations that avoid contended updates to shared data structures.  

The iterative stencil pattern is a common, straightforward approach for orchestrating 

global dataflow without such contention.  The idea is to string together a series of 

homogenous stencil kernels, effecting a global transformation from many iterations of 

neighborhood dataflow.   

This static strategy works well for some problems.  For global reduction, we can 

iterate simple stencils in which threads reduce pair-wise neighbors.  As illustrated in Fig. 

5, threads within each kernel invocation read pairs of consecutive inputs, reduce them, 
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We would prefer O(n+m) linear-work graph traversal, which means we need a 

mechanism for tracking the dynamic frontier of discovered-but-unexplored vertices 

between BFS iterations.  The implication is that GPU threads would need to cooperate in 

order to allocate and place newly-discovered vertices within a shared work queue.  We 

describe work-efficient BFS parallelizations constructed from prefix sum in Chapter 6. 

Finally, iterative stencil application completely fails for nested and recursive 

parallelism.  Such problems exhibit arbitrary expansion and contraction of work items, 

implying global allocation dependences.   

Consider the well-known n-queens “toy” search space exploration problem 

illustrated in Fig. 8.  The problem is to identify valid configurations for placing n chess 

queens on an n x n chessboard.  The general solution strategy progressively places more 

queens on the chessboard, concurrently evaluating configurations having the same 

number of queens.  The number of subsequent configurations produced by each 

evaluation is a dynamic quantity, unknown until runtime.  A given configuration may 

expand into one, ten, a hundred more, or none at all.  Unlike quadratic sorting and graph 

search, the output locations for each evaluation depend on the quantities of subsequent 

configurations produced by other concurrent evaluations. 

In short, the repetitive application of homogenous stencils can be suitable for 

managing well-structured global data dependences, but not for dynamic allocation 

dependences within arbitrarily-sized data structures.   

1.3.3 Suitability of prefix sum 

As a facilitator of cooperative allocation, prefix sum combines the best features of both 

atomic allocation and repeated stencil application.  Like atomic updates, it facilitates 
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that we can orchestrate the global dataflow of prefix sum within GPU memory via the 

repeated application of stencil kernels having only neighborhood dependences.   

Throughout this dissertation, we promote prefix sum as an efficient, high 

performance primitive for solving problems having dynamic allocation dependences. 

1.4 CONTRIBUTIONS 

This dissertation makes contributions in the following areas: 

1.4.1 Prefix Scan 

Prefix scan is a fundamental list-processing primitive for computing recurrence relations.  

In the form of parallel prefix sum, it is a useful mechanism by which concurrent threads 

can cooperatively compute scatter offsets for writing data into shared structures.  Our 

prefix scan work makes the following contributions: 

• Parallelization strategies.  We present new variants of local scan and segmented 

scan that are 1.8x computationally-efficient than prior work.  At the global level, 

we present a reduce-then-scan decomposition that requires 25% less global 

memory traffic and only a constant amount global storage for intermediate results.  

Our strategies fully leverage the GPU’s global memory bandwidth and will scale 

with future bandwidth improvements.  We demonstrate 1.7x and 3.8x speedups 

over prior work [113] for global and segmented global scan, respectively. 

• Parallel primitives.  We have constructed BackForty [6], an open-source C++ 

library of fundamental data transformations for the NVIDIA CUDA parallel 

computing framework [34].   We employ our prefix scan techniques and design 

idioms to construct implementations of scan, segmented scan, reduction, list 

compaction, duplicate removal, and histogram.  Furthermore, our implementations 
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of sorting and reduction-by-key allow users to express computation in the familiar 

map-reduce model of parallel task decomposition [38].  These algorithms 

demonstrate several factors of speedup over prior work [35, 113] for a diversity of 

problem sizes and data types. 

1.4.2 Sorting 

The need to rank and order data is pervasive, and many algorithms are fundamentally 

dependent upon sorting and partitioning operations.  Our sorting work makes the 

following contributions: 

• Parallelization strategy.  We present a GPU parallelization for radix sorting passes 

that is constructed within a “multi-scan runtime” for computing multiple 

concurrent prefix sums, one for each partitioning bin.  The granularity of our 

approach is more tunable than prior work, requiring memory traffic that is 

inversely proportional to the number of radix bits per digit.  This provides 

flexibility for future improvements in computational throughput.  We also describe 

a novel optimization for early termination that significantly improves performance 

for commonplace sorting problems whose key distributions have low variance. 

• High performance.  Our tunable implementation achieves multiple factors of 

speedup over prior GPU sorting implementations across all generations 

programmable NVIDIA GPUs.  We demonstrate sustained sorting rates in excess 

of 1.2 billion 32-bit keys/sec and 342 million 64-bit keys/sec.  These sorting rates 

are the fastest published for any fully-programmable microarchitecture.  Put in 

context, contemporary CPU parallelizations achieve 240 million 32-bit keys/sec 



19 

 

[98] and reconfigurable FPGAs have demonstrated 250 million 64-bit keys/sec 

[73]. 

1.4.3 Graph Traversal 

Breadth-first search (BFS) is a core primitive for graph traversal.  It is representative of 

many computations whose memory accesses and workload distributions are irregular and 

data-dependent, and serves as a computational kernel within a number of benchmark 

suites.  Our BFS work makes the following contributions: 

• Parallelization strategy.  We present a GPU parallelization for breadth-first search 

that performs an asymptotically-optimal linear amount of work.  Our approach is 

the first to incorporate fine-grained parallel adjacency list expansion.   We also 

introduce local duplicate detection techniques for avoiding race conditions that 

create redundant work.  We also describe the first design for multi-GPU graph 

traversal.   

• Empirical performance characterization.  We present detailed analyses that 

isolate and analyze the expansion and contraction aspects of BFS throughout the 

traversal process. We reveal that serial and warp-centric expansion techniques 

described by prior work significantly underutilize the GPU for important classes of 

sparse graph datasets.  We also show that, counter intuitively, the fusion of 

neighbor expansion and inspection within the same kernel often yields worse 

performance than performing them separately. 

• High performance.  We demonstrate excellent performance on a broad spectrum 

of structurally diverse synthetic and real-world graphs.  Our implementation 

achieves traversal rates in excess of 3.3 billion and 8.3 billion traversed edges per 
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second (TE/s) for single and quad-GPU configurations, respectively.  Put in 

context, contemporary parallel implementations for single-socket and quad-socket 

multi-core CPUs have demonstrated 0.7 billion and 1.3 billion TE/s respectively 

for similar datasets [2].   

1.4.4 Design Idioms 

• Kernel fusion and the prefix sum “allocation runtime”. Throughout this 

dissertation, we advocate a kernel-fusion design idiom where we construct variants 

of global prefix sum, embedding within them problem-specific logic that will 

realize behavior for sorting, list compaction, graph traversal, etc. This is an 

inversion of the usual pattern for program composition promoted by Blelloch [17] , 

i.e., where application logic calls down into prefix sum as a subroutine. 

• Granularity coarsening.  The data parallel programming paradigm encourages 

programmers to express all of the available concurrency inherent to their problem.  

This leads to substantial inefficiencies from redundant operations and unnecessary 

rounds of communication.  Instead, our approach is to construct parallelizations 

where logical threads are a multiple of machine width, not problem size.  We do 

this by increasing the granularity, i.e., amount of serial work performed by each 

thread, warp, and CTA. 

• Templated “policy-based” tuning via the type system.  The GPU programming 

model forces programmers to make implementation decisions that have opaque 

performance consequences.  We show diverse and non-intuitive performance 

landscapes for thousands of program variants all implementing the same 

algorithmic strategies, yet parameterized with different configurations for thread 
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blocking, parallel widths and steps (task concurrency and granularity), cache 

modifiers for data movement, algorithm selection, etc.  Our philosophy is to leave 

these decisions unbound within the program text, allowing the programmer (or the 

compiler, or the runtime) to specialize them for specific target microarchitectures 

and problem instances.  By incorporating the formal type system into our tuning 

methodology, we are able to co-optimize application code alongside reusable 

library components. 

1.5 CHAPTER SUMMARY 

Contemporary opinion is that GPU architecture is not well suited for problems that 

require dynamic and irregular data movement within shared data structures.  They lack 

the practical atomic read-modify-write mechanisms that multithreaded algorithms have 

traditionally leveraged for cooperative allocation.  Unfortunately many problems exist for 

which the only known efficient solutions require dynamic, fine-grained data allocation 

and/or relocation.  Instead of performing contended updates for cooperative allocation, 

we focus on parallelization strategies that incorporate GPU-friendly algorithms for prefix 

sum. 
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GPU Machine and Programming Models 

 

 

 

 

 

 

2.1 INTRODUCTION 

This background chapter discusses the general perception of suitability of GPU 

architecture for cooperative workloads.  The prevailing attitude is that GPUs are poor 

environments for problems having dynamic data movement, i.e., cooperative allocation 

within shared structures.   

To provide important context for this discussion, we first review the abstract GPU 

machine and programming models, focusing on details pertaining to cooperation and 

contention.  We also we discuss performance pitfalls that can lead to inefficient algorithm 

design, providing intuition for the design patterns and idioms we develop in this 

dissertation.  Furthermore, we describe our philosophy of rate-limited performance 

analysis, the means by which we evaluate the practical efficiencies of our constructions.  

2.2 ABSTRACT MACHINE MODEL 

The “soul” of GPU architecture is very different from conventional multi-core CPU 

design.  The abstract GPU machine model is fundamentally geared towards high-

throughput (versus low-latency) computing.  As a parallel architecture, it is designed to 
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Instead, GPUs typically implement fixed-size SIMD groupings of threads called 

warps.  The width of the warp (e.g., 32 threads) corresponds loosely to the number of 

SIMD lanes per processor core.  Distinct warps are not run in lockstep and may diverge.  

Using SMT techniques, each processor core maintains and schedules amongst the 

execution contexts of many warps.  The degree of GPU multithreading is often an order 

of magnitude higher than for conventional architectures.  Instead of two or four 

instruction streams, GPU cores typically multiplex 30-50 warp contexts. 

This style of SMT enables GPUs to “hide” latency by switching amongst warp 

contexts when architectural, data, and control hazards would normally introduce stalls.  

The result is a more efficient utilization of physical processing elements.  Maximal 

instruction throughput occurs when the number of thread contexts is much greater than 

the aggregate number of SIMD lanes per processor.  As such, the GPU’s throughput 

response to workload size makes the processor appear wider than it physically is, 

particularly at the point where performance saturation occurs. 

The high degree of multithreading relieves GPU microarchitecture from latency-

reducing techniques such as out-of-order execution, branch prediction, speculative 

execution, etc.  As a result, the latencies of individual operations are comparatively much 

higher than on modern CPUs.  Although this compromise is affordable for dependence-

free computation, it compounds the expense of synchronization between threads, 

particularly serialization from fine-grained2 atomic operations.   

Communication between threads is achieved by reading and writing data to 

various shared memory spaces.  The machine model exposes three levels of explicitly 

                                                                 
2 When describing an operation or task, we use the term fine-grained to connote that the amount of computation 

entailed is very small compared to the data needed to perform it.  Often, the quantities of fine-grained operations and 

threads performing them are roughly equivalent (as opposed to batched or aggregated in some way).  
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managed storage that vary in terms of visibility and latency: per-thread registers, shared 

memory local to a collection of warps running on the same processor core, and a large 

global memory in off-chip DRAM that is accessible by all threads.  Threads must 

explicitly move data from one memory space to another. 

Unlike traditional CPU architecture, GPUs do not implement data caches for the 

purpose of maintaining the program’s working set in nearby, low-latency storage.  Doing 

so requires an expensive write-coherent cache hierarchy in which the last-level cache 

constitutes the majority of on-chip storage.  Rather, the inverse is true for GPUs: the 

cumulative register file comprises the bulk of on-chip storage.  A much smaller, read-

only cache hierarchy often exists for the primary purpose of smoothing over irregular 

memory access patterns.  The local exchange of intermediate computations amongst 

nearby threads must be explicitly managed in shared memory. 

Furthermore, contemporary GPUs are not interrupt-driven.  Instead of servicing 

and reacting to external events in their environment, their emphasis is on throughput-

oriented processing.  As such, they are not designed to run general-purpose operating 

systems.  Rather, modern GPUs serve as peripheral accelerators on which CPU host 

programs can manage data and dispatch work.  The physical GPU interface is via a 

motherboard or backplane interconnect such as PCI-express [94].  

2.3 PROGRAMMING MODEL 

Similar to SPMD programming models like MPI [86] and PVM [108], a kernel is an 

imperative function executed by a collection of logical threads.  These logical threads are 

mapped onto hardware threads by a scheduling runtime, either in software or hardware.  
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homogeneous CTAs that encapsulates all of the threads for a given kernel.  Thread 

ion can be further specialized by CTA identifier as well as CTA and grid 

[116]: 

rough synchronization barriers.  

wide barrier 

instructions exist for local shared memory.  Global memory is guaranteed to be consistent 
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at the boundaries between sequential kernel invocations.  An important consequence is 

that problems with global dependences often require multiple kernel invocations. 

2.4 PERFORMANCE MODELING AND ANALYSIS 

Empirical performance models are important for developing intuition regarding the actual 

costs of various aspects of program behavior.  However, GPU models of algorithm 

performance can be difficult to construct and parameterize.  Parallel performance models 

commonly describe runtime as a function of three parameters:  

1) The problem input size n 

2) The number p of scalar tasks actively making progress 

3) Additive, empirically determined duration-constants having units time/operation, 

e.g., timeload + timemul + timestore  

The idea is to compose a model of individual task time from component operations and 

then account for the mapping of n tasks onto a system with degree of parallelism p.  

Unfortunately this approach is difficult to parameterize for deeply multithreaded 

architectures.  Both effective parallelism and the duration-constants are actually dynamic 

quantities. 

For example, the effective parallelism p corresponds neither to physical processor 

cores nor to logical threads.  Increasing the number of active warps per core from one 

warp to two will typically decrease overall runtime because the physical cores were 

previously undersubscribed.  However, increasing the number of active warps per core 

from 31 to 32 will likely have negligible effect.  The effective parallelism is determined 

by the processor saturation point, which is dependent on the exact numbers and types of 

architectural hazards experienced by the instantaneous workload. 
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Similarly, individual task latencies in saturated conditions are not what they 

would be if measured in isolation.  For example, the latency measured in clock cycles for 

a local CTA-wide reduction will depend on how many other CTAs are resident on the 

processor core and what they are doing. 

The difficulties of such empirical parameterization suggest an alternative model.  

Instead of models constructed from notions of parallelism and task duration, the high 

degree of multithreading allows us to construct simple rate-limited performance models 

for most saturating workloads.  Rather than modeling individual task time, we simply 

decouple the component operations into separate workloads then determine which is rate-

limiting the entire computation.  In the copy example from Section 1.3.1, all computation 

on the GTX480 processor is limited by 82M atomics/sec regardless of the presence of 

load and store instructions.  Table 1 lists various rate-limits for saturating workloads for 

the GPUs most frequently evaluated within this dissertation. 

This dissertation primarily focuses on problems large enough to warrant the wide 

parallelism of the GPU.  We use this simple approach throughout to characterize and 

analyze large-scale workloads.  Unless otherwise specified, we generally consider the 

performance modeling of small, fleeting workloads to be the subject of future work.  

Model Architecture 

Bidirectional 

DRAM 

Bandwidth 

(10
9
 bytes / sec) 

Instruction 

Throughput 

(10
9
 scalar thread-

instructions / sec) 

Global Atomic 

Throughput 

(10
6
 atomics / sec) 

Local Atomic 

Throughput 

(10
6
 atomics / sec) 

GTX580 GF110 177 791 90.0 908 

GTX480 GF100 159 672 81.8 771 

Tesla C2050 GF100 128  514 67.5 591 

GTX285 GT200 137 354 4.5 721 

GTX280 GT200 125 311 4.3 623 

9800 GTX+ G92 63 235 5.0 n/a 

 

Table 1.  Throughput limits of NVIDIA GPUs.  Bandwidth is maximum-achievable from auto-tuning (§3.4.1).  Global 

atomic throughput is to a single shared word.  Local atomic throughput is to a single shared word per CTA. 



29 

 

2.5 PERFORMANCE PITFALLS 

Efficient algorithm design requires an understanding of potential performance pitfalls.  In 

general, architectural mismatches are a class of performance casualties that result when 

software components make assumptions that do not align with the structure of the system 

within which they operate [47, 107].  We describe two of the more prominent mismatches 

between the GPU machine and programming models that lead to inefficient 

implementations: variable memory access cost from SIMD access patterns; and thread 

divergence. 

2.5.1 Non-uniform memory access costs 

The programming model presents programmers with several physical memory spaces, 

each having a single method of accessing the words within.  Without knowledge of the 

hardware, the programmer can only presume a uniform cost for references across each 

memory space.   

GPU hardware often violates this presumption, causing a mismatch with the 

programming model.  Performance is particularly sensitive to memory access patterns.  A 

straightforward, naive treatment of memory can often lead to significant underutilization, 

a performance aspect not reflected in GPU programming languages [21, 62, 65, 81, 82, 

89, 110].  One can often do better by designing algorithms around more complex memory 

models that accurately reflect the behavior of the underlying hardware.  However, it is 

possible to worsen the situation if these assumptions do not match the specific hardware 

at hand.  

Snyder’s notion of architecture mismatch [107] was concerned with tree-shaped 

memory topologies that resulted in different service latencies for different memory 
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locations.  The problem is not quite the same for the GPU programming model.  Rather, 

the mismatch stems from SIMD access patterns.  Performance variances are less about 

access location and more about the specific pattern of references being made by other 

threads within the warp.  We next describe how these variations can arise in both off-chip 

global memory and on-chip shared memory. 

Global memory access patterns.  Global memory performance is affected by 

coalescing.  For a SIMD instruction that accesses global memory, the individual accesses 

for each thread can be combined/bundled together by the memory subsystem into a single 

memory transaction if every reference falls within the same contiguous global memory 

segment.  The performance discrepancies between coalesced and non-coalesced accesses 

can be as large as an order of magnitude.  Bus transactions are on the order of 128 bytes, 

making it particularly wasteful if each thread induces a separate transaction for a single 4-

byte memory reference. 

To improve coalescing, we demonstrate the effective use of local prefix sum for 

reorganizing work among CTA threads.  By locally rearranging tasks within the CTA, the 

threads within individual warps have better locality of reference.  We show this 

optimization provides significantly better throughput for sorting and graph traversal. 

Shared memory access patterns.  Local shared memory performance is affected 

by bank conflicts.  Physical memories often aggregate individual cells into larger units of 

sequentially-accessible storage.  Performance is highest when warps of threads make 

“broadside” accesses into these banks, i.e., each thread within the warp accesses a word 

within a different bank.  Bank conflicts occur when threads within the same warp access 
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different words within the same memory bank, causing the individual accesses to be 

serialized by the hardware.   

Parallel prefix sum is a cooperative problem that can be vulnerable to significant 

slowdown from excessive bank conflicts.  In this work, we develop several variants of 

local prefix sum that avoid bank conflicts without additional instruction overhead.  We 

use the programming language’s type system to abstract the rules for bank conflicts, 

providing flexibility and portability for our solutions. 

2.5.2 Thread divergence 

The GPU programming model presents an abstraction of concurrent, threaded execution.   

Each logical thread behaves as if it has its own program counter, register set, and stack 

space.  This abstraction implies two properties of thread behavior.  The first is that 

threads are presumably free to pursue their own independent path through the program.  

The second is that threads are scheduled fairly and generally proceed at a uniform rate.   

The SIMD nature of the underlying hardware violates these presumptions, 

causing a mismatch with the programming model.  In reality, logical threads are grouped 

into warps of execution.  A single program counter is shared by all threads within the 

warp.  Warps, not threads, are free to pursue independent paths through the kernel 

program.   

To provide the illusion of individualized control flow, the execution model must 

transparently handle branch divergence.  This situation occurs when a conditional branch 

instruction would redirect a subset of threads down the taken path, leaving the others to 

continue the fall-through path.  Because threads within the warp proceed in lockstep 

fashion, the warp must necessarily execute both halves of the branch, masking off SIMD 
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lanes where appropriate.  The two prevalent mechanisms for implementing such 

conditional execution are compiler-inserted instruction predicates and hardware-managed 

divergence stacks.   

These mechanisms can lead to an inherently unfair scheduling of logical threads.  

In the worst case, only one logical thread may be active while all others effectively 

occupy the remaining SIMD lanes, yet perform no work.  The GPU’s relatively large 

SIMD widths exacerbate the problem.  Branch divergence can impose an order of 

magnitude slowdown in overall computing throughput. 

This SIMD aspect of GPU architecture has similar performance repercussions 

when a subset of the warp must stall for other reasons.  Contended accesses from atomic 

operations are a relevant example.  In contrast, prefix sum constructions are largely free 

of control flow divergence and contention, allowing our work to avoid control and data 

hazards that would otherwise lead to idle SIMD lanes.  

2.6 ON THE SUITABILITY OF GPU ARCHITECTURE 

There is a general perception that GPUs are poorly-suited for cooperative parallelism, 

i.e., when dependences exist among tasks that will be performed by different processing 

elements.  This is reflected in contemporary workload and architectural studies that have 

expressed concern over the GPU’s ability to handle various forms of dynamic contention. 

2.6.1 Contention 

In the PRAM (parallel random-access machine) model of parallel computation [45, 49], 

cooperation is realized by the exchange of data though shared memory spaces.  Parallel 

algorithm performance on real hardware is heavily influenced by the amount of 

serialization that arises from contention in shared memory spaces. 
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Serialization from contention may be implicitly introduced by the hardware or 

explicitly by the program.  The physical networking between processing elements and 

memory imposes implicit contention: there will be hard limits on the number of 

simultaneous accesses to the same memory location.  As previously described, GPUs 

incorporate various forms of combining networks having specific rules regarding 

transaction coalescing and bank conflicts. 

Furthermore, cooperative algorithms explicitly introduce contention.  They must 

synchronize concurrent accesses around updates to shared data in order to maintain a 

consistent view of global state.  Barriers and atomic read-modify-write operations are two 

common mechanisms for such explicit synchronization.  Coarse-grained barriers ensure 

all threads have progressed to the same point before letting any continue.  Conversely, 

fine-grained atomics allow threads to manage a consistent view of shared data while 

unrelated tasks proceed unimpeded.   

Nearly all modern processors support a form of atomic read-modify-write 

operation, e.g., test-and-set, fetch-and-add, compare-and-swap, load-linked/store-

conditional, etc.  Although atomics implemented by most GPU microarchitecture, their 

performance is incompatible with wide data parallelism.  To illustrate, the simple data 

movement kernels we present in Section 1.3.2 incur 200-1700x slowdown with the 

introduction of atomic workloads.   

2.6.2 Conclusions from workload and architectural studies 

The lack of efficient fine-grained atomics contributes to the notion that GPUs are less 

practical for cooperative parallelizations.  Without atomics, parallelizations requiring 

contended access would seem to require fundamentally different algorithms than those 
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that perform well on mainstream multi-core CPUs.  This disparity is revealed by GPU 

benchmark suites.  In comparing their heterogeneous Rodinia benchmark suite [27] with 

the multi-core PARSEC suite [14], Che et al. note that fine-grained synchronization 

figures much more prominently in the latter, despite principle component analysis 

showing that both sets of workloads cover similar application spaces [28].   

“Different” often has a negative connotation for two reasons.  The first is simply 

that it requires new effort.  Cooperative parallelizations designed for CPUs are not 

suitable for GPU architecture.  Alternative, atomic-free strategies must be developed  

The second is that it carries an implied uncertainty, a non-obvious factor for how 

best to implement cooperation.  The inefficiencies of existing methods are reflected in 

several ways.  First, the performance speedups we demonstrate within this dissertation 

indicate the significant headroom for improvement.  Additionally, the workload studies 

we review below report that GPU architecture is lacking in features that facilitate 

parallelizations with explicit contention.  Such studies are important tools for distilling 

important architectural features. 

In their rebuttal of GPU performance claims, Lee et al. express several criticisms 

relating to a perceived dearth of support for fine-grained thread cooperation [76].  Their 

survey of throughput problems reports lackluster GPU performance for many list, tree, 

and graph-based algorithms when evaluated alongside competent and comparable multi-

core implementations and processors.  With respect to contention, they advocate atomic 

support for histogram parallelization [119] and recommend specialized vector read-

modify-write operations for improved atomics within SIMD lanes3.  They suggest tree-

                                                                 
3 We note that histogram is fundamentally a counting problem.  The amortized contention within counting networks has 

been provably shown to be significantly lower than with single-variable shared counters [44]. 
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structured search [70] would benefit from a fine-grained ability to expand work among 

SIMD lanes, i.e., to cooperatively enlist nearby threads for related tasks4.  They observe 

the radix sorting passes of prior work [98] to incur excessive instruction overhead from 

inefficient prefix sum and speculated that GPU SIMD width is too wide.  They advocate 

a coherent cache hierarchy for improved cross-core communication using atomics.  

Finally they recommend hardware accelerated task queues for fine-grained workload 

management, pushing the burden of contention from software into hardware. 

With regard to parallel graph computation, Bader et al. posited fine-grained 

atomic operations as a critically important architectural feature for task and status 

management [8, 7].  Hong et al. have suggested the absence of efficient GPU atomics 

precludes the construction of shared queues needed for work-optimal graph traversal [63, 

64].  Instead, they advocate a quadratic-work method for BFS that avoids contention 

altogether, a method only suitable for a narrow regime of sparse graphs having small 

constant diameter.  Furthermore they only recommend the GPU for select traversal 

phases having abundant bulk concurrency.   

With the exception of the linear-work BFS parallelization by Luo et al. [79], all 

prior published GPU implementations have implemented the quadratic method to avoid 

the challenges of dynamic queue management.  In fact, Hussein et al. performed 

quadratic BFS on the GPU largely to avoid the cost of transferring the GPU-resident 

graph to the CPU just for BFS and then back again [66].   

A common criticism from GPU application benchmarking efforts is that 

performance would often be improved by fine-grained task and data reorganization for 

improved balance and memory reference locality, an optimization not trivially 

                                                                 
4 In Chapter 6, we demonstrate cooperative enlistment for BFS using efficient local prefix sum. 
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implemented without atomics.  Che et al. [28], Bakhoda et al. [9], and Kerr et al. [69] 

show that many benchmark workloads exhibit low activity factor (the average fraction of 

thread that are active at a given time) and low memory efficiency (the fraction of explicit 

warp accesses versus the actual number of memory transactions).  These statistics 

indicate irregular control flow and memory references, both of which are the result of 

sub-optimal mappings between threads and data items. 

With a perfect mapping of data and threads, the analyses by Zhang et al. indicate 

several factors of potential speedup for many benchmark applications [122].  Their G-

Streamline framework is able to achieve some of this speedup via dynamic data 

reordering and job swapping between threads.  The difficulties of fine-grained thread 

cooperation, however, led them to a pipelined implementation where the CPU handles the 

details of these transformations in advance.  This reflects the notion that fine-grained data 

and job reorganization is impractical within the GPU itself.  

As a result of these studies, there is a strong feeling that GPUs are not well-suited 

for parallel algorithms having dynamic data structures, dynamic workloads, and dynamic 

access patterns.  Unfortunately, the known work-efficient algorithms for many important 

problems often have one or more of these characteristics.  The constructions we describe 

within this dissertation serve as existence proofs that many of these concerns can be 

adequately addressed using counting networks, i.e., variants of prefix sum. 

2.7 CHAPTER SUMMARY 

The GPU is capable of efficiently executing large quantities of concurrent, ultra-fine-

grained tasks.  It derives much of its efficiency from SIMD hardware where a single 

instruction stream drives the same computation on multiple data elements.  The high-
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throughput philosophy of GPU architecture engenders wide SIMD, heavy multithreading, 

and long instruction latencies.  These characteristics are particularly problematic for the 

dynamic, fine-grained synchronization mechanisms that multithreaded algorithms have 

traditionally leveraged for making coherent updates to shared memory. 

Without practical mechanisms for atomic read-modify-write operations, the 

prevailing attitude is that GPUs are poor environments for dynamic data movement.  

Furthermore, workload studies have revealed that the opportunistic rearrangement of 

tasks and/or data would significantly reduce the burden of the architecture’s restrictive 

access patterns and sensitivity to load imbalance.  As a result, alternatives to atomic 

operations (such as prefix sum) have significant opportunity to improve the performance 

of parallelizations having allocation dependences. 
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Chapter 3  

 

Granularity coarsening & policy-based tuning  

 

 

 

 

 

 

3.1 INTRODUCTION 

Parallel programming is difficult.  We can generalize the inherent challenges of parallel 

programming as stemming from two related sources: expressing parallelism, and 

mapping the expression of parallelism onto real hardware.  The former encapsulates the 

creative aspects of devising and authoring a clean, concise, and correct description of 

concurrent tasks.  The latter comprises the practical aspects of compiling and scheduling 

such descriptions of computation and data movement onto the underlying hardware for 

efficient execution.   

The twin burdens of expression and mapping have historically fallen separately 

upon the shoulders of the programmer and the compiler/runtime, respectively.  For 

sequential programs, compilers have largely succeeded in providing performance-

portability across variations in microarchitecture, and have done so without explicit 

guidance from the programmer. 

However, the effectiveness of this arrangement is unlikely to continue as 

contemporary processor architecture embraces ever-increasing parallelism.  To achieve 
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performance-portability across diverse problem types and microarchitecture variants, we 

argue that parallel programs should incorporate flexible granularity coarsening, a sliding 

scale of parallel versus sequential computation.  This allows the expensive aspects of 

communication and the redundant aspects of data parallelism to scale with the width of 

the processor rather than the problem size.  We show this idiom to be critically important 

for obtaining good performance, particularly for GPU parallelizations that are 

cooperative in nature.   In this chapter, we describe our philosophy of expressing tunable 

concurrency with an eye toward producing good performance across a diversity of GPU 

hardware and problem instances. 

The requirement for flexible granularity (or flexible program-composition in 

general) complicates the manner in which we express concurrency.  The program must be 

expressed in terms of both serial and concurrent behavior.  We want to leave unbound 

both: (1) the number of steps each phase is to be run; and (2) the width of parallelism for 

each phase.  Our approach incorporates aspects of metaprogramming, i.e., programmer 

effort is split among two aspects: (1) expressing the template program, i.e., a general 

description how the target machine is to perform its computation; and (2) expressing the 

metaprogram, i.e., rules and guidance for the compiler to follow when mapping the 

template program onto a specific problem and processor. 

In this fashion, we can author the “general shape” of an implementation, leaving 

many of the performance-sensitive details unbound.  Our approach uses parametric policy 

types that describe how the compiler should expand, couple, and select from various 

phases of sequential and parallel computation.  In general, we use such tuning policy to 
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insulate both the programmer and the program text from implementation details having 

opaque performance consequences. 

3.1.1 Performance benefits 

Metaprogramming allows us to explore the space of reasonable tuning policies, 

evaluating the performance of thousands of alternative program specializations.  From the 

perspective of the programmer, it is a relief to be freed from many of the tuning decisions 

that are necessary to concretize a cooperative parallelization, yet are largely opaque in 

terms of their performance impact for a target processor that may not yet even be known.  

To demonstrate, we expend the programming effort to implement only a single, 

generic high-level implementation for the following primitives: parallel copy, reduction, 

scan, and reduce-by-key.  We then explore the tuning space of these four problems for a 

variety of data types and problem sizes across three generations of NVIDIA GPUs 

(GF100, GT200, and G92).  Our results show: 

• A large performance variance among reasonable specializations (which 

programmers could be expected to implement explicitly) 

• That we can identify specializations that maximally utilize the underlying 

processor for many combinations of problem type and architecture 

• That the highest performing specializations are different for distinct architecture 

versions, data types, and problem sizes 

• That no single specialization for a given problem performs very well across all 

data types, problem sizes, and architectures 
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3.1.2 Software reusability benefits 

Furthermore, our tuning approach dramatically improves software reusability.  Software 

reuse is a critical aspect of good software development practice.  However, GPU 

computing has received criticism for lack of software reuse [91].  The current trend in 

GPU library development is to provide developers with repositories of high-level data 

transformations (e.g., global reduction, sort, etc.) that can be invoked by sequential code 

on the host platform.    

While these “host-side” primitives unburden the programmer from writing any 

parallel device software, libraries of “device-side” subroutines do not exist.  For example, 

there are no collections of device subroutines for performing local reduction or local 

prefix sum within a CTA.  This is an aspect of GPU software development that has 

heretofore been neglected.   

We believe the dearth of reusable software components for constructing GPU 

kernels corresponds to a lack of performance flexibility.  The performance of kernel code 

can be significantly affected by problem type, problem size, and specific GPU processor 

architecture.  There is little value in providing libraries of reusable device subroutines 

that cannot be tailored for the specific problem and processor at hand. 

Our explicit use of the type system for template metaprogramming provides us 

with the interface flexibility needed for software reusability as well as performance 

tuning.  Reusable subroutines can be co-optimized with the enclosing kernel source.  All 

of the kernels described within this dissertation are composed from our BackForty library 

of reusable, tunable device subroutines for common CTA activities (e.g., workload 

management, data movement, variants of local reduction and scan, etc.) [6]. 
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3.2 TUNABLE CONCURRENCY 

In this section, we further describe our perspective on the difficulties of parallel 

programming and the necessity for design idioms that facilitate the flexible coupling of 

diverse parallel and serial algorithmic phases.  In particular, we focus on two prevalent 

attitudes regarding parallel software development that we feel are ultimately 

counterproductive:  

• It is simpler (and thus preferable) to express all available concurrency within 

software. 

• It is simpler (and thus preferable) to insulate the expression of such concurrency 

from the process of efficiently mapping it onto the underlying hardware. 

3.2.1 Expressing all available concurrency is counterproductive 

Imperative algorithms for asynchronous, multithreaded models of computation are 

notoriously hard to construct, prove correct, maintain, and debug.  The inherent non-

determinism often leads to unanticipated interactions that are difficult to diagnose.  Over 

the years, many programming models, languages, and APIs have been designed with the 

intent of simplifying the expression of parallel algorithms.  

Many of these abstractions are designed for the program to specify all available 

concurrency.  For example, SISAL [83], MultiLisp [54], and VHDL [67] are well-known 

declarative languages for expressing data dependences.  These dependences dictate the 

global flow of computation, and all independent operations can proceed in parallel.  In a 

similar vein, OpenMP [36], CUDA [34], and map-reduce [38] are examples of popular 

imperative paradigms for specifying data-parallel operations to be performed on every 

data element.  The abstract GPU machine model supports this idiom through thread 
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virtualization, i.e., the decoupling of logical threads from hardware threads.  

Programmers are encouraged to construct data-parallel task decompositions that 

instantiate a unique logical thread for every data item. 

This idiom of parallel expression simplifies many decisions for the programmer.  

It allows to them to remain oblivious to hardware details and focus on encoding a single 

parallelization that simply expresses the smallest granularity of concurrent tasks.   

However, this style of task decomposition has important consequences for 

cooperative problems.  When logical threads scale with input size, so does the amount of 

communication through memory.  Communication between logical threads often results 

in the same data being loaded back into registers on the same processor core, yet at the 

expense of many clock cycles and costly synchronization for correctness.  We would 

prefer not to move such data at all.  This implies that communication overhead should 

scale with physical processing elements, not problem size.   

Furthermore, much of the instruction workload also scales with logical threads.  

Local computation within a CTA typically involves computing conditional predicates, 

performing offset calculations, initializing local variables and shared memory, etc.  Many 

 

(a) Serial:  n-1 depth and O(n) size (b) Brent-Kung: 2log2n - 1 depth and 

O(n) size 

(c) Kogge-Stone: log2n depth and 

O(nlog2n) size 

Fig. 13.  Alternative dataflow constructions for 8-element prefix sum 
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of these operations are identical across CTAs.  For example, thread ti in one CTA is 

likely to have the same activation schedule and access the same shared memory locations 

as thread ti in all other CTAs.  These identical instructions are effectively redundant when 

they are ultimately executed on the same SIMD lanes.  When the number of CTAs scales 

with problem size, this redundant computation does as well. 

We can apply the idiom of granularity coarsening to reduce the presence of 

unnecessary computation and communication.  We do this by increasing the granularity, 

i.e., amount of serial work performed by each thread, warp, and CTA.  Our goal is to 

construct parallelizations where logical threads are a multiple of machine width, not 

problem size.  As we further illustrate in Section 3.3, granularity coarsening significantly 

improves our ability to efficiently map the implementation onto various underlying 

hardware. 

3.2.2 The insulation of “expression” from “mapping” is counterproductive 

A clear, concise, elegant, and correct program is not particularly useful if it does not map 

well to the specific processor it is to be executed on.  For sequential computation, the 

responsibility of constructing this mapping has traditionally fallen on the shoulders of the 

optimizing compiler with little to no visibility from the program.  For parallel programs, a 

philosophy of complete insulation from the mapping process is less useful for achieving 

both portability and performance.  At worst, it is counterproductive.  In this section we 

discuss three aspects of mapping that would benefit from explicit guidance from the 

program: algorithm selection, scheduling, and variable concurrency. 

Algorithm selection.  For many problems, no single parallelization is best across 

all processor architectures and input sizes, types, and data.  As discussed in Chapter 2, 
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different processor genres can require fundamentally different algorithms for solving the 

same problem, and the preference of one algorithm over another can depend on problem 

size and data type [5]. 

In an ideal world, we would like our compilers to be able to: (a) detect that a 

program implements a particular algorithm; and (b) discover an alternative parallelization 

that might be better suited for the underlying hardware.  For example, we might want to 

detect that the program expresses a work-efficient parallelization of prefix sum having 

depth 2log2n (e.g., Fig. 13b) and replace it with a shorter, work-inefficient construction 

having depth log2n (e.g., Fig. 13c) when the problem size drops below the warp width.   

In an ideal world, we would like our compilers to be able to: (a) detect that a 

program implements a particular algorithm; and (b) discover an alternative parallelization 

that might be better suited for the underlying hardware.  However, it is extremely difficult 

for compilers to synthesize alternative, fungible parallelizations, particularly for problems 

having non-trivial data dependences.  In the general case, it is impossible [95, 96]. 

This motivates an alternative paradigm having a less opaque relationship between 

the expression of the parallel program and its compilation, e.g., one in which the compiler 

is provided with algorithmic alternatives and rules for guiding selection among them 

based upon problem type and target processor. 

Scheduling and resource management.  The challenges of mapping programs 

onto parallel hardware extend beyond algorithm selection and choice.    Even when the 

basic outline of an algorithm is a good fit for the underlying machine model, an efficient 

scheduling of tasks on one processor can result in significant underutilization on another.  

This is exacerbated on contemporary GPUs, where the hardware resources provisioned 
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for each thread (e.g., registers, shared memory, etc.) are intimately intertwined with co-

scheduling, i.e., thread blocking.   

Logical threads are dispatched onto processor cores by CTA. The number of 

resident, active CTAs per core is limited by the core’s resources, namely the aggregate 

register file, local shared memory, and scheduling contexts.  For example, the NVIDIA 

GF100 architecture provisions 32K 32-bit registers, 48KB shared memory, and 

scheduling resources for 1,536 threads per core.  The configuration space for thread 

blocking is quite large, including such alternatives as: 

a) Three resident 512-thread CTAs (1536 threads/core), 16KB shmem per CTA, 21 

registers per thread  

b) Six resident 128-thread CTAs (768 threads/core), 8KB shmem per CTA, 42 

registers per thread   

c) Eight resident 64-thread CTAs (512 threads/core), 6KB shmem per CTA, 64 

registers per thread  

What should the program specify?  The performance consequences are opaque.  More 

resident threads does not necessarily imply greater throughput if computation or memory 

is already saturated.  More independent CTAs can provide a greater diversity of 

instantaneous thread behavior for better core utilization.  The same diversity, however, 

can be harder on read-only cache hierarchies.  More CTAs also reduces the amount of 

shared scratch available to each for local cooperation.   

Furthermore, the complex relationships between these details explicitly affect the 

imperative behavior of threads, e.g., the locations in shared memory that threads must 

read and write from.  On one hand, we can encode these relationships directly within our 
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kernel programs, having each thread dynamically compute many of the derivative details 

it will need (e.g, offsets, strides, etc.) from parameters supplied by the host program.  

Alternatively, we can encode these relationships statically using the type system, 

allowing the much of this information to be computed at compile time. 

The compiler can do a much better job of code generation if the thread blocking 

information can be specified at compile time.  Without knowledge of the desired number 

of resident threads per core, the compiler must perform conservative register allocation 

under the assumption that the core may be fully occupied with threads.  By specifying a 

combination of desired CTA occupancy and CTA size that is below the maximum thread 

residency for the core, the compiler can allocate more registers per thread.  This can 

significantly improve performance by minimizing costly spills and lowering dynamic 

instruction overhead via common subexpression elimination. 

In our evaluations, we illustrate large performance variances among reasonable 

thread blocking configurations that programmers could be expected to implement 

explicitly.  Unfortunately there is little information to guide selection from the space of 

diverse, yet functionally-equivalent alternatives.  Without precise analytical models for 

complex and data-dependent scheduling interactions on specific target architecture, 

empirical performance tuning is a compelling approach for optimizing hierarchical thread 

blocking. 

Variable concurrency.  Parallel programming adds an important facet to 

performance tuning: the amount of concurrency expressed.  As a deeply multithreaded 

architecture, GPUs are designed to be saturated with concurrency, a feature that is 

ostensibly well-suited to the programming idiom of expressing all available concurrency.   
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From the perspective of mapping programs onto hardware, this idiom is attractive 

in several ways.  First, the approach ensures that the concurrency expressed by a given 

program is both maximal and scales with problem size.  These two properties are useful 

for achieving strong and weak scaling, respectively.  Second, the idiom provides good 

portability.  It abstracts away the physical details of processor cores and SIMD widths 

that may vary across GPUs.  Finally, the oversubscription of processing elements with 

short-lived tasks helps ensure good load balancing and overall utilization.   

As we show in the following section, however, this simplistic approach leads to 

substantial inefficiencies that stem from redundant computations and unnecessary rounds 

of communication between logical threads.  Instead, we advocate design approaches 

where programmers explicitly express both serial and cooperative phases of their 

algorithms and rules for how they should be coupled.  Although such flexible granularity 

coarsening complicates the expression of the program, we prefer to leave the granularity 

of serial work performed by CTAs, and warps, and threads unbound until the compiler 

and/or runtime maps their operation onto the target hardware.  

3.3 GRANULARITY COARSENING 

This section describes two important design idioms for applying granularity coarsening 

with respect to CTAs, warps, and threads: CTA-serialization and thread serialization.   

We make extensive use of these two patterns throughout this dissertation.  Along the 

way, we illustrate examples of unnecessary overheads that are incurred by programs that 

are rigidly constructed to express all available concurrency. 



 

3.3.1

The CUDA 

number of threads

illustrates this for a simple data

exactly one 

corresponds to the number of threads in a CTA.

scheduling granularity 

problem in which the number of CTAs launched 

for each CTA 

each CTA is responsible for serially processing 

number 

                                        
5 To avoid further overloading of the term “block”, we use 

3.3.1 CTA serialization

The CUDA 

number of threads

illustrates this for a simple data

exactly one 

corresponds to the number of threads in a CTA.

scheduling granularity 

Fig. 14

problem in which the number of CTAs launched 

for each CTA 

each CTA is responsible for serially processing 

number of logical 

                                        

To avoid further overloading of the term “block”, we use 

to process to completion before terminating or obtaining another block of input.

Fig. 14

ti
le

CTA0

CTA serialization 

The CUDA programming model encourages 

number of threads, and thus the number of CTAs, 

illustrates this for a simple data

exactly one tile5 of data, typically where the number of data elements 

corresponds to the number of threads in a CTA.

scheduling granularity b, the kernel will launch

14b illustrates

problem in which the number of CTAs launched 

for each CTA is wrapped within in 

each CTA is responsible for serially processing 

of logical threads scales with processor wid

                                                                

To avoid further overloading of the term “block”, we use 

s to completion before terminating or obtaining another block of input.

(a) Data

(b) CTA serialization (each CTA iteratively processes multiple tiles)

14.  Example CTA decompositions for a data

programming model encourages 

, and thus the number of CTAs, 

illustrates this for a simple data-parallel transformation

of data, typically where the number of data elements 

corresponds to the number of threads in a CTA.

, the kernel will launch

illustrates an alternative 

problem in which the number of CTAs launched 

wrapped within in a 

each CTA is responsible for serially processing 

threads scales with processor wid

                         

To avoid further overloading of the term “block”, we use 

s to completion before terminating or obtaining another block of input.

(a) Data-parallel CTA decomposition (one tile per CTA)

(b) CTA serialization (each CTA iteratively processes multiple tiles)

Example CTA decompositions for a data

programming model encourages data

, and thus the number of CTAs, 

parallel transformation

of data, typically where the number of data elements 

corresponds to the number of threads in a CTA.

, the kernel will launch a grid of 

an alternative CTA decomposition for the same data

problem in which the number of CTAs launched 

a while-loop.  

each CTA is responsible for serially processing 

threads scales with processor wid

To avoid further overloading of the term “block”, we use tile to describe a block of input data that a CTA is designed 

s to completion before terminating or obtaining another block of input.

 

parallel CTA decomposition (one tile per CTA)

 

 
(b) CTA serialization (each CTA iteratively processes multiple tiles)

 

Example CTA decompositions for a data-parallel transformation

data-parallel decompositions where the 

, and thus the number of CTAs, scales with problem size.  

parallel transformation (e.g., copy)

of data, typically where the number of data elements 

corresponds to the number of threads in a CTA.  For a given proble

a grid of C = 

CTA decomposition for the same data

problem in which the number of CTAs launched C is constant.

.  When C is a fixed multiple of

each CTA is responsible for serially processing O(n/(pb)) tiles.  

threads scales with processor width instead of 

to describe a block of input data that a CTA is designed 

s to completion before terminating or obtaining another block of input.

parallel CTA decomposition (one tile per CTA)

(b) CTA serialization (each CTA iteratively processes multiple tiles)

parallel transformation

parallel decompositions where the 

scales with problem size.  

(e.g., copy).  Each CTA processes 

of data, typically where the number of data elements 

For a given proble

= n/b CTAs. 

CTA decomposition for the same data

is constant.  The tile

is a fixed multiple of

)) tiles.  Because 

instead of problem size. 

to describe a block of input data that a CTA is designed 

s to completion before terminating or obtaining another block of input. 

parallel CTA decomposition (one tile per CTA) 

(b) CTA serialization (each CTA iteratively processes multiple tiles) 

parallel transformation.  Tile size b=4 elements

parallel decompositions where the 

scales with problem size.  Fig. 

.  Each CTA processes 

of data, typically where the number of data elements b in a tile 

For a given problem of size n

 

CTA decomposition for the same data-parallel 

The tile-processing logic 

is a fixed multiple of cores 

Because C is O(p

problem size.  

to describe a block of input data that a CTA is designed 

=4 elements. 

…

CTAn

49 

parallel decompositions where the 

Fig. 14a 

.  Each CTA processes 

in a tile 

n and 

parallel 

processing logic 

cores p, 

p), the 

to describe a block of input data that a CTA is designed 

 

 

n/b-1



50 

 

We illustrate the effectiveness of this technique for a trivial data-parallel “copy” 

kernel.  Threads simply read and write their 32-bit elements from one global array to 

another.  We use 64M-element arrays, large enough to saturate the GTX480 memory 

subsystem.  Fig. 15 plots the number of dynamic thread-instructions executed per input 

element as a function of the number of CTAs launched by the kernel.  We vary the CTA 

count from the minimum number needed to occupy the processor (8p=120 CTAs) to fully 

data-parallel (n/b = 64K CTAs where b=1024).  

We observe that dynamic instruction overhead increases linearly with the number 

of CTAs invoked.  With fewer CTAs, the computational savings from reduced 

concurrency and increased serial processing are substantial.  Compared to the strictly 

data-parallel extreme on the right hand side, restricting the amount of concurrency to the 

width of the processor reduces the overall computational workload by 57%.   

Two factors contribute to these savings.  First, the reduced number of logical 

threads lowers the overall thread-setup overhead.  This includes instructions for loading 

the kernel parameters into registers, computing the offset of the CTA’s first tile, the offset 

  

Fig. 15.  “Copy” kernel instruction overhead vs. CTA 

granularity for 64M-element datasets (GTX480) 

Fig. 16.  “Copy” kernel utilized bandwidth vs. problem 

size n (no CTA serialization, GTX480) 

 

0

1

2

3

4

5

6

7

8

0 8192 16384 24576 32768 40960 49152 57344 65536

T
h

re
a

d
-i

n
st

ru
ct

io
n

s 
/i

n
p

u
t 

e
le

m
e

n
t

Grid size C (CTAs launched)

0

20

40

60

80

100

120

140

160

180

256 2048 16384 131072 1048576 8388608 67108864

U
ti

li
ze

d
 B

a
n

d
w

id
th

 (
G

B
/s

)

Problem size n (32-bit elements, log-scale)



 

of the thread into that tile, etc.  

processing 

decompositions.  

for parallel 

The host program further invokes log

reductions into a single aggregate result.

saturate the 

example, the second level of a 64M element reduction tree 

contains only 64K elements

saturates for inputs larger than 8M elements (

invocations

fully utilizing the processor.

our reduction example.  When 

Fig. 

elements

of the thread into that tile, etc.  

processing loop

This 

decompositions.  

for parallel reduction.  

The host program further invokes log

reductions into a single aggregate result.

However, 

saturate the processor

example, the second level of a 64M element reduction tree 

contains only 64K elements

saturates for inputs larger than 8M elements (

invocations leave the GPU under

fully utilizing the processor.

As an alternative, 

ur reduction example.  When 

(a) logb-level tree: each CTA processes one tile

Fig. 17.  Example CTA decompositions for global reduction

elements. 

tile

tile

CTA0

K
e

rn
e

l s
e

q
u

e
n

c
e

of the thread into that tile, etc.  

loop, further reducing the workload per input element

This CTA serialization

decompositions.  Fig. 17a illustrates 

reduction.  Each CTA computes a partial reduction from its tile of 

The host program further invokes log

reductions into a single aggregate result.

However, GPUs are only efficient when 

processor.  

example, the second level of a 64M element reduction tree 

contains only 64K elements

saturates for inputs larger than 8M elements (

leave the GPU under

fully utilizing the processor.

As an alternative, 

ur reduction example.  When 

level tree: each CTA processes one tile

mple CTA decompositions for global reduction

tile

of the thread into that tile, etc.  Second

further reducing the workload per input element

CTA serialization idiom 

a illustrates 

Each CTA computes a partial reduction from its tile of 

The host program further invokes log

reductions into a single aggregate result.

GPUs are only efficient when 

.  This is rarely true for the interior of the reduction tree.  For 

example, the second level of a 64M element reduction tree 

contains only 64K elements.  Unfortunately the memory subsystem for the GTX480 only 

saturates for inputs larger than 8M elements (

leave the GPU undersubscribed.  O

fully utilizing the processor. 

As an alternative, Fig. 17b illustrates 

ur reduction example.  When C is a constant multiple of 

level tree: each CTA processes one tile

mple CTA decompositions for global reduction

CTAn/b

Second, the compiler 

further reducing the workload per input element

idiom is also 

a illustrates the traditional 

Each CTA computes a partial reduction from its tile of 

The host program further invokes logbn - 1 reduction 

reductions into a single aggregate result.   

GPUs are only efficient when 

This is rarely true for the interior of the reduction tree.  For 

example, the second level of a 64M element reduction tree 

Unfortunately the memory subsystem for the GTX480 only 

saturates for inputs larger than 8M elements (Fig. 

subscribed.  Only the first reduction kernel is capable of 

b illustrates the 

is a constant multiple of 

 

level tree: each CTA processes one tile (b) 

mple CTA decompositions for global reduction.  CTAs are comprised of four threads.  Tile size 

b-1

u
n
d

e
r-

s
u
b

s
c
ri
b

e
d

compiler can hoist 

further reducing the workload per input element

also particularly 

the traditional recursive 

Each CTA computes a partial reduction from its tile of 

1 reduction kernel

GPUs are only efficient when the problem size is large 

This is rarely true for the interior of the reduction tree.  For 

example, the second level of a 64M element reduction tree with

Unfortunately the memory subsystem for the GTX480 only 

Fig. 16).  Th

nly the first reduction kernel is capable of 

the CTA serialization 

is a constant multiple of p and roughly the same order of 

(b) Two-level: CTAs are reused to process multiple tiles

.  CTAs are comprised of four threads.  Tile size 

can hoist operations 

further reducing the workload per input element.  

particularly effective 

recursive data-parallel 

Each CTA computes a partial reduction from its tile of 

kernels to reduce these partial 

the problem size is large 

This is rarely true for the interior of the reduction tree.  For 

with branching factor 

Unfortunately the memory subsystem for the GTX480 only 

).  The second and third kernel 

nly the first reduction kernel is capable of 

CTA serialization idiom 

and roughly the same order of 

level: CTAs are reused to process multiple tiles

.  CTAs are comprised of four threads.  Tile size 

operations out of the 

effective for recu

parallel decomposition 

Each CTA computes a partial reduction from its tile of b elements.  

s to reduce these partial 

the problem size is large enough to 

This is rarely true for the interior of the reduction tree.  For 

branching factor b=1024 

Unfortunately the memory subsystem for the GTX480 only 

e second and third kernel 

nly the first reduction kernel is capable of 

idiom as applied to 

and roughly the same order of 

level: CTAs are reused to process multiple tiles

.  CTAs are comprised of four threads.  Tile size b=4 

51 

out of the tile-

for recursive 

decomposition 

elements.  

s to reduce these partial 

enough to 

This is rarely true for the interior of the reduction tree.  For 

=1024 

Unfortunately the memory subsystem for the GTX480 only 

e second and third kernel 

nly the first reduction kernel is capable of 

as applied to 

and roughly the same order of 

 

level: CTAs are reused to process multiple tiles 

=4 



52 

 

magnitude as b, we only need a single-CTA kernel to reduce one tile of C partials.  This 

two-level CTA decomposition finishes the inefficient part of parallel reduction as quickly 

as possible. 

Furthermore, the cost of aggregating partial reductions between tiles is much 

lower.  For sequentially-processed tiles, we can simply leave these partials in registers 

instead of exchanging them through global memory.  We obviate O(n/b) global memory 

reads and writes at a savings of 2-4 instructions per round-trip (offset calculations, load, 

store).    Instead, we only require O(C) global communication for partials, where C is 

now independent of n.   

(a) Global parallel reduction (b) Global parallel prefix sum 

 

 
(c) Global parallel partitioning (16-way) 

 

Fig. 18.  Cooperative instruction overhead vs. CTA granularity (GTX480) 
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The two-level decomposition is also more energy-efficient.  The energy required 

to move a 32-bit word through DRAM is currently on the order of 2,000 pJ [13].  The 

energy cost of leaving it in a register and simply reading it later is roughly 1.7 pJ.  

Fig. 18 illustrates the effectiveness of CTA serialization for the cooperative 

problems of global reduction, prefix sum, and multi-way partitioning (for radix sorting).  

By only invoking as many CTAs as can be actively resident on the processor, we 

demonstrate computational savings of 67% for reduction, 42% for prefix sum, and 27% 

for partitioning.  

3.3.2 Thread serialization 

In this subsection, we discuss the merits of granularity coarsening for local cooperation 

with the CTA.  The programming model’s hierarchical memory spaces and grouping 

constructs encourage the decomposition of globally-cooperative problems into 

independent subproblems (tiles) that can be can be processed in nearby shared memory 

with much better locality. 

 
 

Fig. 19.  Recursive, pair-wise parallelization of local CTA reduction.  Lighter dataflow arrows indicate partials left in 

registers. 

barrier

…

…

…

barrier

…

…

…

barrier

barrier

barrier

barrier

barrier

…

…

t0

t0

t1

t3 t15

t31

t63t15

t6 t7

t0 t1

t0

t0

t7

t3

t0 t1

t0

t12



54 

 

When expressed at their finest granularity, the task dependences for many 

cooperative parallelizations comprise binary trees of communication through shared 

memory spaces.  Reduction and prefix sum are commonplace examples.  At each 

timestep, the expressed concurrency is geometrically decreasing (or increasing).  Fig. 19 

illustrates such pair-wise reduction as mapped onto threads within a CTA.  

Despite its simplicity and abundant concurrency, this parallelization is quite 

inefficient on GPU architecture.  Each of the b-1 reduction operators has an operand that 

needs to be written, synchronized, and read from shared memory. After performing an 

operator, threads must also evaluate a conditional to determine whether they will be 

active in the subsequent level.  For example, a 1024-thread CTA requires 4,224 thread-

instructions6 to reduce a tile of b=1024 elements. 

A much better fit is the generic, three-phase construction illustrated in Fig. 20.  

Each phase seeks to either increase the amount of sequential work within a given storage 

                                                                 
6 The actual width of the final five reduction levels is the warp-width wSIMD=32, regardless of deactivated threads.  

Fig. 20.  Recursive, three-phase parallelization of local CTA reduction.  Lighter dataflow arrows indicate partials left in 

registers. 
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class (e.g., registers, shared memory, etc.) or exploit a particular aspect of the abstract 

machine model (e.g., lock-step thread progress within the warp): 

1) Sequential reduction in registers.  This phase decouples the tile size b from the 

CTA size pCTA.  Each thread loads b/pCTA items.  It is important that this phase be 

wide enough to saturate the global memory subsystem with requests.  The loaded 

elements are sequentially reduced in registers without read, write, and barrier 

instructions.   

2) Sequential reduction in shared memory.  We place the partials from the previous 

step into shared memory, invoke a barrier, and then reduce the parallelism to the 

SIMD width wSIMD of the processor core.  One warp then serially rakes7 over the 

shared partials for pCTA/wSIMD steps without write and barrier instructions.   

3) Cooperative, warp-synchronous reduction.  Finally, the single raking warp 

performs a synchronization-free, pair-wise reduction in shared memory of the 

partial reductions computed in the previous phase.  We exploit the lock-step SIMD 

behavior of threads within the same warp to avoid explicit barrier synchronization.  

This construction only requires one barrier-synchronized exchange through shared 

memory that is accompanied by a single conditional for reducing the degree of 

parallelism.  All other steps are free of conditionals, and the bulk of the reduction 

operators (first phase) are free of any shared memory overhead.  Compared with the pair-

wise example, this three-phase construction only requires 1,440 thread-instructions to 

reduce a tile of b=1024 elements using a 128-thread CTA with wSIMD=32, a savings of 

67%. 

                                                                 
7 Raking is a strategy for assigning a set of threads p to process a much larger data set.  Each thread is assigned an even-

share of consecutive inputs to process serially, i.e., the stride between threads is p and the stride between elements for 

a given thread is 1. Alternatively, strip mining iteratively stripes the mapping of threads across the input set, i.e., the 

stride between threads is 1 and the stride between elements for a given thread is p. 
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accessible storage banks.  Bank conflicts arise when threads within the same warp access 

different words residing in the same memory bank.  A bank can only service one thread 

at a time.  This results in the undesirable serialization of otherwise concurrent memory 

accesses. 

Without proper padding, many of the concurrent reads made by threads in our 

raking warp would target the same memory banks.   For example, the raking threads in 

Fig. 21a experience four-way bank conflicts for every read from shared memory, causing 

each read instruction to be replayed four times.  The number of memory banks is a 

multiple of the stride between raking threads.  Alternatively, the padding in Fig. 21b 

ensures no bank conflicts, as the number of banks and thread stride are relatively prime. 

The formal data type being reduced affects the following aspects of shared 

memory layout: (1) the placement of padding; (2) the placement-offset for storing each 

partial reduction into shared memory; and (3) the raking offsets for raking threads.  

Continuing the example in Fig. 21, local reduction of 64-bit doubles would require eight 

bytes of padding for every eight doubles placed into shared memory.  For 8-bit 

characters, our example requires no padding: all 64 characters fit within one row of 

memory banks.   

In short, our tuning decisions, the problem type, and the target architecture all 

affect the data types we use to organize communication through shared memory. 

3.4 TUNING VIA THE TYPE SYSTEM 

Our design idiom for tuning via the type system uses the language’s support for template-

based metaprogramming to ease the burden of granularity selection and algorithmic 

choice.  We author our parallel algorithms such that they can be specialized by tuning 
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policy.  We express such tuning policy using reflective C++ types.  Our kernel 

procedures are parameterized to accept such policy types as template parameters.  Within 

the procedure, we can then express various aspects of its behavior in terms of the 

information carried within the policy type.   

In this fashion, we can author the “general shape” of an implementation, leaving 

many of the performance-sensitive details unbound.  We can then use (and reuse) this 

code later by binding it with a tuning configuration policy that matches the specific 

problem at hand.  The configuration policy guides the compiler in unrolling and 

generating well-tuned code.   

Because the policy is statically known to the compiler, we eliminate the need for 

any runtime decision-making with each logical thread.  The overhead of runtime 

decision-making (e.g., how many loads to unroll) is particularly costly on GPU-like 

architectures having tens or hundreds of thousands of resident threads.  

3.4.1 A simple example: data-parallel copy 

Consider data-parallel copy as a trivial example.  As one of the simplest stencil kernels, 

threads simply load elements from a global input array and write them to equivalent 

locations within the output array.  Listing 1 illustrates a “concrete” tile-copying 

subroutine in which a CTA copies a tile of 32-bit floats.  Each thread loads and stores 

exactly one float.   

In practice, the ostensibly simple copy operation incorporates quite a few tuning 

decisions that are opaque in terms of their performance impact for any given architecture 

and problem type.  Lines 2-14 in Listing 2 illustrate a parametric type Policy that can be 

specialized in the following tuning dimensions: 
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a) The number of loads per thread per tile.  This allows us to increase the number of 

outstanding loads issued before stores at the expense of increased register pressure.  

Reasonable configurations include 2
0
, 2

1
, and 2

2
 loads per thread per tile. 

b) The number of items per load.  Current NVIDIA GPUs support vector-loads of up 

to four component elements.  Reasonable configurations include 2
0
, 2

1
, and 2

2
 

elements per vector load. 

c) The number of threads per CTA.  Reasonable configurations include powers-of-

twos ranging from 2
5
 to 2

10
 threads. 

Listing 1.  A straightforward kernel subroutine for CTAs 

to copy tiles of 32-bit floats from one global array to 

another 

Template parameters:  None 

Formal parameters: 

• Global input and output arrays d_in, d_out 

• Offset tile_offset into d_in/d_out of the tile to be 

copied 

• Optional limit guarded_elements on the number of tile 

elements to copy  

Other: 

• Global variable thread_id for thread identifier 

• Global variable cta_size for CTA-size in threads 

1 __device__ void CopyTile( 

1   float *d_in, 

2   float *d_out, 

3   size_t cta_offset, 

4   size_t guarded_elements = cta_size) 

5 { 

6   if (thread_id < guarded_elements) { 

7      

8     // Load tile data 

9     float data =  

10       d_in[tile_offset + thread_id]; 

11  

12     // Store tile data 

13     d_out[tile_offset + thread_id] = 

14       data; 

15   } 

16 } 

 

 

Listing 2.  A tuning policy type for data-parallel copy, 

followed by an example parameterization of that type 

specialized for large-problems of 8-byte elements on the 

GF100 architecture. 

1 // Tuning policy type 

2 template < 

3   // Problem instance type parameters 

4   typename T, 

5   int ARCHITECTURE, 

6  

7   // Tunable parameters 

8   int LOG_THREADS, 

9   int LOG_LOAD_VEC_SIZE, 

10   int LOG_LOADS_PER_TILE, 

11   ld::CacheModifier READ_MODIFIER, 

12   st::CacheModifier WRITE_MODIFIER, 

13   bool WORK_STEALING> 

14     struct Policy; 

15  

16 // Example policy parameterization  

17 // tuned for 8-byte data, large-size 

18 // problems  

19 typedef Policy<unsigned long long, 

20   GF100, 8, 7, 1, 0, ld::cg,  

21   st::cg, true> 

22     LargeProblemPolicy8B; 
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d) Work-stealing.  As algorithmic variants, we can either: (a) provide each CTA with 

an even-share of input tiles; or (b) allow CTAs to “steal” tiles of work using bulk 

atomic-addition as described in Chapter 1.3.1. 

e) Caching directives.  These modifiers affect cache behavior during loads and 

stores.  Current NVIDIA GPUs expose up to four variants: default caching at L2 

Listing 3.  A generalized, policy-based kernel subroutine for CTAs to copy tiles of elements from one global 

array to another.   

Template parameters:   

• Tuning policy type Policy having the following type 

definition fields:  

o T (data type to be copied) 

o SizeT (data type for offsets) 

and enumerated constant fields: 

o LOADS_PER_TILE (number of loads 

per tile) 

o LOAD_VEC_SIZE (elements per load 

o THREADS (number of threads per CTA) 

Formal parameters: 

• Global input and output arrays d_in, d_out 

• Offset tile_offset into d_in/d_out of the tile to be 

copied 

• Optional limit guarded_elements on the number of 

tile elements to copy  

Other: 

• Device function LoadTileValid() for reading each 

thread’s tile portion 

• Device function StoreTileValid() for writing each 

thread’s tile portion 

1 template <typename Policy>  

2 __device__ void CopyTile( 

3   typename Policy::T *d_in, 

4   typename Policy::T *d_out, 

5   typename size_t tile_offset, 

6   typename size_t guarded_elements =  

7     Policy::ELEMENTS_PER_TILE) 

8 { 

9   // Tile data 

10   typename Policy::T  

11     data[Policy::LOADS_PER_TILE] 

12         [Policy::LOAD_VEC_SIZE]; 

13  

14   // Load tile 

15   LoadTileValid < 

16     Policy::LOADS_PER_TILE, 

17     Policy::LOAD_VEC_SIZE, 

18     Policy::THREADS, 

19     Policy::READ_MODIFIER>( 

20       data, d_in + tile_offset, guarded_elements); 

21  

22   // Store tile 

23   StoreTileValid< 

24     Policy::LOADS_PER_TILE, 

25     Policy::LOAD_VEC_SIZE, 

26     Policy::THREADS, 

27     Policy::WRITE_MODIFIER> ( 

28       data, d_out + tile_offset, guarded_elements); 

29 }  
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and L1 levels; no caching; cache in global L2 using smaller cache lines; and 

tagging for preferential eviction. 

Listing 3 illustrates a templated copy subroutine that expresses the “general shape” of 

tile-copying.  This procedure is not bound to a specific type of copy-element.  In addition, 

each thread loads and stores a tunable number of elements.  Such tuning details are 

encapsulated within the template parameter type Policy.  An example “concrete” tuning 

policy that we have identified for copying large lists of 8-byte elements is shown in 

Listing 2, lines 18-20. 

Fig. 22 illustrates the diversity of the corresponding performance landscape for 

the current NVIDIA GF100 architecture (GTX480).  These tuning options enumerate a 

configuration space of 1,728 tuning variants per data type, per problem size.  We evaluate 

these specializations for a pair of “large” and “small” representative workloads: 128MB 

and 128KB.  Furthermore, we explore the configuration space for 1-byte, 2-byte, 4-byte, 

and 8-byte data types for each problem size.  We normalize the throughputs of each 

tuning configuration against the maximum observed for its problem size and plot the 

resulting slowdown histograms. 

 

(a) Large problem size = 128MB, max throughput = 164 GB/s 

 

(b) Small problem size = 128 KB, max throughput = 65 GB/s 

 

Fig. 22.  “Copy” kernel performance histograms of tuning configurations binned by normalized slowdown with respect 

to the maximum throughput achieved (NVIDIA GTX 480). 
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The large problem size (Fig. 22a) is representative of datasets large enough to 

saturate the memory subsystem.  In general, the GTX480 is somewhat forgiving at this 

problem size, i.e., it is skewed to the right.  On average, 25% of all configurations 

achieve more than 90% of the maximum achievable throughput (164 GB/s).  However, 

we observe that it is relatively much more difficult to achieve this performance when 

copying 1-byte characters.  Only 2% of configurations achieve more than 90% of 

maximum on 1B problem instances.   

The performance for the small problem size (Fig. 22b) is much more diverse.  

Only 6% of all specializations fall within 90% of the maximum throughput (65 GB/s).  

For the various problems discussed throughout this dissertation, we generally observe 

that it is comparatively harder to find tuning configurations that are well-suited to small, 

fleeting workloads.  

We also observed the configurations corresponding to the straightforward 

implementation specified in Listing 1 were not particularly competitive.  For the large 

128MB problems instances, the best 4-byte, 1-load, vector-1 configurations perform at 

less than 90% of the maximum achievable bandwidth.  For the small 128KB instances, 

these configurations only achieve 65% of maximum.  It is not obvious to the programmer 

that this “concrete” implementation would perform so poorly. 

Table 2. Max achievable DRAM bandwidth (10
9
 Bytes/s) 

 GTX480 GTX280 9800 GTX+ 

Unidirectional (even-share) 163.4 135.6 67.8 

Unidirectional (steal) 168.6 63.6 42.6 

Bidirectional (even-share) 153.6 125.4 61.7 

Bidirectional (steal) 163.7 85.3 55.5 
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Finally, we use this tunable kernel to determine the maximum-achievable DRAM 

bandwidths for each of our three of our evaluation GPUs (GTX480, GTX280, and 9800 

GTX+).  We use these throughputs, listed in Table 2, to evaluate memory-bound 

implementations throughout this dissertation.  

3.4.2 Analysis of performance landscape across GPU architecture 

In this section, we explore the cumulative tuning landscape for several data-parallel and 

cooperative problems across the last three generations of NVIDIA GPU architecture.  

Our results show: 

• Large performance spread across reasonable specializations  

• Specializations themselves have large performance variance across different 

GPUs, problem types, and problem sizes 

• No single specialization for a given problem performs exceedingly well across all 

data types, problem sizes, and architectures 

Table 3. Corpus of tuning benchmarks 

Benchmark Description Kernel tuning dimensions 
Tuning configs per 

problem instance 

Total 

sample 

evaluations 

Global copy One kernel. Copy kernel: a, b, c, d, e 1,728 124,416 

Global 

reduction 

Two kernels (“upsweep” and “spine”).  

Each CTA within the “upsweep” 

computes a partial reduction of its 

portion.  A single-CTA “spine” kernel 

further reduces these partials. 

Upsweep kernel:    

Spine kernel: 

a, b, c, d 

a, b, c 

8,748 104,976 

Global prefix 

sum 

Three kernels (“upsweep”, “spine”, 

and “downsweep”).  See Chapter 4. 

Upsweep kernel: 

Spine kernel: 

Downsweep kernel: 

a, b, c 

a, b, c 

a, b, c 

157,464 11,337,408 

Reduce-by-key Three kernels (“upsweep”, “spine”, 

and “downsweep”).  See Chapter 4. 

Upsweep kernel: 

Spine kernel: 

Downsweep Kernel: 

a, b, c 

a, b, c 

a, b, c 

157,464 11,337,408 
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Our evaluation is comprised of the following four benchmark problems: global copy, 

global reduction, global prefix sum, and global reduce-by-key8.  Table 3 lists the kernels 

that comprise each benchmark and the dimensions along which we can tune each kernel.  

For example, the reduce-by-key benchmark has three kernels, each of which can tuned by 

loads-per-thread, items-per-load, and number-of-threads-per-CTA (a, b, and c from the 

previous section).  With three kernels and 54 tuning specializations per kernel, the 

benchmark has an overall tuning domain of 157,464 tuning configurations. 

Our investigation evaluates how different tuning policies respond to different 

problem instances (where a problem instance is a specific combination of data type, 

problem size, and GPU architecture).  We evaluate the performance of each tuning 

configuration across a sample space of 72 problem instances constructed from 

combinations of the following: 

• Four data types (1-byte, 2-byte, 4-byte, and 8-byte elements) 

• Six problem sizes (128 KB, 512 KB, 2MB, 8MB, 32MB, and 128 MB) 

• Three GPU architectures (NVIDIA GF100, GT200, G92 represented by GTX480, 

GTX280, and 9800 GTX+ GPUs) 

We are interested in gauging how performance varies between configurations as well as 

within configurations.  These two properties intuitively correspond to configuration 

“strength” and “consistency”, respectively. 

We normalize our performance samples to the interval [0,1] so that we may 

generalize behavior across problem instances.  For every problem instance, we identify 

the tuning configuration that provides the best sample performance.  (For example, 

                                                                 
8 Reduce-by-key is the third phase of the map-reduce paradigm (after mapping and sorting) [38].  Given a list of key-

value pairs, it is analogous to a segmented reduction over the values where the segments are defined by regions of 

consecutive, identical keys.   
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reducing 128 MB of 4-byte integers on GT200 maximally proceeds at 169 GB/s.)  We 

then normalize the performance samples of all configurations for that problem instance in 

terms of relative slowdown against this “best” performance. 

We use the statistical metrics between-group variance (s
2

B) and within-group 

variance (s
2
W) for analyzing the diversities of configuration strength and consistency, 

respectively [41].  The between-group variance is a measure of the variability of 

configuration means around the grand mean.  The within-group variance is a weighted 

average of configuration variance, with weights determined by the number of problem 

instance samples in each configuration. 9   

Table 4 and Table 5 present the between-group and within-group variances, 

respectively.  The large ratios of s
2

B/s
2

W indicate that the broad majority of overall 

variation between pairings of configurations and problem instances is due to differences 

between configurations, i.e., certain configurations are innately better or worse than 

others.  The performance-slowdown histograms in Fig. 23 graphically illustrate the ample 

performance variation amongst tuning configurations by binning configurations by their 

average slowdown.   

Furthermore, Table 4 also reveals that some architectures are relatively more 

pliant than others.  For example, the variances among tuning configurations are much 

                                                                 
9 These metrics are used when performing statistical analysis of variance (ANOVA) to determine whether a set of 

groups are significantly dissimilar. 

Table 4. Between-configs slowdown variance (s
2

B) 

 GTX480 GTX280 9800 

GTX+ 

All 

GPUs 

Copy 0.52 0.08 0.48 0.40 

Reduction 0.74 0.15 0.31 0.41 

Scan 0.58 0.42 0.31 0.83 

Reduce-by-key 0.53 0.38 0.25 0.91 
 

Table 5. Within-configs slowdown variance (s
2

W) 

 GTX480 GTX280 9800 

GTX+ 

All 

GPUs 

Copy 0.03 0.04 0.14 0.07 

Reduction 0.03 0.04 0.11 0.06 

Scan 0.03 0.02 0.09 0.06 

Reduce-by-key 0.01 0.01 0.03 0.02 
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lower for problem instances on the GTX280 than for the newer GTX480, particularly for 

the reduction benchmark. 

Despite being dwarfed by between-groups variance, the within-groups variance 

s
2

W is also fairly significant.  For example, the within-groups deviation sW for prefix sum 

across all GPUs is √0.6 = 24%.  This implies that performance is also strongly related to 

problem instance, and that it will be relatively difficult to find tuning configurations that 

are universally better than others.   

The histograms in Fig. 23 corroborate the absence of tuning configurations that 

perform well across the entire sample space of problem instances.  “Well-rounded” 

 

(a) Global copy 

 

 

(b) Global reduction 

 

 

 
(a) Global prefix sum 

 

 
(b) Global reduce-by-key 

 

Fig. 23.  Performance histograms of tuning configuration “strength”.  Configurations are binned by the harmonic mean 

of their normalized slowdown across all problem instances. 
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tuning configurations do not exist.  For example, no single configuration for copy 

averages more than 75% of the maximum-achievable performance across problem 

instances.  For reduction, prefix-sum, and reduce-by-key, the best all-purpose 

configurations only average 73%, 73%, and 83% of what we can maximally achieve. 

3.4.3 Effectiveness of auto-tuning 

In this section, we evaluate how successful our tuning exploration is at identifying good 

code specializations. 

For large saturating problem sizes, we would like our memory-bound problems to 

proceed at the maximum-achievable DRAM bandwidth for each device.  Because of the 

heavily overlapped nature of the GPU, we would expect that all memory-bound 

specializations would yield equal performance.   

However, Table 6 reveals this not to be the case.  It presents the average 

bandwidth utilization of tuning configurations paired with 128MB problem instances, 

normalized to the DRAM bandwidth presented in Table 2.  The implementations that 

should be bandwidth-bound at this problem size (namely copy, reduction, and prefix sum) 

are nowhere near maximum bandwidth utilization. 

Our autotuning search is quite effective at finding configurations that perform at 

peak or near-peak bandwidth. Selecting among only the best-performing configurations 

Table 6. Average bandwidth utilization of all 

128MB tuning configurations 

 GTX480 GTX280 9800 GTX+ 

Copy 0.72 0.43 0.45 

Reduction 0.61 0.32 0.35 

Scan 0.59 0.46 0.47 

Reduce-by-key 0.31 0.16 0.16 
 

Table 7. Average bandwidth utilization of best 

128MB tuning configurations 

 GTX480 GTX280 9800 GTX+ 

Copy 1.00 0.99 0.99 

Reduction 0.96 0.88 0.95 

Scan 0.97 0.97 0.94 

Reduce-by-key 0.67 0.38 0.33 
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for each of the 128MB problem instances, Table 7 shows that we can identify policy 

configurations that perform exceptionally well for each data type (1B – 8B).  Even for 

our compute-bound problem (reduce-by-key), our best-performing configurations are 

more than twice as fast. 

We further illustrate the need for specialization by comparing our tuned global 

reduction kernels against those provided by the Thrust library of GPU primitives [113].  

Up until this point, we have only compared our best specializations with our own average 

specializations.  This raises the question of whether our average specializations are 

representative of concrete implementations “in the wild.”  Of the Thrust library of 

parallel primitives, only the global reduction implementation shares the same overall 

parallelization strategy10. 

Fig. 24 illustrates our autotuned reduction performance advantage over the Thrust 

implementation for both saturating 128MB and fleeting 128KB problem instances.  For 

large, GF100-based problems instances, the Thrust performances align with our average 

configuration performance.  In relation, our tuned specializations achieve a harmonic 

                                                                 
10 Their implementations of scan, reduce-by-key, duplicate-removal, etc., all impose significantly larger memory 

workloads than our parallelizations.  For data-parallel copy, they defer to the CUDA cudaMemCopy() API. 

(a) 128 MB problem instances (b) 128 KB problem instances 
 

Fig. 24.  Global reduction performance comparison between our autotuned and the “concrete” Thrust implementations. 
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mean speedup of 1.6x.   Their large-problem performance is relatively much better for the 

older GT200 and G92 architectures.  We only achieve 1.14x and 1.08x speedups for 

those GPUs, respectively. 

Fig. 24b illustrates the importance of autotuning for small problem sizes.  For this 

subset of problem instances, the Thrust performance is representative of our grand-mean 

configuration slowdown of 0.6 across all reduction problems.  In relation, our tuned 

specializations achieve harmonic mean speedups of 2.4x, 2.6x, and 3.9x for the GF100, 

GT200, and G92 architectures, respectively. 

3.5 CHAPTER SUMMARY 

We believe the days of writing concrete device code for the GPU are numbered.  If 

mainstream software developers are to embrace the GPU computing paradigm, the 

paradigm itself must embrace performance-portability.  At this juncture, many 

programmers appear willing to port their applications to the bulk-synchronous, data-

parallel programming model.  However, they will certainly balk at having to reconstruct 

their implementations in order achieve good utilization and efficiency when they wish to 

adapt them to different problem types and/or new processor architectures. 

This reflects our own experience while constructing reusable library primitives.  

This chapter described the two related design idioms that we have developed in order to 

achieve good performance-portability across a diversity of problem types and target 

architectures: flexible granularity coarsening and tuning via the type system. 

Flexible granularity coarsening.  Many parallel programming paradigms 

encourage programmers to express every last bit of concurrency inherent within their 

problem in hope that the compiler and/or runtime will efficiently schedule it onto the 
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underlying hardware.  Our profiling revealed that doing so often leads to substantial 

inefficiencies from redundant operations and unnecessary rounds of communication.  

This is particularly true for cooperative problems where the programmer dictates explicit 

communications patterns, making it difficult or impossible for the compiler to restructure 

such data flow in more efficient ways. 

As an alternative, we demonstrated the utility of an idiom where programmers 

express serial and cooperative phases of the algorithm, and rules for how these phases 

should be coupled by the compiler.  Our goal is for the concurrency expressed by the 

compiled implementation to scale with the width of the target architecture, not problem 

size. 

Tuning via the type system.  When authoring GPU programs, there are many 

decisions that must be made in order to construct a concrete program, yet have 

performance consequences that are opaque to the programmer.  Achieving performance-

portability implies leaving these details unbound in the program text.   

Among such decisions is the sliding scale of granularity coarsening described 

above, which influences the layout of shared memory spaces that cooperating threads 

communicate through.  As such, the tuning process necessarily involves the programming 

language’s type system.  As a mechanism for expressing rules for compiler to construct 

valid programs, the type system is both suitable and convenient for guiding the 

compilation of specialized implementation variants. 

In the course of our investigation, we validated two important arguments that 

underscore the usefulness of our policy-based tuning idioms: 
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1) Inflexible, concrete implementations are often incapable of delivering good 

performance across the domain of problem instances they might be expected to 

address.  It is particularly hard to simultaneously achieve good performance from a 

single implementation on both large, saturating workloads and small, fleeting 

workloads.  

2) By expressing only the general “shape” of the solution in our program text, our 

autotuning approach consistently discovers good program specializations for the 

specific problem instance at hand.     

Despite the added complexity of having to reason about both the execution of the 

program and the execution of the compiler, we feel that long-term benefits of 

performance-portability will be worth the effort. 
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Chapter 4  

 

Parallel Prefix Scan 

 

 

 

 

 

 

4.1 INTRODUCTION 

Software developers rely on algorithmic primitives as basic building blocks for solving 

more complex problems.  A particularly useful primitive for list processing applications 

on parallel machines is prefix scan (also known prefix reduction or simply as scan).  

Given a list of input elements and a reduction operator, scan produces an output list 

where each element is computed to be the reduction of the elements occurring earlier in 

the input list.  Implementations of parallel scan support a wide variety of problem 

domains, e.g., sorting, stream compaction, construction of trees, cooperative queue 

management, solving recurrence relations, etc.  [16, 17, 61] 

A salient characteristic of scan parallelizations is that the computational 

granularity of concurrent tasks is miniscule, often comprising only a single binary 

instruction (e.g., addition).  This aspect of scan makes it particularly amenable to fine 

grained computational environments, e.g., directly within electronic circuitry as well as 

within software for wide parallel architectures such as vector and GPU processors.   
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The primary performance consequence of such small computational granularity is 

that global memory bandwidth should be the limiting hardware resource.  However, we 

find this is not true of current GPU implementations of parallel scan: they either make 

inefficient use of device memory accesses, exhibit high dynamic instruction counts, or 

both [15, 35, 42].   

We argue that common data-parallel programming patterns and design idioms are 

responsible.  The GPU programming model fundamentally encourages programmers to 

decompose problems in ways that map unique threads onto individual data elements, i.e., 

the numbers of threads and their corresponding grouping constructs scale with problem 

size.   

However, prefix scan is not a data-parallel problem.  It is a cooperative one.  Its 

efficient computation requires intermediate computations to be shared amongst parallel 

processing elements.  As a result, approaches incorporating a data-parallel style of thread 

assignment impose unnecessary memory traffic in proportion to problem size.  To 

efficiently implement prefix scan on GPU architecture, we must increase the amount of 

serial work (granularity coarsening) in order for communication overheads to scale with 

processor width, not problem size. 

Furthermore, simply improving scan efficiency to the point where it is bandwidth-

bound does not go far enough.  In isolation, any bandwidth-bound parallelization is just 

as fast as the next.  However, further reducing the dynamic instruction count provides 

room for other computations to be performed under the covers of memory latency as 

well.  The more efficient the scan implementation, the more application-specific 

computation we can fuse into it without incurring additional performance overhead. 
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Throughout this dissertation, we advocate a design idiom of kernel-fusion where 

we construct variants of global prefix scan, embedding within them problem-specific 

logic that will realize behavior for sorting, duplicate removal, graph traversal, etc.  This is 

an inversion of the usual pattern for program composition where application logic would 

call down into prefix sum as a subroutine.   

Our work as described in this chapter makes contributions in the following areas: 

Local parallelization strategies.  We investigate two variants of intra-CTA prefix 

scan having different degrees of granularity coarsening.  One prioritizes low-latency for 

small, fleeting problems and the other high-efficiency for large, saturating problems. 

Their computational overheads are up to 1.8x lower than prior work, making them 

bandwidth-bound and thus suitable for kernel fusion.   

Global parallelization strategies.  Our global scan implementations employ a 

two-level reduce-then-scan CTA decomposition that imposes 25% less global memory 

traffic and only requires a constant amount global storage for intermediate results.  We 

demonstrate 1.7x and 3.8x speedups for global scan and segmented-scan, respectively. 

Parallel primitives.  To demonstrate the utility of kernel fusion with efficient 

prefix sum, we have constructed BackForty [6], an open-source C++ library of 

fundamental list-processing transformations for the NVIDIA CUDA parallel computing 

framework [34].   We provide high performance implementations of scan, segmented 

scan, duplicate removal, histogram, and reduce-by-key that achieve several factors of 

speedup over prior work [35, 113] across many diverse problem sizes and data types. 
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4.2 BACKGROUND 

4.2.1 Prefix scan 

Prefix scan is a higher-order function that consumes an n-element input list (x0, …, xn-1) 

and a binary associative combing operator ⊕.  It produces an output list (y0, …, yn-1) 

where  

yi =  ⊕  xa when 0 < i < n 

  0 ≤ a < i  

   

 =    id⊕ when i = 0 

   

Multiple variations of scan exist, all having a prefix-dependency characteristic where the 

i
th

 output element is a function of the previous input elements.  The version described 

above, exclusive scan, does not incorporate the i
th

 input element within the i
th

 output 

reduction.  As such, exclusive scans rely upon the existence of an identity element id⊕ 

having the property that xa ⊕ id⊕ = xa.  For example, id+=0 for addition, id*=1 for 

multiplication, etc. 

Inclusive scan is similar with the exception yi = ⊕(x0, …, xi).  Reverse scan (also 

known as backward scan) processes the input elements with a “postfix dependency”, i.e., 

yi = ⊕(xi+1, …, xn-1).  Segmented scan is a composition of scan instances: the input is a 

sequence of list segments, typically delineated by marker flags, each of which is to be 

[8, 6, 7, 5, 3, 0, 9] 
 

(a) Input 
 

[0, 8, 14, 21, 26, 29, 29] 
 

(b) Exclusive prefix sum 

 
 

[8, 14, 21, 26, 29, 29, 38] 
 

(c) Exclusive prefix sum 
 

[0, 8, 14, 0, 5, 0, 0] 
 

(d) Segmented exclusive prefix sum for  

segment flags [1, 0, 0, 1, 0, 1, 0] 
 

 

Fig. 25.  Examples of prefix sum variants. 
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scanned separately.  Prefix sum connotes a prefix scan using addition as the binary 

combining operator. 

The long history of prefix sum is rooted in circuit design for parallel adders and 

counting networks.  Scan circuits are fundamental to the operation of fast adder hardware 

[20, 105].  Software-based scan was popularized more than two decades ago as an 

algorithmic building block for vector and array processor architectures [16, 17, 26].   

Scan parallelizations.  As per the boolean circuit model of parallel computation 

[19, 117], scan parallelizations are evaluated by their size and depth complexities.  The 

size complexity of a circuit family (as a function of the input size n) is a measure of the 

total number of operations performed.  When consuming large, saturating inputs on the 

GPU (p << n), overall runtime will be dictated by size complexity (also known as work 

complexity).   

The depth complexity is a measure of the length of the longest path from an input 

value to an output, and is a performance indicator for how long the computation will take 

given an unlimited number of parallel processing elements p.  For small, fleeting 

problems (p > n), runtime will be dictated by depth complexity.   

Prefix scan can be thought of as a composition of n binary reductions.  Although 

these reductions could be performed separately, it is much more efficient to compose 

them together in such a manner such that they share as many intermediate computations 

as possible, reducing the overall size of the scan circuit.   

The design space for parallel prefix circuits, i.e., all possible superpositions of the 

parallel reduction trees, is quite large.  Fig. 26 illustrates four common constructions for 

prefix sum: sequential, Brent-Kung [20], Sklansky [105], and Kogge-Stone [74].  Like 
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However, work-efficient DSO prefix networks become progressively difficult to find (or 

disappear altogether) as the as the depth-constraint is made smaller.   

This tradeoff between work-efficiency and low-latency has important 

consequences for GPU prefix scan.  Reducing the logical depth of local prefix 

constructions at the expense of additional operators often worsens overall performance.  

GPU processor cores are intended to be over-saturated with logical threads, causing 

performance to be rate-limited by overall work.  Thus smaller, deeper prefix 

constructions are often preferable to larger constructions having shallower “logical” 

depths.  Our most efficient scan implementations incorporate long, deep phases of 

sequential work (Fig. 26a), whereas prior work is constructed from work-inefficient 

Kogge-Stone subroutines (Fig. 26d) [80, 102].  

4.3 GLOBAL CTA DECOMPOSITION 

A one-to-one mapping between levels of prefix scan dataflow and bulk-synchronous 

GPU kernels would be impractical.  Storing every intermediate result back to global 

memory would be prohibitively expensive, particularly for constructions having sub-

optimal work-complexity.  

Instead, the thread grouping hierarchy allows us to take advantage of the recursive 

nature of many scan constructions.  Consecutive kernels can be used to recursively 

process fixed-size tiles of work locally within shared memory, ultimately communicating 

a much smaller subset of intermediate values through global memory between kernel 

invocations. 

Prior GPU scan implementations have used fully-recursive approaches for 

decomposing work into fixed-size tiles among CTAs.  In this section, we review two such 
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propagation phase unwinds the recursion.  Each “fix-up” tile reloads the b intermediate 

results from the corresponding upsweep scan tile, aggregates its incoming value from the 

preceding level into each, and writes the updated b values back out to global memory.     

Both upsweep and downsweep phases comprise complete b-ary trees having logbn 

kernel launches and (n-1)/(b-1) tiles.  Each tile requires 2b memory accesses, resulting in 

4b(n-1)/(b-1)-2b overall memory traffic.   

4.3.2 Reduce-then-scan 

The reduce-then-scan decomposition is similar in that it also entails logbn levels of 

kernels, but instead executes reduction kernels during the upsweep phase followed by 

scan kernels during the downsweep phase.  This technique was first popularized for the 

Cray Y-MP by Chatterjee et al. [26] and demonstrated more recently for the GPU by 

Dotsenko et al. [42].     

Fig. 28 illustrates this operation with b=4 elements per tile.  Each reduction tile 

reads b inputs, aggregates them, and writes a single intermediate result back to global 

device memory.  The intermediate values computed during the reduction kernels are not 

saved and must be recomputed later.  The downsweep phase unwinds the recursion. Each 
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independent outer-level scan tiles, seeded with the appropriate aggregate from the spine.  

When reducing or scanning sequential tiles, each CTA simply curries the aggregate 

partial reduction from one tile to the next within registers. 

The result is that an entire n-element computation requires only 3n+3C global 

memory accesses.  In comparison with the fully-recursive approaches, the advantages of 

our two-level strategy are threefold:  

i. Asymptotically fewer kernel launches: three versus versus O(logbn).  Most 

importantly, the undersubscribed interior is completed as quickly as possible.  

ii. Asymptotically fewer global memory accesses for intermediate values: 3C 

versus O(n).   

iii. A constant amount of temporary storage (versus O(n) intermediate storage). 

In independent work on parallel compaction, Billeter et al. have proposed similar two-

level CTA decompositions [15]. 

4.4 LOCAL PREFIX SCAN 

As described in the previous section, our global scan comprises two types of CTA-wide 

tile-processing routines: local reduction during upsweep and local scan during 

downsweep.  Chapter 3.3.2 describes our parallelization strategy for reducing upsweep 

tiles.  In this section, we present and evaluate two variants for scanning downsweep tiles, 

each having different degrees of granularity coarsening: reduced-conflict Brent-Kung 

(RCBK) and sequential-reduce-then-scan (SRTS). 

4.4.1 Reduced-conflict Brent-Kung (RCBK) 

Scan isomorphs to the Brent-Kung construction are commonly implemented using the 

Blelloch PRAM algorithm presented in Listing 4 [16].  Unfortunately this parallelization 
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Listing 4.  Blelloch PRAM 

algorithm  

 

1 for d := 0 to log

2 do 

3   for k := 0 to n

4   do 

5  // upsweep into parent

6     m[k + 2

7       m[k + 2

8   od 

9 od 

10    

11 m[n – 1] := m[n/2 

12 m[n/2 –

13  

14 for d := log

15 do 

16   for k := 0 t

17   do 

18     temp := m[k + 2

19    

20     // downsweep into left child

21     m[k + 2

22    

23     // downsweep into right child

24     m[k + 2

25       m[k + 2

26   od 

27 od 
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// upsweep into parent

m[k + 2
d+1
 - 1] := 

m[k + 2
d+1
 - 1] + m[k + 2

1] := m[n/2 – 

– 1] := id; 

for d := log2n – 2 downto 0 

for k := 0 to n–1 by 2

temp := m[k + 2
d

// downsweep into left child

m[k + 2
d
 - 1] := m[k + 2

// downsweep into right child

m[k + 2
d+1
 - 1] := temp + 

m[k + 2
d+1
 - 1];

shared memory, leading to 

SIMD = 4 threads and 

four shared memory banks.  Every memory access performed in time step t1 incurs two

incurs perfectly degenerate four

insertion of aperiodic 

In the limit, this approach 

However, the additional instruction overhead for 

overall slowdown compared to the 

Blelloch PRAM exclusive scan 

n – 2  

1 by 2
d+1
 in parallel 

// upsweep into parent 

1] :=  

1] + m[k + 2
d
 - 

 1]; 

2 downto 0  

1 by 2
d+1
 in parallel

d
 – 1]; 

// downsweep into left child 

1] := m[k + 2
d+1
 - 1];

// downsweep into right child 

1] := temp +  

1];   
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4.4.2 Sequential-reduce-then-scan (SRTS) 

Fig. 32 illustrates our sequential-reduce-then-scan (SRTS) parallelization for local prefix 

scan.  This parallelization prioritizes efficiency, employing the thread-serialization 

techniques we described for local reduction in Chapter 3.3.2.  Similarly, SRTS 

incorporates different phases of computation, each designed to either increase the amount 

of sequential work within a given storage class (e.g., registers, shared memory, etc.) or 

exploit a particular aspect of the abstract machine model (e.g., lock-step thread progress 

within the warp): 

 
 

 

Fig. 32.  Example operation of our conflict-free sequential-reduce-then-scan (SRTS) scan algorithm on n=64 elements 

using 16 threads and a warp width wSIMD=4 threads.  
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1) Sequential reduction in registers.  The accumulated partial reductions are then 

placed in a grid of shared memory. 

2) Sequential reduction in shared memory.  The parallelism is reduced to a single 

warp which performs a sequential raking reduction in each thread.  Shared 

memory is periodically padded to avoid bank conflicts (Chapter 3, Fig. 21).  

3) Cooperative warp-synchronous scan.  The single raking warp performs a 

synchronization-free scan of the partials reduced in the previous phase.  We 

describe this “warpscan” procedure in more detail in the next subsection. 

4) Sequential scan in shared memory.  The raking warp performs a sequential scan 

of the original partials placed into the grid, seeded with the exclusive prefixes 

computed by the warpscan.  

5) Sequential scan in registers.  The entire CTA reactivates, each thread performing 

a sequential reduction of its inputs, seeded with its exclusive prefix computed by 

the raking warp in the shared grid. 

Dotsenko et al. have previously demonstrated similar granularity coarsening for local 

prefix scan [42].  Whereas we only implement a single shared memory raking phase, their 

approach incorporates several (32-wide, 8-wide, and 1-wide stages).  The overhead from 

extra exchanges between raking grids and unused SIMD lanes prevents their 

implementation from being bandwidth-bound. 

4.4.3 SIMD Optimizations 

The Kogge-Stone construction (Fig. 26b) works by progressively building partial 

reductions from consecutive inputs.  The strategy is easily implemented in software for 

PRAM architectures [61], including   GPUs [37, 59].  Unfortunately the construction 
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the concurrency drops below the warp size.  However, the profligate use of warpscan as a 

recursive tiling subroutine would be prohibitively expensive. 

4.4.4 Evaluation 

We evaluated our RCBK and SRTS scan constructs in the context of 32-bit global prefix 

sum alongside the reference CUDPP v1.1 implementation.  We used an NVIDIA 

GTX285, sampling performance measurements directly from the GPU’s hardware 

counters (which do not include driver and staging overheads).  We present performance 

data for 2,000 problem-instances having problem-size sampled log-normally from the 

interval [2
5
, 22

27
]. 

Overall scan throughput.  Fig. 34 plots global throughput as a function of 

problem size.  This analysis reflects the cumulative elapsed time for all kernel 

invocations executed.  For large saturating problem sizes (32M+ elements), CUDPP 

averages 7.1B elements/sec.  Our SRTS and RCKB-based scans both average 11.9B 

elements/sec, a speedup of 1.7x.   

By construction, the CUDPP implementation is less efficient due to its scan-then-

propagate CTA decomposition.  Other performance and utilization concerns aside, our 

 

Fig. 34.  Global prefix sum throughput (overall) 
 

Fig. 35.  Global computational overhead (overall) 
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two-level reduce-then-scan implementations should only be 1.3x faster by virtue of 

imposing only ¾ as much memory traffic. The remainder of CUDPP slowdown derives 

from processor underutilization from inner kernel launches and excessive computational 

overhead.  

Overall computational overhead.  Fig. 35 plots the number of instructions per 

element scanned as a function of problem size.  For saturating problem sizes, CUDPP 

averages 32.7 thread-instructions/element.  Our SRTS and RCKB-based scans average 

14.9 and 19.0 thread-instructions/element, respectively. Our SRTS implementation is 

1.7x and 1.3x more efficient than CUDPP and RCKB, respectively.   

Scan kernel throughput.  Drilling down into the tile-scanning kernels, Fig. 36 

plots the utilized bandwidth for each as a function of problem size.  For saturating 

problem sizes, the CUDPP scan kernel averages 112 GB/s, 81% bandwidth utilization.  

Our SRTS and RCKB-based scans both average 138 GB/s, matching the peak-achievable 

for the GPU (Chapter 2, Table 1).   

Scan kernel computational overhead.  Fig. 37 confirms the CUDPP scan kernel 

to be compute-bound at 19.3 thread-instructions per 32-bit element.  It is 8% higher than 

 

Fig. 36.  Scan kernel utilized bandwidth 
 

Fig. 37.  Scan kernel computational overhead 
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the GTX285 memory wall for scan kernels, which is plotted below in yellow at 17.9 

thread-instructions/element11.  Our SRTS and RCKB-based scans are both bandwidth-

bound, averaging only 15.8 and 10.9 thread-instructions/element, respectively.  Our 

SRTS kernel is 1.8x more efficient than CUDPP and provides substantial opportunity for 

kernel fusion. 

Single-CTA tile-processing latency.  Low-latency prefix scan parallelizations are 

preferable for fleeting workloads incapable of saturating GPU cores.  For a single CTA 

on an otherwise idle GPU, we used cycle counters to measure the average number of 

cycles required to locally scan tiles of 512 elements.   

Interestingly enough, the more efficient (yet deeper) SRTS parallelization is also 

quicker on the NVIDIA GT200 architecture (GTX280): 

• RCBK: 2,441 cycles  

• SRTS: 1,472 cycles 

However, the opposite is true for the newer GF100 architecture (GTX480): 

• RCBK: 1,452 cycles  

• SRTS: 1,660 cycles 

Because shared memory is relatively “further away” on GF100, more local parallelism is 

needed to overlap the additional latency.  The disparity in performance response between 

the two architectures underscores the importance of having flexible primitives capable of 

autotuned algorithm selection. 

                                                                 
11 (30 cores * 8 SIMD lanes per core * 1.48GHz clock * 8 bytes of traffic per 32-bit element)/(159GB/s) = 17.9 thread-

instrs/element.  



 

4.5

Prefix scan was originally promoted as a software

pr

share many t

multithreaded scheduling and local scratchpad memories has altered the algorithm design 

landscape.

encapsulation is broken and multiple dataflow transformations are encoded within the 

same kernel procedure.  

three

4.5 KERNEL FUSION

Prefix scan was originally promoted as a software

processor architectures more than two decades ago

share many t

multithreaded scheduling and local scratchpad memories has altered the algorithm design 

landscape.   

These features enable 

encapsulation is broken and multiple dataflow transformations are encoded within the 

same kernel procedure.  

three key ideas

1) Bandwidth

deep multithreading of the GPU makes it easy to fill these cycles with useful work, 

particularly when that work can be done within local scratch memories.  

(a) Prefix sum as subroutine (unfused)

KERNEL FUSION 

Prefix scan was originally promoted as a software

architectures more than two decades ago

share many traits with these forebears, 

multithreaded scheduling and local scratchpad memories has altered the algorithm design 

These features enable 

encapsulation is broken and multiple dataflow transformations are encoded within the 

same kernel procedure.  

ideas: 

Bandwidth-bound kernels 

deep multithreading of the GPU makes it easy to fill these cycles with useful work, 

particularly when that work can be done within local scratch memories.  

(a) Prefix sum as subroutine (unfused)

Fig. 

Prefix scan was originally promoted as a software

architectures more than two decades ago

raits with these forebears, 

multithreaded scheduling and local scratchpad memories has altered the algorithm design 

These features enable kernel fusion

encapsulation is broken and multiple dataflow transformations are encoded within the 

same kernel procedure.  Within the context of this dissertation, k

bound kernels leave 

deep multithreading of the GPU makes it easy to fill these cycles with useful work, 

particularly when that work can be done within local scratch memories.  

(a) Prefix sum as subroutine (unfused) 

Fig. 38.  Kernel fusion of application code into scan kernels

Prefix scan was originally promoted as a software

architectures more than two decades ago

raits with these forebears, the relatively new combination of deeply 

multithreaded scheduling and local scratchpad memories has altered the algorithm design 

kernel fusion, a design idiom where funct

encapsulation is broken and multiple dataflow transformations are encoded within the 

Within the context of this dissertation, k

leave compute resources underutiliz

deep multithreading of the GPU makes it easy to fill these cycles with useful work, 

particularly when that work can be done within local scratch memories.  

 

Kernel fusion of application code into scan kernels

Prefix scan was originally promoted as a software primitive

architectures more than two decades ago [17, 61]

the relatively new combination of deeply 

multithreaded scheduling and local scratchpad memories has altered the algorithm design 

, a design idiom where funct

encapsulation is broken and multiple dataflow transformations are encoded within the 

Within the context of this dissertation, k

ompute resources underutiliz

deep multithreading of the GPU makes it easy to fill these cycles with useful work, 

particularly when that work can be done within local scratch memories.  

(b) Prefix sum as 

Kernel fusion of application code into scan kernels

primitive for vector 

[17, 61].  While GPU architecture

the relatively new combination of deeply 

multithreaded scheduling and local scratchpad memories has altered the algorithm design 

, a design idiom where funct

encapsulation is broken and multiple dataflow transformations are encoded within the 

Within the context of this dissertation, kernel fusion leverages 

ompute resources underutilized.  However, the 

deep multithreading of the GPU makes it easy to fill these cycles with useful work, 

particularly when that work can be done within local scratch memories.  

(b) Prefix sum as “allocation 

Kernel fusion of application code into scan kernels 

for vector and array 

While GPU architecture

the relatively new combination of deeply 

multithreaded scheduling and local scratchpad memories has altered the algorithm design 

, a design idiom where funct

encapsulation is broken and multiple dataflow transformations are encoded within the 

ernel fusion leverages 

ed.  However, the 

deep multithreading of the GPU makes it easy to fill these cycles with useful work, 

particularly when that work can be done within local scratch memories.   

“allocation runtime” (fused)

91 

and array 

While GPU architectures 

the relatively new combination of deeply 

multithreaded scheduling and local scratchpad memories has altered the algorithm design 

, a design idiom where functional 

encapsulation is broken and multiple dataflow transformations are encoded within the 

ernel fusion leverages 

ed.  However, the 

deep multithreading of the GPU makes it easy to fill these cycles with useful work, 

(fused) 



92 

 

2) Live state is expensive to move out to DRAM only to have it read back in again by 

the next kernel.  We reduce instruction counts, bandwidth demand, and energy by 

retaining such state in registers or shared memory for the next computation. 

3) Bandwidth-bound prefix sum kernels form a nice runtime abstraction for 

performing allocation-oriented stream transformations.  Fig. 38 illustrates the 

fusion of allocation problems within prefix sum kernels.  This saves the overhead 

of writing allocation counts out to global memory, invoking a separate kernel, and 

then reading the computed reservation offsets back in again. 

As examples of such kernel fusion, this section presents derivatives of prefix sum that 

implement segmented scan, duplicate removal, reduce-by-key, and histogram.  We 

demonstrate the advantages of this idiom by comparing our performance with equivalent 

functionality implemented within the Thrust library of parallel primitives [113]. 

4.5.1 Segmented scan 

The segmented scan problem is a composition of independent scan instances.  Typically 

these subproblems are concatenated within a single large input array and are delineated 

by a second input array of head-flags.  Segmented scan is a particularly useful primitive 

for many top-down partitioning problems, e.g., parallel quicksort, acceleration structures, 

etc. [16, 26, 92]. 

Fig. 39 compares our B40C segmented scan throughput versus Thrust for 128MB 

problem sizes on the NVIDIA GTX280.  We exhibit a 3.5x harmonic mean speedup 

across data types.   
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4.5.2 Duplicate removal 

Duplicate removal entails a straightforward fusion with prefix sum.  Tiles of keys are 

read and local flags are generated to mark discontinuities between keys and their 

predecessors.  We then perform a prefix sum over the flags to compute the scatter offsets 

for writing the corresponding keys into the output stream.  The flag vector is never 

wholly realized in global memory: we simply (re)generate the flags for both upsweep and 

downsweep kernels. 

Fig. 40 compares our B40C segmented scan throughput versus Thrust for 128MB 

problem sizes on the NVIDIA GTX280.  We exhibit a 2.6x harmonic mean speedup 

across data types. 

4.5.3 Reduce-by-key 

Reduce-by-key is the third phase of the map-reduce paradigm (after mapping and sorting) 

[38].  Given a list of key-value pairs, it is analogous to a segmented reduction over the 

values where the segments are defined by regions of consecutive, identical keys. 

We perform reduce-by-key using a variant of segmented prefix scan.  Tiles of 

keys are read and local head-flags are generated where discontinuities are observed.  We 

 

Fig. 39.  Segmented scan throughput (GTX280) 
 

Fig. 40.  Duplicate removal throughput (GTX280) 
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then perform a segmented scan over the corresponding values and head-flags, yet we also 

compute a prefix sum of the head-flags.  The scanned head-flags now convey the scatter 

offsets for writing the corresponding value reductions into the output stream. 

Fig. 41 compares our B40C segmented scan throughput versus Thrust for 128MB 

problem sizes on the NVIDIA GTX280.  We exhibit a 2.2x harmonic mean speedup 

across data types. 

4.5.4 Histogram 

GPUs have been criticized for their lack of suitable atomics for performing contended 

updates to histogram counts [76].  An alternative strategy that is perhaps better suited to 

bulk-synchronous architectures entails first sorting the keys and then performing a variant 

of reduce-by-key where the associated values are all implicitly 1.  As we describe in 

Chapter 5, GPUs are particularly adept at high performance sorting.  Furthermore, the 

early-exit sorting optimizations we present are well-suited to the types of low-entropy 

key distributions common to histogram problems.  

 

Fig. 41.  Reduce-by-key throughput (GTX280) 
 

Fig. 42.  Histogram throughput (GTX280) 
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Fig. 42 compares our B40C histogram construction throughput versus Thrust for 

128MB problem sizes for previously-sorted datasets on the NVIDIA GTX280.  We 

exhibit a 2.3x harmonic mean speedup across data types.   

We note that we can radix sort uniform-random 32-bit keys on the GTX280 at 

534M keys/s.  Paired with our consecutive-histogram rate of at nearly 3B keys/s, we can 

compute histograms of at an overall rate of 450M keys/s.  This is a 100x speedup versus 

the naive approach of global atomics, which is rate-limited at 4.5M atomics/s (Chapter 2, 

Table 1). 

4.6 CHAPTER SUMMARY 

Parallel prefix scan is core algorithmic primitive for constructing parallel programs.  Due 

to the relatively fine-grained ratio of computation to operand size (e.g., one addition 32-

bit addition instruction versus 12 bytes of operands and results), GPU parallelizations of 

prefix scan ought to be bandwidth-bound.  However, this was not the case with prior 

work. 

In this chapter, we presented new implementations for local prefix sum that are 

1.7x more computationally-efficient than previous parallelizations.  Our constructions 

make extensive use of the granularity coarsening idioms we developed in Chapter 2.  

These design idioms additionally provide the dual benefits of software-reuse and tuning 

flexibility.  Furthermore, our global scan primitives are 25% more efficient with memory 

bandwidth and less apt to incur processor underutilization. 

The kernel fusion design idiom seeks to maximally utilize both memory and 

computational resources on the GPU.  Because the computational overhead of prefix sum 

now resides below the memory wall, we have created an inflection point in the design 
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space for many cooperative problems where kernel fusion within prefix sum becomes 

worthwhile.  To illustrate the effectiveness such fusion, we have constructed high 

performance implementations of segmented scan, duplicate removal, histogram, and 

reduce-by-key that provide several factors of speedup over contemporary parallelizations 

within Thrust [113]. 

  

 



97 

 

Chapter 5  

 

Radix Sorting 

 

 

 

 

 

 

5.1 INTRODUCTION 

High performance sorting is particularly desirable for GPU architectures.  As a 

fundamental algorithmic primitive, sorting often plays an explicit role in more 

sophisticated algorithms.  Algorithms that produce or transform data frequently need to 

subsequently rank, organize, or partition that data in some fashion.  While GPU 

architectures are particularly adept at data-independent transformations, it is less obvious 

that they would be equally adroit at sorting, a list-processing operation that is inherently 

cooperative.  Because of the large problem sizes typical of GPU applications, inefficient 

sorting can be a major bottleneck of overall application performance.   

In addition, sorting can play a performance-enhancing role in many 

parallelizations of serial algorithms.  Discretionary sorting has the potential to serve as a 

“bandwidth amplifier” for problems involving pointer-chasing and table lookups.  

Reorganizing either tasks or data can realize better mappings between the two that exhibit 

significantly improved spatial and temporal locality.  Sorting (or binning) is a common 

technique for smoothing otherwise incoherent memory accesses.  Similarly, local sorting 
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within distributed settings can play a crucial role in preparing data on one processor for 

batched distribution to its peers.   

Although parallel sorting methods are highly concurrent and have small 

computational granularities12, sorting on GPUs has been perceived as challenging, 

particularly in comparison with conventional multi-core CPU architecture.  As a list-

processing transformation, sorting has irregular and global data-dependences.  The 

placement of a given input item will depend upon the value of every other input element.  

As discussed in §2.6, such fine-grained global allocation dependences are representative 

of the cooperative workloads that many researchers feel poorly suited for GPU 

architecture.  The work described within this chapter refutes this popular opinion, 

providing evidence that GPUs are exceptional platforms for sorting operations. 

In particular, we focus on the problem of sorting large sequences of elements, 

specifically sequences comprised of hundreds-of-thousands or millions of fixed-length 

numeric keys.  The methods we present within this chapter address two problem variants: 

(a) 32-bit integer keys paired with 32-bit satellite values; and (b) 32-bit keys only.  Our 

solution strategy generalizes for other problem types as well: as a C++ template 

implementation, our algorithm can be parameterized using any C++ primitive type as key 

types and arbitrary user-defined structures for value types.  

Our work as described in this chapter makes contributions in the following areas: 

Parallelization strategy.  We present a GPU parallelization for radix sorting 

passes that is constructed within a “multi-scan runtime” for computing multiple 

concurrent prefix sums, one for each partitioning bin.  The granularity of our approach is 

more tunable than prior work, requiring memory traffic that is inversely proportional to 

                                                                 
12 E.g., comparison operations for comparison-based sorting, or shift and mask operations for radix sorting. 
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the number of radix bits per digit.  This provides flexibility for future improvements in 

computational throughput.  We also describe a novel optimization for early termination 

that significantly improves performance for commonplace sorting problems having 

banded key diversity. 

High performance.  Our tunable implementation achieves multiple factors of 

speedup over prior GPU sorting implementations across all generations programmable 

NVIDIA GPUs.  We demonstrate sustained sorting rates in excess of 1.2 billion 32-bit 

keys/sec and 342 million 64-bit keys/sec.  To our knowledge, these sorting rates are the 

fastest published for any fully-programmable microarchitecture.  Put in context, state-of-

the-art CPU parallelizations achieve 240 million 32-bit keys/sec [98] and reconfigurable 

FPGAs have demonstrated 250 million 64-bit keys/sec [73]. 

Impact.  Our radix sorting implementation is incorporated within the Thrust 

parallel template library [113].  Thrust is a high-profile, productivity-oriented library that 

is bundled with the NVIDIA CUDA software development toolkit [34].  Furthermore, 

tuned versions of our implementation are specifically incorporated within the AMBER 11 

molecular simulation tools [22], the NVIDIA Optix ray tracing engine [88], and the 

LibBSC lossless compression suite [60]. 

5.2 BACKGROUND 

5.2.1 GPU sorting applications 

Sorting is germane to many problems in computer science. As an algorithmic primitive, 

sorting facilitates many problems including binary search, finding the closest pair, 

determining element uniqueness, finding the k
th

 largest element, and identifying outliers 

[33, 72].  The use of sorting for reorganizing sparse data structures figures prominently in 
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sparse matrix-matrix multiplication [12].  For large-scale problems on distributed 

memory systems (e.g., graph algorithms for clusters and supercomputers [32]), sorting 

plays an important role in improving communication efficiency by coalescing messages 

between nodes.  In Chapter 6, we leverage sorting for batching communication between 

GPUs for multi-node graph traversal. 

Recent literature has demonstrated many applications of GPU sorting.  Sorting is 

a procedural step during the construction of acceleration data-structures, such as octrees 

[75], KD-trees [124], and bounding volume hierarchies [92].  These structures are often 

used when modeling physical systems, e.g., molecular dynamics, ray tracing, collision 

detection, visibility culling, photon mapping, point cloud modeling, particle-based fluid 

simulation, n-body systems, etc.  GPU sorting has found many applications in image 

rendering, including shadow and transparency modeling [104], Reyes rendering [123], 

volume rendering via ray-casting [68], particle rendering and animation [31, 71], ray 

tracing [46], and texture compression [23].  GPU sorting has also been demonstrated for 

parallel hashing [4], database acceleration [51, 57, 58], data mining [52], and game 

engine AI [103]. 

5.2.2 Parallel sorting networks and the impracticality of output-oriented design 

The GPU machine model is designed for output-oriented, stencil-based decompositions.  

Threads are logically defined by the specific output elements they are to produce, and 

kernel programs statically encode input and output locations as a function of thread rank 

(independent of the computation of other threads).   

However, this output-oriented focus can pose difficulties for sorting, a problem 

having global input dependences.  The value to be placed at a given output location is 
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dependent upon the value of every location within the input list.  Without cooperation 

from other threads, all n threads would need to perform their own O(n) selection 

algorithm [33] to determine what value to write, resulting in quadratic overall workload.  

Cooperation is a critical component of any efficient sorting parallelization. 

It is possible to construct sorting from the repeated application of output-oriented 

kernels, exclusively.  Such solutions are called sorting networks.  The threads in each 

stencil kernel perform pair-wise swapping operations.  Because the input and output 

locations of each thread are encoded as a function of thread rank, the sequence of 

comparisons and flow of data through memory are statically known in advance.   

Unfortunately, known sorting network constructions are asymptotically and/or 

practically inefficient.  The simple pair-wise swapping example in §1.3.2, Fig. 6 

implements O(n
2
) work and is isomorphic to bubble/insertion sort.  Variations of 

Batcher’s bitonic sorting network have size O(nlog
2
n) [10].   Although variants of the 

AKS sorting network [3] have optimal size O(nlogn), they have extremely large big-O 

constants that prevent their practical usage.  It is an open question as to whether practical 

O(nlogn) size sorting networks exist. 

Instead, we advocate an input-oriented decomposition for implementing work-

optimal sorting.  From the thread perspective, we want to logically associate tasks with 

specific elements in the input stream.  In the context of partitioning-based sorting 

methods, each thread gathers its key, determines which partition that key belongs, and 

then must cooperate with other threads to determine where the key should be relocated.  

By shifting the focus to input items, these problems can all be reduced to the problem of 

cooperative allocation.     
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5.2.3 The radix sorting method 

Radix sorting is currently the fastest approach for sorting 32- and 64-bit keys on both 

CPU and GPU processors [84, 98].  The method relies upon a positional representation 

for keys, i.e., each key is comprised of an ordered sequence of numeral symbols (i.e., 

digits) specified from least-significant to most-significant.  For a given input sequence of 

keys and a set of rules specifying a total ordering of the symbolic alphabet, the radix 

sorting method produces a lexicographic ordering of those keys.   

The process works by iterating over digit-places within the keys from least-

significant to most-significant.  For each digit-place, the method performs a stable 

distribution sort of the keys based upon their digit at that digit-place in order to partition 

the keys into radix r distinct buckets.  Given an n-element sequence of k-bit keys, d-bit 

digits, and r = 2
d
, a radix sort of these keys will require k/d passes of distribution sorting.   

The asymptotic work complexity of the distribution sort is O(n).  Each of the n 

input items needs comparing with only a fixed number of radix digits.  With a fixed 

number of digit-places, the entire radix sorting process is also O(n).  When a key is 

relocated, its global relocation offset is computed as the number of keys with “lower” 

digits at that digit place plus the number of keys having the same digit, yet occurring 

earlier in the sequence.   

Radix sorting has a variable granularity of computation, i.e., it can trade more 

computation for less memory traffic.  Increasing d (the number of bits per radix-digit) 

decreases the total number of digit-place passes that need iterating over.  For example, a 

sort of 32-bit integers can be performed using thirty-two 1-bit distribution passes (each 

partitioning into r=2 bins).  By using 4-bit distributions instead (each partitioning into 

r=16 bins), we can perform the same sort in only eight overall passes.    
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However, the number of bins r scales exponentially with d.  This implies that 

linear decreases in global memory traffic will result in super-linear increases in dynamic 

instruction counts and local storage requirements.    

5.2.4 Parallel radix sorting 

The fundamental component of the radix sorting method is the distribution sort in which 

n keys are scattered into r bins.  Parallel radix sorting is comprised of k/d iterations of 

parallel distribution sorting passes.   

Because key distribution is typically unknown, the sizes and memory layout of 

the bins for a given distribution pass must be dynamically determined.  There are two 

strategies for constructing bins: (1) using blocks that are allocated online and linked with 

pointers; and (2) contiguous allocation in which offsets and lengths are computed a priori 

using a parallel prefix scan algorithm.  Most research is focused on the latter: the ability 

to perform contention-based allocation is non-existent or severely expensive on many 

parallel architectures (e.g., vector, array, and GPU processors), and traversing linked 

structures can carry stiff performance penalties. 

 
Fig. 43.  The traditional split operation: a decoding step combined with prefix scan reveals the scatter offsets required 

to enact a radix r = 2 distribution sort on the first digit-place of an input sequence. 

Flag vectors

Key sequence

0 0 0 0 0 0 0 01 1 1 11 11 1

0 0 0 01 1 1 1

Scanned flag vectors
(key scatter offsets)

1 2 4 4 4 5 6 64 5 6 71 20 3

0s 1s

0s 1s

0 2 4 51 3 6 7

1 3 6 72 40 5 1 3 6 72 40 5

1 3 6 72 40 5 1 3 6 72 40 5
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Scan-based approach.  In its simplest form, a distribution sort can be 

implemented using a binary split primitive [26] comprised of two prefix scans over two 

n-element binary encoded flag vectors: the first initialized with 1s for keys whose digit 

was 0, the second to 1s for keys whose digit was 1.  The two scan operations are 

dependent: the scan of the 1s vector can be seeded with the number of zeros from the 0s 

scan.  After the scans, the i
th

 element in the appropriate flag vector will indicate the 

relocation offset for the i
th

 key.  An alternative is to perform one large scan over the 

concatenation of the two vectors, as shown in Fig. 43.   

As described in Fig. 44, a naive GPGPU distribution sort implementation can be 

constructed by simply invoking a parallel prefix scan primitive between separate 

decoding and scatter kernels.  The decoding kernel would be used to create a 

concatenated flag vector of rn elements in global memory.  After scanning, the scatter 

kernel would redistribute the keys (and values) according to the scan results.   

This approach suffers from an excessive memory workload that scales with 2
d
/d.  

As such, the overall memory workload will be minimized when the number of radix digit 

bits d = 1.  This provides little flexibility for tuning the sorting granularity to minimize 

(and overlap) the memory and computational workloads. 

Histogram-based approach.  As an alternative, practical sorting implementations 

have used a histogram-based strategy [43, 121].  For typical parallel machines, the 

number of parallel processors p << n.  This makes it natural to distribute the input 

sequence amongst processors.  Using local resources, each processor can compute an r-

element histogram of digit-counts. By only sharing these histograms, the global storage 

requirements are significantly reduced.  A single prefix scan of these histograms provides 
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each processor with the base digit-offsets for its block of keys.  These offsets can then be 

applied to the local key rankings within the block to distribute the keys.  

Prior GPU approaches.  Current radix sort implementations for the GPU use this 

approach, treating each CTA as a logical processor operating over a fixed-size block of b 

keys [97, 56, 102].  The procedure of Satish et al. is representative of this approach, and 

is reviewed in Fig. 44.  

Because of the decision to keep b constant, the number of CTA “processors” 

grows with problem size and the overall memory workload still scales exponentially with 

d, although significantly reduced by common block-sizes of 128-1024 keys.  This elicits 

Naive GPU distribution sort 

Kernel Read I/O Workload Write I/O Workload 

1. Decode keys and compute flag vectors n keys nr counts 

2. Flag scan: upsweep reduction nr counts (insignificant) 

3. Flag scan: spine scan (insignificant) (insignificant) 

4. Flag scan: downsweep scan nr counts + (insignificant) nr offsets 

5. Scatter keys to appropriate bin nr offsets + n keys n keys 

 Total I/O for all k/d passes: (k/d) (5n(2d) + 3n) 

 

GPU histogram-based distribution sort [5,7] 

Kernel Read I/O Workload Write I/O Workload 

1. Locally sort blocks at current digit-place into digit-

segments  
n keys n keys 

2. Compute block histograms of digit counts n keys nr/b counts 

3. Histogram scan: upsweep reduction nr/b counts (insignificant) 

4. Histogram scan: spine scan (insignificant) (insignificant) 

5. Histogram scan: downsweep scan nr/b counts + (insignificant) nr/b offsets 

6. Scatter sorted digit-segments of keys to appropriate bin nr/b offsets + n keys n keys 

 Total I/O for all k/d passes: (k/d) (5n(2d)/b + 7n) 

 

Our GPU allocation-oriented distribution sort 

Kernel Read I/O Workload Write I/O Workload 

1. Allocation scan: upsweep reduction (locally decode and 

reduce flag counts) 
n keys (insignificant) 

2. Allocation scan: spine scan of flag counts (insignificant) (insignificant) 

3. Allocation scan: downsweep scan (locally decode and 

scan flag counts, scatter keys) 
n keys + (insignificant) n keys 

 Total I/O for all k/d passes: (k/d) (3n) 

 

Fig. 44.  Procedures for distribution sorting, described as sequences of kernel launches.  The I/O models of memory 

workloads are specified in terms of d-bit radix digits, radix r = 2d, local block size of b keys, and an n-element input 

sequence of k-bit keys. 
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a global minimum in which there exists an optimal d to produce a minimal memory 

overhead for a given block size.  For example, when block size b = 512 and key size k = 

32, a radix digit size d = 8 provides minimal memory overhead.  As a point of 

comparison, their implementation imposes an explicit memory workload of 56.6 words 

per key (where words and keys are 32-bits, d = 4 bits, and b = 1024 keys).    

Our parallelization strategy.  Briefly, our distribution strategy uses kernel fusion 

to collapse the naive separate decoding and scattering kernels into the prefix scan kernels 

themselves.  Furthermore, we use the CTA serialization idiom outlined §3.3.1 to 

construct a reduce-then-scan approach that requires three kernels, regardless of problem 

size.  We further describe the details of these two idioms and our implementation in §5.3. 

Our strategy can operate with a radix digit size d ≤ 4 bits on current NVIDIA 

GPUs before exponentially-growing demands on local storage prevent us from saturating 

the device.  With d = 4 and k = 32-bit keys-only sorting, our algorithm requires the 

memory subsystem to explicitly process only 24 words per key, a 2.4x reduction in 

memory workload.  

5.2.5 GPU parallelizations of other sorting methods 

Radix sorting methods make certain positional and symbolic assumptions regarding the 

bitwise representations of keys.  A comparison-based sorting method is required for a set 

of ordering rules in which these assumptions do not hold.  A variety of comparison-

based, top-down partitioning and bottom-up merging strategies have been implemented 

for the GPU, including quicksort [24, 58], most-significant-digit radix sort [56], sample-

sort [39, 77], and merge sort [97].  The number of recursive iterations for these methods 
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is logarithmic in the size of the input sequence, typically with the first or last 8-10 

iterations being replaced by a small local sort within each CTA.   

There are several contributing factors that have historically given radix sorting 

methods an advantage over their comparison-based counterparts.  First, comparison-

based sorting methods must have work-complexity O(nlog2n) [72], making them less 

efficient per key as problem size grows.  Second, for problem sizes large enough to 

saturate the device (e.g., several hundred-thousand or more keys), a radix digit size d ≥ 4 

will result in fewer digit passes than recursive iterations needed by the comparison-based 

methods performing binary partitioning.  Third, the amount of global intermediate state 

needed by these methods for a given level in the tree of computation is proportional to the 

width of that level, as opposed to a small constant amount for our radix sort strategy.  

Finally, parallel radix sorting methods guarantee near-perfect load-balancing amongst 

GPU cores, an issue of concern for comparison-based methods involving pivot selection 

5.3 OUR RADIX SORTING STRATEGY 

Our radix sorting strategy strives to obtain maximal overall system utilization for a given 

target architecture.  Our goal is to reduce the aggregate memory workload and permit 

flexible radix sorting granularity d to maximize processor utilization. 

5.3.1 “Multi-scan” prefix sum as allocation runtime 

We have generalized our prefix scan implementation for multi-scan, i.e., to compute 

multiple, dependent scans concurrently in a single pass.  This allows us to efficiently 

compute the prefix sums of radix r > 1 flag vectors without imposing any significant 

additional workload upon the memory subsystem.  We rely on the idioms of kernel fusion 

and CTA serialization to construct multi-scan. 



108 

 

Multi-scan is related to, but different from the segmented scan problem [16].  The 

segmented-scan problem connotes a single vector comprised of multiple segments, each 

segment an independent scan problem.  For radix sorting purposes, the segments that 

would correspond to bin-allocations are not actually independent: each has prefix 

dependences on prior bins.  Furthermore, we cannot afford to construct such a vector of r 

segments in global memory.  Instead, we generate and consume local portions of our 

flag-vector scan problems in parallel.  In addition, these scans are not completely 

independent: their cumulative reductions are concatenated and scanned as well, resulting 

in a total ordering of partition offsets.    

Kernel fusion.  Kernel fusion allows us to collapse the outer decode and scatter 

kernels from the naive approach.   The idea is simple: reduce aggregate memory 

workload by co-locating sequential steps in the stream pipeline within a single kernel.  

We implement kernel fusion by inserting our own digit-decoding and key-scattering logic 

directly into the kernels for prefix scan.  The flag values obtained by a thread when 

decoding a given key can be passed directly via registers to upsweep or downsweep scan 

logic.  Similarly, the ranking results computed by downsweep scan can be locally 

conveyed to scattering logic for relocating keys and values.  Additionally, the keys 

themselves need not be re-read from global memory for scattering; they were obtained 

earlier by the downsweep decoding logic within the same kernel closure. 

The overall amount of memory traffic is dramatically reduced because we remove 

the need to move flags through global memory. The elimination of the corresponding 

load/store instructions also increases the computational efficiency, further allowing our 
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There are several important benefits to restricting the amount of parallel work.  

Our approach requires only a single kernel launch to perform a small, constant O(rC) 

amount of interior work.  We eliminate O(n/b) global memory reads and writes at a 

savings of 2-4 instructions per round-trip (offset calculations, load, store).  Finally, any 

static computation common to each tile of keys can be hoisted, computed once, and 

reused. 

Kernel stages.  Our three multi-scan kernels listed in Fig. 44 operate as follows: 

1) Upsweep reduction.  For a multi-scan distribution sorting pass, the upsweep 

reduction kernel reduces n inputs into rC partial reductions.  In our 

implementation, the reduction threads employ a loop-raking strategy [18] in which 

each thread accumulates flags from consecutive tiles, similar to Harris et al. [90].  

For each tile, a thread gathers its key, decodes the digit at the current digit-place, 

and increments the appropriate flag (kept in private registers).  After processing 

their last tile, the threads within each CTA cooperatively reduce these private flags 

into r partial reductions, which are then written out to global device memory in 

preparation for the spine scan. 

2) Spine scan.  The single-CTA, spine scan serves to scan the partial reduction 

contributions from each of the C bottom-level CTAs.  Continuing our theme of 

multiple, concurrent scans, we have generalized it to scan a concatenation of rC 

partial reductions.   

3) Downsweep scan/scatter.  In the downsweep scan/scatter kernel, CTAs perform 

independent scans of their tile sequence, seeded with the partial sums computed by 

the spine scan.  For each tile, threads re-read their keys, re-decode them into local 
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digit flags, and then scan these flags using the local multi-scan strategy described 

in the next subsection. The result is a set of r prefix sums for each key that are 

used to scatter the keys to their appropriate bins.  This scatter logic is also 

responsible for loading and similarly redistributing any paired satellite values.  The 

r aggregate counts for each digit are serially curried into the next b-sized tile. 

As described in Fig. 44, only a constant number of memory accesses are used for the 

storage of intermediate results, and there are no longer any coefficients that are 

exponential in terms of the number of radix digit bits d.  This implies that memory 

workload will monotonically decrease with increasing d, positioning our strategy to take 

advantage of any additional computational power that may allow us to increase d in the 

future. 

Flexible radix sort granularity.  As described in Chapter 4, prefix sum is a 

memory-bound operation that affords a “bubble” of idle cycles within which we can fuse 

in sorting logic with little incremental overhead.  Furthermore, our multi-scan approach 

allows us to tune the computational granularity (i.e., number of radix digits d) to better 

fill this bubble of idle cycles.   

For example, Fig. 47 depicts the “bubble” of free computation below the GTX285 

memory wall, i.e., the ideal 17.8 thread-cycles that can be executed per 32-bit word 

copied in and out by the memory subsystem.  For the same memory workload, Fig. 48 

shows the bubble for a prefix scan downsweep scan kernel after accounting for data 

movement and scan instructions [85].   
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As shown in Fig. 49, the ideal bubble is tripled for a downsweep scan kernel with 

a memory workload sized to distribute key-value pairs.  It must read a pair of two words, 

write a pair of two words, and pay a partial coalescing penalty of two words.  (As we 

discuss in Section 4, key-scattering produces up to twice as much memory traffic due to 

partial coalescing.  Additionally, the bubble is even larger in practice due to the slightly 

lower achievable bandwidth rates.) 

 
 

 

Fig. 47.  GTX 285 memory wall.  At an ideal 354 x109 

thread-instructions/s and 159 x109 bytes/s, the GTX285 

can overlap 17.8 instructions with every two words of 

memory traffic. 

 

Fig. 48.  Free cycles within a downsweep scan kernel that 

moves two words while executing 4 data movement and 8 

local scan instructions for each input element. 

 

 
Fig. 49.  Free cycles within a downsweep sorting scan/scatter kernel that reads two words, writes two words, and has a 

write partial-coalescing penalty of two words. 
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The result is a large window that not only allows us to construct distribution 

sorting inside of prefix scan, but to be more flexible with the granularity of sorting 

computation as well. 

5.3.2 Multi-scan downsweep kernel operation 

The multi-scan downsweep kernel is the most sophisticated of all three kernels.  The 

downsweep must efficiently perform r local prefix sums concurrently. Fig. 50 illustrates 

computation from the point of a single CTA processing a particular tile of input values:   

1) Digit decoding.  Threads within the decoding logic collectively read b keys, 

decode them according to the current digit-place, and create the private-register 

equivalent of r flag vectors of b elements each. 

2) Local multi-scan. The scan logic is replicated r-times, ultimately producing r 

vectors of b prefix sums each: one for each of the r possible digits.  It is 

implemented as a flexible hierarchy of reduce-then-scan strategies composed of 

three phases of upsweep/downsweep operation:  

a. Thread-independent processing in registers, shown in blue.  This phase 

serves to transition the problem from the tile size b into a smaller version 

that will fit into shared memory and back again.  This provides flexibility 

in terms of making maximal use of the available register file and for 

facilitating different memory transaction sizes (e.g., 1/2/4-element vector 

load/stores), all without impacting the size of the shared-memory 

allocation.   
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transitions the problem size into one that can be cooperatively processed by 

a single warp and back again, and is similar to the scan techniques 

described by Dotsenko et al. [42].  This phase provides flexibility in terms 

of facilitating shared memory allocations of different sizes, supporting 

alternative SIMD warp sizes, and accommodating arbitrary numbers of 

warps per CTA.  For example, we double the GT200 tile size for the newer 

GF100 architecture because of the increased amount of shared memory per 

processor core. 

c. Intra-warp cooperation, shown in red.  For a given warp-size of w threads, 

the intra-warp phase implements log2w steps of a Kogge-Stone scan [74] in 

a synchronization-free SIMD fashion.  The r running digit totals from the 

previous tile are carried into this SIMD “warpscan”, incorporated into the 

prefix sums of the current tile’s elements, and new running totals are 

carried out for the next tile, all in local shared memory. 

3) Key scattering.  The scatter operation is provided with the tile of keys, their local 

ranks/prefix sums, the tile’s digit totals, and the incoming running digit totals.  

Although each scatter thread could use this information to distribute the same keys 

that it obtained during decoding, doing so would result in poor write coherence.  

Instead we implement a key exchange.  We use the local ranks to scatter keys into 

a pool of local shared memory, repurposing the raking storage.  Then consecutive 

threads can acquire consecutive keys and scatter them to global device memory 

with a minimal number of memory transactions.  We compute a SIMD prefix sum 
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of the local digit totals in order to determine the locations of each of the r 

segments of newly-coherent keys within this pool.   

Although our two-phase scatter procedure is fairly expensive in terms of dynamic 

instruction overhead and arbitrary bank conflicts, it is much more efficient than the 

sorting phase implemented by Satish et al. [97].  Their sorting phase performs d iterations 

of binary-split, exchanging keys (and values) d times within shared memory, whereas our 

approach only exchanges them once. 

5.4 OPTIMIZATIONS 

Our implementation incorporates three important optimizations for improving the 

efficiency and utility of the radix sorting method: composite scan, early-exit, and flexible 

tuning.  Composite scans exploit bitwise parallelism for much more efficient 

computation.  Early-exit often allows our implementation to skip unnecessary distribution 

passes for sorting problems having less-than-uniform key distributions.  Tuning 

flexibility facilitates the discovery of program specializations that fit well with the 

specific target architecture and sorting problem at hand. 

5.4.1 Composite scan 

In order to increase the computational efficiency of our implementation, we employ a 

method for encoding multiple binary-valued flag vectors into a single, composite 

representation.  By using the otherwise unused high-order bits of the flag words and the 

bitwise parallelism of addition, our composite scan technique allows us to compute 

several logical scan tasks while only incurring the cost of a single parallel scan. 

For example, by breaking a tile of keys into subtiles of 256-element multi-scans, 

the scan logic can encode up to four digit flags within a single 32-bit word, with one byte 
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used for each logical scan.  The bit-wise parallelism of 32-bit addition allows us to 

effectively process four radix digits with a single composite scan.  To process the sixteen 

logical arrays of partial flag sums when d = 4 bits, we therefore only need local storage 

for 4 scan vectors.   

5.4.2 Early exit 

In many sorting scenarios, the input keys reflect a banded distribution.  For example, the 

upper bits are often all zero in many integer sorting problems.  Similarly the sign and 

exponent bits may be homogenous for floating point problems.  If this is known a priori, 

the sorting passes for these corresponding digit-places can be explicitly skipped.  

Unfortunately this knowledge may not be available for a given sorting problem or there 

may be abstraction layers that prevent application-level code from being aware that a 

radix-based sorting method is being used. 

To provide the benefits of fewer passes for banded keys in a completely 

transparent fashion, we implement a novel, early-exit decision check at the beginning of 

the downsweep kernel in each distribution sorting pass.  By inspecting the partition 

offsets output by the spine scan kernel, the downsweep CTAs  can determine if all keys 

have the same bits at the current digit place.  If there are no partition offsets within the 

range [1, n-1], the downsweep kernel is able to terminate early, leaving the keys in place. 

Some passes cannot be short-circuited, however.  When sorting signed or floating 

point keys, the first and last passes must be executed in full, if only to perform the “bit-

twiddling” necessary for these types to be radix-sorted.  For example, the most-

significant bits for signed integer types need to be flipped before the first pass and after 

the last. 
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5.4.3 Flexible tuning 

Radix sorting exhibits a fundamental tradeoff with regard to tile size b versus processor 

core occupancy.  Both the tile size and the number of radix digits r will determine the 

local storage requirements (e.g., register and shared memory allocations) for a given 

CTA.  Increasing the tile size has two effects: it increases the write coherence for 

scattering keys; and it comparatively lowers the relative overheads from the work-

inefficient portions of our local scan.  However, too large a tile size will prevent the 

processor cores from being occupied by enough CTAs to cover shared-memory latencies 

when only raking warps are active.   

For different data types, this performance cliff occurs at different tile sizes for 

different architectures, and is dependent upon register and shared memory availability 

and pipeline depths.  For example, the GT200 architecture allows us to unroll two 

subtiles per tile due to the amount of shared memory provisioned per core.  Furthermore, 

performance tuning reveals better throughput using 128-thread CTAs where each thread 

processes two keys.  In contrast, we can unroll four subtiles per tile on newer GF100 

processors having larger cores, and better performance is achieved using 64-thread CTAs 

where each thread processes four keys.  For both architectures, we must halve the tile size 

when sorting 64-bit keys because the storage required for scattering keys to local shared 

memory is doubled.  Similarly, we can double the tile size when sorting 16-bit shorts and 

8-bit chars. 

As described in Chapter 3, we establish rules for generating such tuning policies 

for different combinations of problem type (i.e., key/value types) and processor 

architecture. These tuning policies are expressed as C++ types when are then used to 

parameterize our templated sorting implementation.  We rely on the compiler for 
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template expansion, constant propagation, and loop unrolling in order to produce an 

executable assembly that is well-tuned for the specifically targeted hardware and problem 

type.   

5.5 ANALYTICAL MODEL 

The computational workload for distribution sorting passes can be decomposed into two 

portions: work that scales directly with the size of the input (i.e., moving and decoding 

keys); and work that scales proportionally with the size of the input multiplied by the 

number of radix digits (i.e., the r concurrent scans).  Because the computational overhead 

of the downsweep scan kernel dominates that of the upsweep reduction kernel, we base 

our granularity decisions upon modeling the former.  

We model downsweep kernel work in terms of the following tasks: (1) data-

movement to/from global memory; (2) digit inspection and encoding of flag vectors in 

shared memory; (3) shared-memory scanning; (4) decoding local rank from shared 

memory; (5) and locally exchanging keys and values prior to scatter.  For a given key-

value pair, each task incurs a fixed cost α in terms of thread-instructions.  The flag-

encoding and scanning operations will also incur a per-pair cost of β instructions per 

composite scan. We model cumulative thread-instruction count using: 

��������	
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����, �� 	= 	� ����� + ��
���	�� + ���	
 + ������	�� + �����	
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�� � �
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We can use instrumentation to determine these coefficients for a given 

architecture / processor family.  For example, instrsscankernel(n,r) = n (51.4 + 1.0r) for 



120 

 

sorting pairs of 32-bit keys and values on the NVIDIA GT200 architecture.  The 

instruction costs per pair are (not including warp-serializations):  

αmem = 6.3 

αencflags = 5.5 

αscan = 10.7 

αdecflags = 13.9 

αexchange = 14.7 

 

The instruction costs per pair per composite scan are: 

βencflags = 2.6 βscan = 1.4 

Minimizing this parameterized function for GT200, the radix sorting granularity 

with the lowest computational overhead is d = 4 bits (r = 16 radix digits). 

Parameterizations for G80, G92, and GF100 architectures yield the same granularity.   

Although d=4 is minimal for the GTX285, the model predicts that the downsweep 

kernel will still be compute-bound: the overhead per pair is 67.4 instructions, which 

exceeds the memory wall of 52 instructions illustrated in Fig. 49.  For this specific 

processor, the performance will strictly be a function of compute workload. However, as 

increases in computational throughput continue to outpace increases in memory 

bandwidth, it is likely that the bubble of memory-boundedness will eventually provide us 

with room to increase d past the minimum computational workload without penalty in 

order to reduce overall passes. 

5.6 EVALUATION 

This section presents the performance of our allocation-oriented radix sorting strategy.  

We present our own performance measurements of the implementation by Satish et al. 

(via CUDPP v1.1 [35]), which is representative of the current state of the art in GPU 
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sorting.  We also contrast our sorting performance with contemporary x86-based many-

core sorting results [30, 98, 99]. 

5.6.1 Configuration and methodology 

Our primary test environment consisted of a Linux platform with an NVIDIA GTX285 

GPU running the CUDA 3.2 compiler and driver framework.  Our analyses are derived 

from measurements taken over a suite of ~3,000 randomly-sized problem sequences (up 

to 128M elements).  Each sorting problem is initialized with 32-bit keys and values 

sampled from a uniformly random distribution.  We primarily evaluate key-value pair 

sorting, but also report results for keys-only sorting.  Our measurements for elapsed time, 

dynamic instruction count, warp serializations, memory transactions, etc., are taken 

directly from GPU hardware performance counters.  Our analyses are reflective of in situ 

sorting problems: they preclude the driver overhead and the overheads of staging data 

Table 8.  Saturated 32-bit sorting rates for input sequences larger than 16M elements 
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bits.  Fig. 46 illustrates the effectiveness of our early-exit optimization.  Without 

specifying any explicit information to the sorting implementation, we evaluate sorting 

performance on key distributions whose keys differ only by variously-sized “banded” bit 

fields.   

For GTX285 keys-only sorting, we observe that the cost of a distribution pass is 

reduced by 83% when short-circuited.  Depending on the number of passes that exit 

early, sorting rates can be improved by up to 5.8x for 32-bit keys.  As an example, 

consider an array of 32-bit integers containing the same nominal information as a 

similarly-sized array of 8-bit characters.  Our implementation will discover this banding 

information transparently and sort these 32-bit keys at a rate of 1.6 billion keys/s on the 

GTX285, a speedup of 2.6x. 

5.7 CHAPTER SUMMARY 

We have presented efficient radix-sorting strategies for ordering large sequences of fixed-

length keys (and values) for GPU architecture.  Our performance results demonstrate 

multiple factors of speedup over existing GPU implementations, and we believe our 

implementations to be the fastest published for any fully-programmable 

microarchitecture.   

These results motivate a style of flexible algorithm design for GPU stream 

architectures that can maximally exploit the memory and computational resources, yet 

easily be adapted for a diversity of underlying hardware configurations.  Our allocation-

oriented framework provides us substantial flexibility with respect to radix sorting 

granularity.  Our approach is well positioned to take advantage of increasing 

computational throughputs that outpace improvements in memory bandwidth.
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Chapter 6  

 

Sparse Graph Traversal 

 

 

 

 

 

 

6.1 INTRODUCTION 

Algorithms for analyzing sparse relationships represented as graphs provide crucial tools 

in many computational fields ranging from genomics to electronic design automation to 

social network analysis.  In this chapter, we explore the parallelization of one 

fundamental graph algorithm on GPUs: breadth-first search (BFS).  BFS is a common 

building block for more sophisticated graph algorithms, yet is simple enough that we can 

analyze its behavior in depth.  It is also used as a core computational kernel in a number 

of benchmark suites, including Parboil [93], Rodinia [27], and the emerging Graph500 

supercomputer benchmark [111]. 

BFS is representative of a class of algorithms for which it has been hard to obtain 

significantly better performance from parallelization.  When parallelized, the cooperative 

and dynamic nature of the problem introduces concerns of contention, load imbalance, 

and underutilization on multithreaded architectures [2, 78, 118].  Both the wide SMT and 

SIMD parallelism of GPUs can be particularly performance-sensitive to these issues. 
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Prior work has advocated two key architectural features for facilitating parallel 

graph algorithms: deep multithreading and fine-grained synchronization  [2, 7, 8].  As a 

mechanism for overlapping computation with memory latency, multithreading is 

especially valuable for sparse graph workloads.   Optimizing memory usage is non-trivial 

because memory access patterns are determined by the arbitrary structure of the input 

graphs.  Because high memory latencies are often unavoidable, it is often more 

advantageous to hide such latency with multithreading than attempting to minimize it 

using the cache hierarchy. 

The second feature is fine-grained synchronization, specifically atomic read-

modify-write operations. Such algorithms have incorporated atomic mechanisms for 

coordinating the dynamic placement of data into shared data structures and for arbitrating 

contended status updates. On paper, modern GPU architectures provide both features.  

However, the performance overhead from atomic serialization is often unacceptably high.  

As we illustrated in Chapter 1.3.1, the incorporation of fine-grained atomic operations 

can reduce overall throughput by two or three orders of magnitude. 

Continuing our dissertation theme, we argue that that prefix sum is a more 

suitable mechanism for dynamic data placement within shared structures.  Such structures 

are necessary for work-efficient graph traversal.  Furthermore, efficient prefix sum 

enables optimizations that reorganize sparse and uneven workloads into dense and 

uniform ones in all phases of graph traversal.  

Our work as described in this chapter makes contributions in the following areas: 

Parallelization strategy.  We present a GPU BFS parallelization that performs an 

asymptotically optimal linear amount of work. It is the first to incorporate fine-grained 
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parallel adjacency list expansion.   We also introduce local duplicate detection techniques 

for avoiding race conditions that create redundant work.  We demonstrate that our 

approach delivers high performance on a broad spectrum of structurally diverse graphs. 

To our knowledge, we also describe the first design for multi-GPU graph traversal.   

Empirical performance characterization.  We present detailed analyses that 

isolate and analyze the expansion and contraction aspects of BFS throughout the traversal 

process. We reveal that serial and warp-centric expansion techniques described by prior 

work significantly underutilize the GPU for important graph genres.  We also show that 

the fusion of neighbor expansion and inspection within the same kernel often yields 

worse performance than performing them separately. 

High performance.  We demonstrate that our methods deliver excellent 

performance on a diverse body of real-world graphs.  Our implementation achieves 

traversal rates in excess of 3.3 billion and 8.3 billion traversed edges per second (TE/s) 

for single and quad-GPU configurations, respectively.  To put these numbers in context, 

recent state-of-the-art parallel implementations achieve 0.7 billion and 1.3 billion TE/s 

for similar datasets on single and quad-socket multicore processors [2].   

6.2 BACKGROUND 

We consider graphs of the form G = (V, E) with a set V of n vertices and a set E of m 

directed edges.  Given a source vertex vs, the goal of BFS is to traverse the vertices of G 

in breadth-first order starting at vs.   Each newly-discovered vertex vi will be labeled by 

(a) its distance di from vs and/or (b) the predecessor vertex pi immediately preceding it on 

the shortest path to vs.    
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Fundamental uses of BFS include identifying all of the connected components 

within a graph; finding the diameter of tree; and testing a graph for bipartiteness [33].  

More sophisticated problems incorporating BFS include identifying the reachable set of 

heap items during garbage collection [29]; belief propagation in statistical inference [50],  

finding community structure in networks [87], and computing the maximum-

flow/minimum-cut for a given graph [66]. 

6.2.1 Sparse graph representation 

For simplicity, we identify graph vertices using integer indices, i.e., v0 .. vn-1.  The pair 

(vi, vj) indicates a directed edge in the graph from vi → vj, and the adjacency list Ai = {vj | 

(vi, vj) ∈ E} is the set of neighboring vertices adjacent from vertex vi.  We treat 

undirected graphs as symmetric directed graphs containing both (vi, vj) and (vj, vi) for 

each undirected edge.  In this paper, all graph sizes and traversal rates are measured in 

terms of directed edge counts. 

A = #1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1

$ 
C = [0,1,1,2,0,2,3,1,3] 

R = [0,2,4,7,9] 

 

 

Fig. 59. Example CSR representation: column-indices 

array C and row-offsets array R comprise the adjacency 

matrix A. 

 

Listing 5.  The simple sequential breadth-first search 

algorithm for marking vertex distances from the source 

s.  Alternatively, a shortest-paths search tree can be 

constructed by marking i as j’s predecessor in line 11. 

Input: Vertex set V, row-offsets array R, column-indices 

array C, source vertex s 

Output: Array dist[0..n-1] with dist[v] holding the distance 

from s to v 

Functions: Enqueue(val) inserts val at the end of the queue 

instance.  Dequeue() returns the front element of the queue 

instance. 

 

1 Q := {} 

2 for i in V: 

3   dist[i] := ∞ 

4 dist[s] := 0 

5 Q.Enqueue(s) 

6 while (Q != {}) : 

7   i = Q.Dequeue() 

8   for offset in R[i] .. R[i+1]-1 : 

9     j := C[offset] 

10     if (dist[j] == ∞) 

11       dist[j] := dist[i] + 1; 

12       Q.Enqueue(j) 
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We represent the graph using an adjacency matrix A, whose rows are the 

adjacency lists Ai.  The number of edges within sparse graphs is typically only a constant 

factor larger than n.  We use the well-known compressed sparse row (CSR) sparse matrix 

format to store the graph in memory consisting of two arrays.  As illustrated in Fig. 59, 

the column-indices array C is formed from the set of the adjacency lists concatenated into 

a single array of m integers.  The row-offsets R array contains n + 1 integers, and entry 

R[i] is the index in C of the adjacency list Ai.   

We store graphs in the order they are defined.  We do not perform any offline 

preprocessing in order to improve locality of reference, improve load balance, or 

eliminate sparse memory references.  Such strategies might include sorting neighbors 

within their adjacency lists; sorting vertices into a space-filling curve and remapping their 

corresponding vertex identifiers; splitting up vertices having large adjacency lists; 

encoding adjacency row offset and length information into vertex identifiers; removing 

duplicate edges, singleton vertices, and self-loops; etc.   

6.2.2 Sequential BFS 

Listing 5 describes the standard sequential BFS method for circulating the vertices of the 

input graph through a FIFO queue that is initialized with vs [33].   As vertices are 

dequeued, their neighbors are examined.   Unvisited neighbors are labeled with their 

distance and/or predecessor and are enqueued for later processing.  This algorithm 

performs linear O(m+n) work since each vertex is labeled exactly once and each edge is 

traversed exactly once. 
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6.2.3 Parallel BFS 

The FIFO ordering of the sequential algorithm forces it to label vertices in increasing 

order of depth.  Each depth level is fully explored before the next.  Most parallel BFS 

algorithms are level-synchronous, i.e., each level may be processed in parallel as long as 

the sequential ordering of levels is preserved.  An implicit race condition can exist where 

multiple tasks may concurrently discover a vertex vj.  This is generally considered benign 

since all such contending tasks would apply the same dj and give a valid value of pj.   

Structurally different methods may be more suitable for graphs with very large 

diameters, e.g., algorithms based on the method of Ullman and Yannakakis [114].  Such 

alternatives are beyond the scope of this paper. 

Listing 6.  A simple quadratic-work, vertex-oriented BFS 

parallelization 

Input: Vertex set V, row-offsets array R, column-indices array 

C, source vertex s 

Output: Array dist[0..n-1] with dist[v] holding the distance 

from s to v 

 

1 parallel for (i in V) : 

2   dist[i] := ∞ 

3 dist[s] := 0 

4 iteration := 0 

5 do : 

6   done := true 

7   parallel for (i in V) : 

8     if (dist[i] == iteration)  

9       done := false 

10       for (offset in R[i] .. R[i+1]-1) : 

11         j := C[offset] 

12         dist[j] = iteration + 1  

13   iteration++ 

14 while (!done 
 

Listing 7.  A linear-work BFS parallelization 

constructed using a global vertex-frontier queue.   

Input: Vertex set V, row-offsets array R, column-indices 

array C, source vertex s, queues  

Output: Array dist[0..n-1] with dist[v] holding the distance 

from s to v 

Functions: LockedEnqueue(val) safely inserts val at the end 

of the queue instance 

 

1 parallel for (i in V) : 

2   dist[i] := ∞ 

3 dist[s] := 0 

4 iteration := 0 

5 inQ := {} 

6 inQ.LockedEnqueue(s) 

7 while (inQ != {}) : 

8   outQ := {} 

9   parallel for (i in inQ) : 

10     for (offset in R[i] .. R[i+1]-1) : 

11       j := C[offset] 

12       if (dist[j] == ∞)  

13         dist[j] = iteration + 1             

14         outQ.LockedEnqueue(j) 

15   iteration++ 

16   inQ := outQ 
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As illustrated in Fig. 60, each iteration of a level-synchronous method identifies 

both an edge and vertex frontier. The edge-frontier is the set of all edges to be traversed 

during that iteration or, equivalently, the set of all Ai where vi was marked in the previous 

iteration.  The vertex-frontier is the unique subset of such neighbors that are unmarked 

and which will be labeled and expanded for the next iteration.  Each iteration logically 

expands vertices into an edge-frontier and then contracts them to a vertex-frontier. 

Quadratic-work parallelizations.  The simplest parallel BFS algorithms inspect 

every edge or, at a minimum, every vertex during every iteration.  These methods 

perform a quadratic amount of work.  A vertex vj is marked when a task discovers an 

edge vi → vj where vi has been marked and vj has not.   As Listing 6 illustrates, vertex-

oriented variants must subsequently expand and mark the neighbors of vj.  Because the 

process may require n BFS iterations in the worst case, the overall work complexity is 

O(n
2
+m). 

Quadratic parallelization strategies have been used by almost all prior GPU 

implementations.  The static assignment of tasks to vertices (or edges) trivially maps to 

the data-parallel GPU machine model.  Each thread’s computation is completely 

independent from that of other threads.  Harish et al. [55] and Hussein et al. [66] describe 

vertex-oriented versions of this method.  Deng et al. present an edge-oriented 

implementation [40].  

 

C: 
1,3 0,2,4 4 5,7 8 7 6,8 

0 1 2 3 4 5 6 7 8 9 10 11 
 

Traversal from source vertex v0 

BFS Iteration Vertex frontier Edge frontier 

1 {0} {1,3} 

2 {1,3} {0,2,4,4,6} 

3 {2,4,6} {5,5,7,7} 

4 {5,7} {6,8,8} 

5 {8} {} 
 

R: 
0 2 5 5 6 8 9 10 12 12 

0 1 2 3 4 5 6 7 8 9 
 

 

Fig. 60.  Example sparse graph, corresponding CSR representation, and frontier evolution for a BFS beginning at 

source vertex v0. 
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3 4

8

5

0 1 2



136 

 

Hong et al. [63] describe a vectorized version of the vertex-oriented method that 

is similar to the CSR sparse matrix-vector (SpMV) multiplication approach by Bell and 

Garland [11].  Warps rather than individual threads are assigned to vertices.  During 

neighbor expansion, the SIMD lanes of an entire warp are used to strip-mine13 the 

corresponding adjacency list.   

These quadratic methods are isomorphic to iterative SpMV in the algebraic semi-

ring where the usual (+, ×) operations are replaced with (min, +), and thus can also be 

realized using generic implementations of SpMV [48]. 

Linear-work parallelizations.  A work-efficient parallel BFS algorithm should 

perform O(n+m) work.  To achieve this, each iteration should examine only the edges and 

vertices in that iteration’s logical edge and vertex-frontiers, respectively.   

Frontiers may be maintained in-core or out-of-core.  An in-core frontier is 

processed online and is never wholly realized.  On the other hand, a frontier that is 

managed out-of-core is fully produced in off-chip DRAM (global memory) for 

consumption by the next BFS iteration after a global synchronization step.   

Implementations typically prefer to manage the vertex-frontier out-of-core.  Less 

global data movement is needed because the average vertex-frontier is smaller by a factor 

of %̅ (average out-degree).  As described in Listing 7, each BFS iteration maps tasks to 

unexplored vertices in the input vertex-frontier queue.  Their neighbors are inspected and 

the unvisited ones are placed into the output vertex-frontier queue for the next iteration. 

                                                                 
13 Strip mining entails the sequential processing of parallel batches, where the batch size is typically the number of 

hardware SIMD vector lanes. 
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Research has traditionally focused on two aspects of this scheme: (1) improving 

hardware utilization via intelligent task scheduling; and (2) designing shared data 

structures that incur minimal overhead from insertion and removal operations.   

The typical approach for improving utilization is to reduce the task granularity to 

a homogenous size and then evenly distribute these smaller tasks among threads.  This is 

done by expanding and inspecting neighbors in parallel.  Logically, the sequential-for 

loop in line 10 of Listing 7 is replaced with a parallel-for loop.  The implementation can 

either: (a) spawn all edge-inspection tasks before processing any, wholly realizing the 

edge-frontier out-of-core; or (b) carefully throttle the parallel expansion and processing 

of adjacency lists, producing and consuming these tasks in-core.   

In recent BFS research, Leiserson and Schardl [78] designed an implementation 

for multi-socket CPU systems that incorporates a novel multi-set data structure for 

tracking the vertex-frontier.  They implement concurrent neighbor inspection, using the 

Cilk++ runtime to manage the edge-processing tasks in-core.   

For the Cray MTA-2, Bader and Madduri [7] describe an implementation using 

the hardware’s full-empty bits for efficient queuing into an out-of-core vertex frontier.  

They also perform adjacency-list expansion in parallel, relying on the parallelizing 

compiler and fine-grained thread-scheduling hardware to manage edge-processing tasks 

in-core. 

Luo et al. [79] present an implementation for GPUs that relies upon a hierarchical 

scheme for producing an out-of-core vertex-frontier. To our knowledge, theirs is the only 

prior attempt at designing a work-efficient BFS algorithm for GPUs.  Their GPU kernels 

logically correspond to lines 10-13 of Listing 7.  Threads perform serial adjacency list 
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expansion and use an upward propagation tree of child-queue structures in an effort to 

mitigate the contention overhead on any given atomically-incremented queue pointer.     

Distributed parallelizations. It is often desirable to partition the graph structure 

amongst multiple processors, particularly for datasets too large to fit within the physical 

memory of a single machine.  Even for shared-memory SMP platforms, recent research 

has shown it to be advantageous to partition the graph amongst the different CPU 

sockets; a given socket will have higher throughput to the specific memory managed by 

its local DDR channels [2].   

Listing 8.  A linear-work, vertex-oriented BFS parallelization for a graph that has been 

partitioned across multiple processors.  The scheme uses a set of distributed edge-frontier 

queues, one per processor.   

Input: Vertex set V, row-offsets array R, column-indices array C, source vertex s, queues  

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v 

Functions: LockedEnqueue(val) safely inserts val at the end of the queue instance 

 

1 parallel for i in V : 

2   distproc[i] := ∞ 

3 iteration := 0 

4 parallel for (proc in 0 .. processors-1) : 

5   inQproc := {} 

6   outQproc := {} 

7   if (proc == Owner(s)) 

8     inQproc.LockedEnqueue(s) 

9     distproc[s] := 0 

10 do : 

11   done := true; 

12   parallel for (proc in 0 .. processors-1) : 

13     parallel for (i in inQproc) : 

14       if (distproc[i] == ∞) 

15         done := false  

16         distproc[i] := iteration 

17         for (offset in R[i] .. R[i+1]-1) : 

18           j := C[offset] 

19           dest := owner(j)  

20           outQdest.LockedEnqueue(j) 

21   parallel for (proc in 0 .. processors-1) : 

22     inQproc := outQproc 

23   iteration++ 

24 while (!done) 
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The typical partitioning approach is to assign each processing element a disjoint 

subset of V and the corresponding adjacency lists in E.  For a given vertex vi, the 

inspection and marking of vi as well as the expansion of vi’s adjacency list must occur on 

the processor that owns vi.  Distributed, out-of-core edge queues are used for 

communicating neighbors to remote processors.  Listing 8 describes the general method.  

Incoming neighbors that are unvisited have their labels marked and their adjacency lists 

expanded.  As adjacency lists are expanded, neighbors are enqueued to the processor that 

owns them.  The synchronization between BFS levels occurs after the expansion phase.   

It is important to note that distributed BFS implementations that construct 

predecessor trees will impose twice the queuing I/O as those that construct depth-

rankings.  These variants must forward the full edge pairing (vi, vj) to the remote 

processor so that it might properly label vj’s predecessor as vi.   

Yoo et al. [120] present a variation for BlueGene/L that implements a two-

dimensional partitioning strategy for reducing the number of remote peers each processor 

must communicate with.  Xia and Prasanna [118] propose a variant for multi-socket 

nodes that provisions more out-of-core edge-frontier queues than active threads, reducing 

the contention at any given queue and flexibly lowering barrier overhead.  

Agarwal et al. [2] describe a two-phase implementation for multi-socket systems 

that implements both out-of-core vertex and edge-frontier queues for each socket. As a 

hybrid of Listing 7 and Listing 8, only remote edges are queued out-of-core.  Edges that 

are local are inspected and filtered in-core.  After a global synchronization, a second 

phase is performed to filter edges from remote sockets.  Their implementation uses a 
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single, global, atomically-updated bitmask to reduce the overhead of inspecting a given 

vertex’s visitation status. 

Scarpazza et al. [100] describe a similar hybrid variation for the Cell BE 

processor architecture.  Instead of separate contraction phase per iteration, processor 

cores perform edge expansion, exchange, and contraction in batches.  DMA engines are 

used instead of threads to perform parallel adjacency list expansion.  Their 

implementation requires an offline preprocessing step that sorts and encodes adjacency 

lists into segments packaged by processor core. 

Our parallelization strategy. In comparison, our BFS strategy expands adjacent 

neighbors in parallel; implements out-of-core edge and vertex-frontiers; uses local prefix-

sum in place of local atomic operations for determining enqueue offsets; and uses a best-

effort bitmask for efficient neighbor filtering.  We further describe the details in Section 

6.5. 

6.3 BENCHMARK SUITE 

6.3.1 Graph Datasets 

Our benchmark suite is composed of the thirteen graphs listed in Table 1.  We generate 

the square and cubic Poisson lattice graph datasets ourselves.  The random.2Mv.128Me 

and rmat.2Mv.128Me14 datasets are constructed using GTgraph [53].  The wikipedia-

20070206 dataset is from the University of Florida Sparse Matrix Collection [115].  The 

remaining datasets are from the 10
th

 DIMACS Implementation Challenge [1].   

One of our goals is to demonstrate good performance for large-diameter graphs.  

The largest components within these datasets have diameters spreading five orders of 

                                                                 
14 RMAT graphs are synthetic graph constructions having power-law degree distributions and “small-world” 

connectivity [25]. 
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distributed BFS.  The amount of network traffic can be significantly reduced by first 

removing duplicates from the expansion of remote neighbors.   

We note the direct application of this technique does not scale linearly with 

processors.  As p increases, the number of available duplicates in a given partition 

correspondingly decreases.  In the extreme where p = m, each processor owns only one 

edge and there are no duplicates to be locally culled.  For large p, such decoupled 

duplicate-removal techniques should be pushed into the hierarchical interconnect.  Yoo et 

al. demonstrate a variant of this idea for BlueGene/L using their MPI set-union collective 

[120].  

6.4 MICRO-BENCHMARK ANALYSES 

A linear BFS workload is composed of two components: O(n) work related to vertex-

frontier processing, and O(m) for edge-frontier processing.  Because the edge-frontier is 

dominant, we focus our attention on the two fundamental aspects of its operation: 

neighbor-gathering and status-lookup.  Although their functions are trivial, the GPU 

machine model provides interesting challenges for these workloads.  We investigate these 

two activities in the following analyses using NVIDIA Tesla C2050 GPUs.  

6.4.1 Isolated Neighbor Gathering 

This analysis investigates serial and parallel strategies for simply gathering neighbors 

from adjacency lists.  The enlistment of threads for parallel gathering is a form task 

scheduling.  We evaluate a spectrum of scheduling granularity from individual tasks 

(higher scheduling overhead) to blocks of tasks (higher underutilization from partial-

filling).  We show the serial-expansion and warp-centric techniques described by prior 

work underutilize the GPU for entire genres of sparse graph datasets.   
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For a given BFS iteration, our test kernels simply read an array of preprocessed 

row-ranges that reference the adjacency lists to be expanded and then load the 

corresponding neighbors into local registers.  (For full BFS, we do not perform any 

preprocessing.) 

Listing 9.  GPU pseudo-code for warp-based, strip-mined 

neighbor-gathering 

Input: Vertex-frontier Qvfront, column-indices array C, and the offset 

cta_offset for the current tile within Qvfront 

Functions:  WarpAny(predi) returns true if any predi is set for any 

thread ti within the warp. 

 

1 GatherWarp(cta_offset, Qvfront, C) { 

2   volatile shared comm[WARPS][3]; 

3   {r, r_end} =  

4     Qvfront[cta_offset + thread_id]; 

5   while (WarpAny(r_end – r)) { 

6  

7     // vie for control of warp 

8     if (r_end – r)  

9       comm[warp_id][0] = lane_id; 

10  

11     // winner describes adjlist 

12     if (comm[warp_id][0] == lane_id) { 

13       comm[warp_id][1] = r; 

14       comm[warp_id][2] = r_end; 

15       r = r_end; 

16     } 

17  

18     // strip-mine winner’s adjlist 

19     r_gather = comm[warp_id][1] + lane_id; 

20     r_gather_end = comm[warp_id][2]; 

21     while (r_gather < r_gather_end) { 

22       volatile neighbor = C[r_gather]; 

23       r_gather += WARP_SIZE; 

24     } 

25   } 

26 } 

 
 

Listing 10.  GPU pseudo-code for fine-grained, scan-based 

neighbor-gathering 

Input: Vertex-frontier Qvfront, column-indices array C, and the offset 

cta_offset for the current tile within Qvfront 

Functions:  CtaPrefixSum(vali) performs a CTA-wide prefix sum 

where each thread ti is returned the pair {∑ ()*+,-.+/0 , ∑ ()*+123_2567389-.+/0 }.  CtaBarrier() performs a barrier across all 

threads within the CTA. 

 

1 GatherScan(cta_offset, Qvfront, C) { 

2   shared comm[CTA_THREADS]; 

3   {r, r_end} =  

4     Qvfront[cta_offset + thread_id]; 

5   // reserve gather offsets 

6   {rsv_rank, total} =  

7     CtaPrefixSum(r_end – r); 

8   // process fine-grained batches of  

9   // adjlists 

10   cta_progress = 0; 

11   while ((remain =  

12       total - cta_progress) > 0)  

13   { 

14     // share batch of gather offsets 

15     while((rsv_rank < cta_progress +  

16       CTA_THREADS) && (r < r_end))  

17     { 

18         comm[rsv_rank–cta_progress] = r; 

19         rsv_rank++; 

20         r++; 

21     } 

22     CtaBarrier(); 

23     // gather batch of adjlist(s) 

24     if (thread_id <  

25       Min(remain, CTA_THREADS)  

26     { 

27       volatile neighbor =  

28         C[comm[thread_id]]; 

29     } 

30     cta_progress += CTA_THREADS; 

31     CtaBarrier(); 

32   } 

33 } 
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Compared to the two previous strategies, the entire CTA participates in every 

read.  Any workload imbalance between threads is not magnified by expensive global 

memory accesses to C.  Instead, workload imbalance can occur in the form of 

underutilized cycles during offset-sharing.  The worst case entails a single thread having 

more neighbors than the gather buffer can accommodate, resulting in the idling of all 

other threads while it alone shares gather offsets.  

Scan+warp+CTA gathering.  We can mitigate this imbalance by supplementing 

fine-grained scan-based expansion with coarser CTA-based and warp-based expansion.  

We first apply a CTA-wide version of warp-based gathering.  This allows threads with 

very large adjacency lists to vie for control of the entire CTA, the winner broadcasting its 

row-range to all threads.  Any large adjacency lists are strip-mined using the width of the 

entire CTA.  Then we apply warp-based gathering to acquire portions of adjacency lists 

greater than or equal to the warp width.  Finally we perform scan-based gathering to 

acquire the remaining “loose ends”.   

This hybrid strategy limits all forms of load imbalance from adjacency list 

expansion.  Fine-grained scan-based distribution limits imbalance from SIMD lane 

underutilization.  Warp enlistment limits offset-sharing imbalance between threads.  CTA 

enlistment limits imbalance between warps.  And finally, any imbalance between CTAs 

can be limited by oversubscribing GPU cores with an abundance of CTAs and/or 

implementing coarse-grained tile-stealing mechanisms for CTAs to dequeue tiles15 at their 

own rate. 

                                                                 
15 We term tile to describe a block of input data that a CTA is designed to process to completion before terminating or 

obtaining more work. 
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Analysis.  We performed 100 randomly-sourced traversals of each dataset, 

evaluating these kernels on the logical vertex-frontier for every iteration.  Fig. 63a plots 

the average edge-processing throughputs for each strategy in log-scale.  The datasets are 

ordered from left-to-right by decreasing average search depth. 

The serial approach performs poorly for the majority of datasets.  Fig. 63b reveals 

it suffers from dramatic over-fetch.  It plots bytes moved through DRAM per edge.  The 

(a) Average gather rate (log) 

 

 
 

(b) Average DRAM overhead 

 
 

(c) Average computational intensity (log) 

 
 

Fig. 63.  Neighbor-gathering behavior.  Harmonic means are normalized with respect to serial-gathering. 
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arbitrary references from each thread within the warp result in terrible coalescing for 

SIMD load instructions. 

The warp-based approach performs poorly for the graphs on the left-hand side 

having %̅ ≤ 10.  Fig. 63c reveals that it is computationally inefficient for these datasets.  It 

plots a log scale of computational intensity, the ratio of thread-instructions versus bytes 

moved through DRAM.  The average adjacency lists for these graphs are much smaller 

than the number of threads per warp.  As a result, a significant number of SIMD lanes go 

unused during any given cycle.     

Fig. 63c also reveals that that scan-based gathering can suffer from extreme 

workload imbalance when only one thread is active within the entire CTA.  This 

phenomenon is reflected in the datasets on the right-hand size having skewed degree 

distributions.  The load imbalance from expanding large adjacency lists leads to increased 

instruction counts and corresponding performance degradation. 

Combining the benefits of bulk-enlistment with fine-grained utilization, the 

hybrid scan+warp+cta demonstrates good gathering rates across the board.  

6.4.2 Isolated Status-lookup 

Status-lookup is the other half to neighbor-gathering; it entails determining which 

neighbors within the edge-frontier have already been visited.  This section describes our 

analyses of status-lookup workloads, both in isolation and when coupled with neighbor-

gathering within the same kernel.  Although performing them separately requires more 

explicit memory traffic, we reveal that coupling the two within the same kernel 

invocation can cause TLB issues resulting in markedly worse performance.   
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Our strategy for status-lookup incorporates a bitmask to reduce the size of status 

data from a 32-bit label to a single bit per vertex.  CPU parallelizations have used 

atomically-updated bitmask structures to reduce memory traffic via improved cache 

coverage [2, 100].  Because we avoid atomic operations, our bitmask is only a 

conservative approximation of visitation status.  Bits for visited vertices may appear 

unset or may be “clobbered” due to false-sharing within a single byte.  If a status bit is 

unset, we must then perform a second read to check the corresponding label to ensure the 

vertex is safe for marking.  This scheme relies upon capacity and conflict misses to 

update stale bitmask data within the read-only texture caches.   

Similar to the neighbor-gathering analysis, we isolate the status-lookup workload 

using a test-kernel that consumes the logical edge-frontier at each BFS iteration.  Despite 

having much smaller and more transient last-level caches, Fig. 64 confirms the technique 

(a) Average lookup rate 

 

 

(b) Average DRAM overhead 

 

 

Fig. 64.  Status-lookup behavior.  Harmonic means are normalized with respect to simple label-lookup. 
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can reduce global DRAM overhead and accelerate status-lookup for GPU architectures as 

well.  The exceptions are the datasets on the left having a hundred or more BFS 

iterations.  The bitmask is less effective for these datasets because texture caches are 

flushed between kernel invocations.  Without coverage, the inspection often requires a 

second label lookup which further adds delay to latency-bound BFS iterations. As a 

result, we skip bitmask lookup for fleeting iterations having edge-frontiers smaller than 

the number of resident threads. 

Fig. 65 compares the throughputs of lookup versus gathering workloads.  We 

observe that status-lookup is generally the more expensive of the two.  This is 

particularly true for the datasets on the right-hand side having high average vertex out-

degree.  The ability for neighbor-gathering to coalesce accesses to adjacency lists 

increases with %̅, whereas accesses for status-lookup have arbitrary locality.   

6.4.3 Coupling of Gathering and Lookup 

A complete BFS implementation might choose to fuse these workloads within the same 

kernel in order to process one of the frontiers online and in-core.  We evaluate this fusion 

with a derivation of our scan+warp+cta gathering kernel that immediately inspects every 

gathered neighbor using our bitmap-assisted lookup strategy.  The coupled kernel 

Fig. 65.  Comparison of lookup vs. gathering. 
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requires O(m) less overall data movement than the other two put together (which 

effectively read all edges twice).   

Fig. 66 compares this fused kernel with the aggregate throughput of the isolated 

gathering and lookup workloads performed separately.  Despite the additional data 

movement, the separate kernels outperform the fused kernel for the saturating 

benchmarks (right two-thirds of the chart).  However, the extra data movement of 

separate kernels results in net slowdown for the latency-bound datasets having limited 

bulk concurrency (left-hand side). 

The fused kernel likely suffers from TLB misses experienced by the neighbor-

gathering workload.  The column-indices arrays occupy substantial portions of GPU 

physical memory.  Sparse gathers from them are apt to cause TLB misses.  The fusion of 

these two workloads inherits the worst aspects of both: TLB turnover during uncoalesced 

status lookups.  

The implication is that fused approaches are preferable for fleeting BFS iterations 

having edge-frontiers smaller than the number of resident threads.  For graphs with 

abundant concurrency, however, the fusion of neighbor expansion and inspection yields 

works performance than performing them separately. 

Fig. 66.  Comparison of isolated vs. fused lookup and gathering. 
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due to their high frequency of convergent exploration.  For example, simple two-phase 

traversal incurs 4.2x redundant expansion for the 2D lattice grid5pt.5000 dataset.  Even 

worse, the implementation altogether fails to traverse the kron_g500-logn20 dataset 

which encodes sorted adjacency lists.  The improved locality enables the redundant 

expansion of ultra-popular vertices, ultimately exhausting physical memory when filling 

the edge queue.   

This issue of redundant expansion appears to be unique to GPU BFS 

implementations having two properties: (1) a work-efficient traversal algorithm; and (2) 

concurrent adjacency list expansion.  Quadratic implementations do not suffer redundant 

work because vertices are never expanded by more than one thread.  In our evaluation of 

linear-work serial-expansion, we observed negligible concurrent SIMD discovery during 

serial inspection due to the independent nature of thread activity.  

In general, the issue of concurrent discovery is a result of false-negatives during 

status-lookup, i.e., failure to detect previously-visited and duplicate vertex identifiers 

within the edge-frontier.  Atomic read-modify-write updates to visitation status yield zero 

false-negatives.  As alternatives, we introduce two localized mechanisms for reducing 

false-negatives: (1) warp culling and (2) history culling.   

Fig. 69  Redundant work expansion incurred by variants of our two-phase BFS implementation.  Unlabeled columns 

are < 1.05x. 
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Warp culling.  Listing 11 describes this heuristic for preventing concurrent SIMD 

discovery by detecting the presence of duplicates within the warp’s immediate working 

set.  Using shared-memory per warp, each thread hashes in the neighbor it is currently 

inspecting.  If a collision occurs and a different value is extracted, nothing can be 

determined regarding duplicate status.  Otherwise threads then write their thread-

identifier into the same hash location.  Only one write will succeed.  Threads that 

subsequently retrieve a different thread-identifier can safely classify their neighbors as 

duplicates to be culled. 

History culling.  This heuristic complements the instantaneous coverage of warp 

culling by maintaining a cache of recently-inspected vertex identifiers in local shared 

memory.  If a given thread observes its neighbor to have been previously recorded, it can 

classify that neighbor as safe for culling.    

Listing 11. GPU pseudo-code for a localized, warp-based 

duplicate-detection heuristic.   

Input: Vertex identifier neighbor 

Output: True if neighbor is a conclusive duplicate within the 

warp’s working set. 

 

1 WarpCull(neighbor) { 

2   volatile shared scratch[WARPS][128]; 

3   hash = neighbor & 127; 

4   scratch[warp_id][hash] = neighbor; 

5   retrieved = scratch[warp_id][hash];  

6   if (retrieved == neighbor) { 

7     // vie to be the “unique” item 

8     scratch[warp_id][hash] = thread_id; 

9     if (scratch[warp_id][hash] !=  

10       thread_id)  

11     { 

12       // someone else is unique 

13       return true; 

14     } 

15   } 

16   return false; 

17 } 
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Analysis.  We augment our isolated lookup tests to evaluate these heuristics.  

Kernels simply read vertex identifiers from the edge-frontier and determine which should 

not be allowed into the vertex-frontier.  For each dataset, we record the average 

percentage of false negatives with respect to m – n, the ideal number of culled vertex 

identifiers. 

Fig. 70 illustrates the progressive application of lookup mechanisms.  The 

bitmask heuristic alone incurs an average false-negative rate of 6.4% across our 

benchmark suite.  The addition of label-lookup (which makes status-lookup safe) 

improves this to 4.0%.  Without further measure, the compounding nature of redundant 

expansion allows even small percentages to accrue sizeable amounts of extra work.  For 

example, a false-negative rate of 3.5% for traversing kkt_power results in a 40% 

redundant expansion overhead. 

The addition of warp-based culling induces a tenfold reduction in false-negatives 

for spatially descriptive graphs (left-hand side).  The history-based culling heuristic 

further reduces culling inefficiency by a factor of five for the remainder of high-risk 

datasets (middle-third). The application of both heuristics allows us to reduce the overall 

redundant expansion factor to less than 1.05x for every graph in our benchmark suite. 

Fig. 70  Percentages of false-negatives incurred by status-lookup strategies. 

0.0001

0.01

1

100

%
 o

f 
fa

ls
e

-n
e

g
a

ti
v

e
s

Bitmask Bitmask+Label Bitmask+Label+WarpCull Bitmask+Label+WarpCull+HistoryCull



157 

 

6.5 SINGLE-GPU PARALLELIZATIONS 

A complete solution must couple expansion and contraction activities.  In this section, we 

evaluate the design space of coupling alternatives: 

1) Expand-contract.  A single kernel consumes the current vertex-frontier and 

produces the vertex-frontier for the next BFS iteration.   

2) Contract-expand.  The converse.  A single kernel contracts the current edge-

frontier, expanding unvisited vertices into the edge-frontier for the next iteration. 

3) Two-phase.  A given BFS iteration is processed by two kernels that separately 

implement out-of-core expansion and contraction. 

4) Hybrid. This implementation invokes the contract-expand kernel for small, 

fleeting BFS iterations, otherwise the two-phase kernels.   

We describe and evaluate BFS kernels for each strategy.  We show the hybrid 

approach to be on-par-with or better-than the other three for every dataset in our 

benchmark suite. 

6.5.1 Expand-contract (out-of-core vertex queue) 

Our expand-contract kernel is loosely based upon the fused gather-lookup benchmark 

kernel from Section 6.4.3.  It consumes the vertex queue for the current BFS iteration and 

produces the vertex queue for the next.  It performs parallel expansion and filtering of 

adjacency lists online and in-core using local scratch memory. 

A CTA performs the following steps when processing a tile of input from the 

incoming vertex-frontier queue: 

1) Threads perform local warp-culling and history-culling to determine if their 

dequeued vertex is a duplicate.   
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2) If still valid, the corresponding row-range is loaded from the row-offsets array R. 

3) Threads perform coarse-grained, CTA-based neighbor-gathering.  Large adjacency 

lists are cooperatively strip-mined from the column-indices array C at the full 

width of the CTA.  These strips of neighbors are filtered in-core and the unvisited 

vertices are enqueued into the output queue as described below. 

4) Threads perform fine-grained, scan-based neighbor-gathering.  These batches of 

neighbors are filtered and enqueued into the output queue as described below. 

For each strip or batch of gathered neighbors: 

i. Threads perform status-lookup to invalidate the vast majority of previously-visited 

and duplicate neighbors. 

ii. Threads with a valid neighbor ni update the corresponding label.   

iii. Threads then perform a CTA-wide prefix sum where each contributes a 1 if ni is 

valid, 0 otherwise.  This provides each thread with the scatter offset for ni and the 

total count of all valid neighbors.  

iv. Thread0 obtains the base enqueue offset for valid neighbors by performing an 

atomic-add operation on a global queue counter using the total valid count.  The 

returned value is shared to all other threads in the CTA. 

v. Finally, all valid ni are written to the global output queue.  The enqueue index for 

ni is the sum of the base enqueue offset and the scatter offset. 

This kernel requires 2n global storage for input and output vertex queues.  The roles of 

these two arrays are reversed for alternating BFS iterations.  A traversal will generate 

5n+2m explicit data movement through global memory.  All m edges will be streamed 

into registers once.  All n vertices will be streamed twice: out into global frontier queues 
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and subsequently back in.  The bitmask bits will be inspected m times and updated n 

times along with the labels.  Each of the n row-offsets is loaded twice. 

CTAs perform two or more local prefix-sums per tile.  One is used for allocating 

room for gather offsets during scan-based gathering.  We also need prefix sums to 

compute global enqueue offsets for every strip or batch of gathered neighbors.  Although 

GPU cores can efficiently overlap concurrent prefix sums from different CTAs, the 

turnaround time for each can be relatively long.  This can hurt performance for fleeting, 

latency-bound BFS iterations. 

6.5.2 Contract-expand (out-of-core edge queue) 

Our contract-expand kernel filters previously-visited and duplicate neighbors from the 

current edge queue.  The adjacency lists of the surviving vertices are then expanded and 

copied out into the edge queue for the next iteration. 

A CTA performs the following steps when processing a tile of input from the 

incoming edge-frontier queue: 

1) Threads progressively test their neighbor vertex identifier ni for validity using (i) 

status-lookup; (ii) warp-based duplicate culling; and (iii) history-based duplicate 

culling.   

2) Threads update labels for valid ni and obtain the corresponding row-ranges from R. 

3) Threads then perform two concurrent CTA-wide prefix sums: the first for 

computing enqueue offsets for coarse-grained warp and CTA neighbor-gathering, 

the second for fine-grained scan-based gathering.  |Ai| is contributed to the first 

prefix sum if greater than WARP_SIZE, otherwise to the second.  
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4) Thread0 obtains a base enqueue offset for valid neighbors within the entire tile by 

performing an atomic-add operation on a global queue counter using the combined 

totals of the two prefix sums.  The returned value is shared to all other threads in 

the CTA.   

5) Threads then perform coarse-grained CTA and warp-based gathering.  When a 

thread commandeers its CTA or warp, it also communicates the base scatter offset 

for ni to its peers.  After gathering neighbors from C, enlisted threads enqueue 

them to the global output queue.  The enqueue index for each thread is the sum of 

the base enqueue offset, the shared scatter offset, and thread-rank.   

6) Finally, threads perform fine-grained scan-based gathering.  This procedure is a 

variant of Listing 10 with the prefix sum being hoisted out and performed earlier 

in Step 4.  After gathering packed neighbors from C, threads enqueue them to the 

global output.  The enqueue index is the sum of the base enqueue offset, the 

coarse-grained total, the CTA progress, and thread-rank.  

This kernel requires 2m global storage for input and output edge queues.  Variants 

that label predecessors, however, require an additional pair of “parent” queues to track 

both origin and destination identifiers within the edge-frontier.  A traversal will generate 

3n+4m explicit global data movement.  All m edges will be streamed through global 

memory three times: into registers from C, out to the edge queue, and back in again the 

next iteration.  The bitmask, label, and row-offset traffic remain the same as for expand-

contract. 

Despite a much larger queuing workload, the contract-expand strategy is often 

better suited for processing small, fleeting BFS iterations.  It incurs lower latency because 
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CTAs only perform local two prefix sums per block.  We overlap these prefix-sums to 

further reduce latency.  By operating on the larger edge-frontier, the contract-expand 

kernel also enjoys better bulk concurrency in which fewer resident CTAs sit idle. 

6.5.3 Two-phase (out-of-core vertex and edge queues) 

Our two-phase implementation isolates the expansion and contraction workloads into 

separate kernels.  Our micro-benchmark analyses suggest this design for better overall 

bulk throughput.  The expansion kernel employs the scan+warp+cta gathering strategy 

to obtain the neighbors of vertices from the input vertex queue.  As with the contract-

expand implementation above, it performs two overlapped local prefix-sums to compute 

scatter offsets for the expanded neighbors into the global edge queue. 

The contraction kernel begins with the edge queue as input.  Threads filter 

previously-visited and duplicate neighbors.  The remaining valid neighbors are placed 

into the outgoing vertex queue using another local prefix sum to compute global enqueue 

offsets. 

These kernels require n+m global storage for vertex and edge queues.  A two-

phase traversal generates 5n+4m explicit global data movement.  The memory workload 

builds upon that of contract-expand, but additionally streams n vertices into and out of 

the global vertex queue.  

6.5.4 Hybrid 

Our hybrid implementation combines the relative strengths of the contract-expand and 

two-phase approaches: low-latency turnaround for small frontiers and high-efficiency 

throughput for large frontiers.  If the edge queue for a given BFS iteration contains more 

vertex identifiers than resident threads, we invoke the two-phase implementation for that 
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iteration.  Otherwise we invoke the contract-expand implementation.  The hybrid 

approach inherits the 2m global storage requirement from the former and the 5n+4m 

explicit global data movement from the latter.   

6.5.5 Evaluation 

Our performance analyses are constructed from 100 randomly-sourced traversals of each 

dataset.  Fig. 71 plots average traversal throughput.  As anticipated, the contract-expand 

approach excels at traversing the latency-bound datasets on the left and the two-phase 

(a) Average traversal throughput 

 

(b) Average DRAM workload 

 

(c) Average computational workload 

 

Fig. 71  BFS traversal performance and workloads.  Harmonic means are normalized with respect to the expand-

contract implementation. 
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implementation efficiently leverages the bulk-concurrency exposed by the datasets on the 

right.  Although the expand-contract approach is serviceable, the hybrid approach meets 

or exceeds its performance for every dataset. 

The importance of work compaction.  With in-core edge-frontier processing, the 

expand-contract implementation is designed for one-third as much global queue traffic.  

The actual DRAM savings are substantially less.  We only see a 50% reduction in 

measured DRAM workload for datasets with large %̅.  Furthermore, the workload 

differences are effectively lost in excess over-fetch traffic for the graphs having small %̅: 

their small adjacency lists only occupy a small proportion of the memory transactions 

used to retrieve them.  

The contract-expand implementation performs poorly for graphs having large %̅.  

This behavior is related to a lack of explicit workload compaction before neighbor 

gathering.  Fig. 72 illustrates this using a sample traversal of wikipedia-20070206.  We 

observe a correlation between large contraction workloads during iterations 4-6 and 

significantly elevated dynamic thread-instruction counts.  This is indicative of SIMD 

(a) traversal throughput (b) Dynamic instruction workload during BFS  

iterations having large cull-sets  

 

Fig. 72.  Sample wikipedia-20070206 traversal behavior.  Plots are superimposed over the shape of the logical edge and 

vertex-frontiers. 
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underutilization.  The majority of active threads have their neighbors invalidated by 

status-lookup and local duplicate removal.  Cooperative neighbor-gathering becomes 

much less efficient as a result.   

Distance vs. predecessor labeling.  Table 10 presents hybrid traversal 

performance for distance and predecessor labeling variants.  The performance difference 

between variants is largely dependent upon %̅.  Smaller %̅ incurs larger DRAM over-fetch 

which reduces the relative significance of added parent queue traffic.   For example, the 

performance impact of exchanging parent vertices is negligible for europe.osm, yet is as 

high as 19% for rmat.2Mv.128Me. 

Comparison of our hybrid strategy with prior work.  It is challenging to contrast 

traversal performance for CPU and GPU architectures.  The construction of high 

performance CPU parallelizations is outside the scope of this work, and published studies 

of CPU traversal have not reported performance results for all of the datasets in our 

benchmark corpus.  

Graph Dataset 

Sequential 

CPU 
†
 

State-of-the-art parallel 

CPU  

NVIDIA Tesla C2050 (hybrid strategy) 

Distance Labeling Predecessor Labeling 

10
9
 TE/s 

10
9 

TE/s 

Speedup vs. 

sequential CPU 

10
9 

TE/s 

Speedup vs. 

sequential CPU 

10
9 

TE/s 

Speedup vs. 

sequential CPU 

europe.osm 0.029   0.31 11x 0.31 11x 

grid5pt.5000 0.081   0.60 7.3x 0.57 7.0x 

hugebubbles-00020 0.029   0.43 15x 0.42 15x 

grid7pt.300 0.038 0.12
††

 3.0x 1.1 28x 0.97 26x 

nlpkkt160 0.26 0.47
††

 1.8x 2.5 9.6x 2.1 8.3x 

audikw1 0.65   3.0 4.6x 2.5 4.0x 

cage15 0.13 0.23
††

 1.8x 2.2 18x 1.9 15x 

kkt_power 0.047 0.11
††

 2.2x 1.1 23x 1.0 21x 

coPapersCiteseer 0.50   3.0 5.9x 2.5 5.0x 

wikipedia-20070206 0.065 0.19
††

 2.7 x 1.6 25x 1.4 22x 

kron_g500-logn20 0.24   3.1 13x 2.5 11x 

random.2Mv.128Me 0.10 0.50
†††

 5.0 x 3.0 29x 2.4 23x 

rmat.2Mv.128Me 0.15 0.70
†††

 4.6 x 3.3 22x 2.6 18x 

 

Table 10.  Single-socket performance comparison.   

GPU speedup is in regard to sequential CPU performance.  †3.4GHz Core i7 2600K.  †† 2.5 GHz Core i7 4-core, 

distance-labeling [78].  ††† 2.7 GHz Xeon X5570 8-core, predecessor labeling [2]. 
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We also note that our methods perform well for large and small-diameter graphs 

alike.  Comparing with sequential CPU traversals of europe.osm and kron_g500-logn20, 

our hybrid strategy provides an order-of-magnitude speedup for both. 

In comparing with state-of-the-art GPU implementations, we evaluated the 

quadratic implementation provided by Hong et al. [63] on our benchmark datasets.  Their 

work-inefficient, quadric method suffers from high overhead and was not competitive on 

even the lowest diameter graphs in our experimental corpus.  At best, their 

implementation achieved an average 2.1x slowdown for kron_g500-logn20.  At worst, a 

2,300x slowdown for europe.osm.  For wikipedia-20070206, a 4.1x slowdown.   

We use a previous-generation NVIDIA GTX280 to compare our implementation 

with the results reported by Luo et al. for their linear parallelization [79].   We achieve 

4.1x and 1.7x harmonic mean speedups for the referenced 6-pt grid lattices and DIMACS 

road network datasets, respectively. 

Uniform-random and RMAT-scaling.  Fig. 73 further presents C2050 traversal 

performance for synthetic uniform-random and RMAT datasets having up to 256 million 

edges.  Each plotted rate is averaged from 100 randomly-sourced traversals.   

Our maximum traversal rates of 3.5B and 3.6B TE/s occur with %̅ = 256 for 

uniform-random and RMAT datasets having 256M edges, respectively.  The minimum 

rates plotted are 710M and 982M TE/s for uniform-random and RMAT datasets having %̅ 

= 8 and 256M edges.  Performance incurs a drop-off at n=8 million vertices when the 

bitmask exceeds the 768KB L2 cache size. 
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6.6 MULTI-GPU PARALLELIZATION 

Communication between GPUs is simplified by a unified virtual address space in which 

pointers can transparently reference data residing within remote GPUs.  PCI-express 2.0 

provides each GPU with an external bidirectional bandwidth of 6.6 GB/s.  Under the 

assumption that GPUs send and receive equal amounts of traffic, the rate at which each 

GPU can be fed with remote work is conservatively bound by 825x10
6
 neighbors / sec, 

where neighbors are 4-byte identifiers.  This rate is halved for predecessor-labeling 

variants.     

6.6.1 Design 

We implement a simple partitioning of the graph into equally-sized, disjoint subsets of V.  

For a system of p GPUs, we initialize each processor pi with an (m/p)-element Ci and 

(n/p)-element Ri and Labelsi arrays.   Because the system is small, we can provision each 

GPU with its own full-sized n-bit best-effort bitmask.   

We stripe ownership of V across the domain of vertex identifiers.  Striping 

provides good probability of an even distribution of adjacency list sizes across GPUs.  

This is particularly useful for graph datasets having concentrations of popular vertices.  

For example, RMAT datasets encode the most popular vertices with the largest adjacency 

lists near the beginning of R and C.  Alternatives that divide such data into contiguous 

slabs can be detrimental for small systems: (a) an equal share of vertices would 

overburden first GPU with an abundance of edges; or (b) an equal share of edges leaves 

the first GPU underutilized because it owns fewer vertices, most of which are apt to be 

filtered remotely.  However, this method of partitioning progressively loses any inherent 

locality as the number of GPUs increases.  
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Graph traversal proceeds in level-synchronous fashion.  The host program 

orchestrates BFS iterations as follows: 

1) Invoke the expansion kernel on each GPUi, transforming the vertex queue Qvertexi 

into an edge queue Qedgei. 

2) Invoke a fused filter+partition operation for each GPUi that sorts neighbors within 

Qedgei by ownership into p bins.  Vertex identifiers undergo opportunistic local 

duplicate culling and bitmask filtering during the partitioning process.  This 

partitioning implementation is analogous to the three-kernel radix-sorting pass 

described in Chapter 5.   

3) Barrier across all GPUs.  The sorting must be completed on all GPUs before any 

can access their bins on remote peers.  The host program uses this opportunity to 

terminate traversal if all bins are empty on all GPUs. 

4) Invoke p-1 contraction kernels on each GPUi to stream and filter the incoming 

neighbors from its peers.  Kernel invocation simply uses remote pointers that 

reference the appropriate peer bins.  This assembles each vertex queue Qvertexi for 

the next BFS iteration.  

The implementation requires (2m+n)/p storage for queue arrays per GPU: two edge 

queues for pre and post-sorted neighbors and a third vertex queue to avoid another global 

synchronization after Step 4. 

6.6.2 Evaluation 

Fig. 74 presents traversal throughput as we scale up the number of GPUs.  We experience 

net slowdown for datasets on the left having average search depth > 100.  The cost of 

global synchronization between BFS iterations is much higher across multiple GPUs. 
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We do yield notable speedups for the three rightmost datasets.  These graphs have 

small diameters and require little global synchronization.  The large average out-degrees 

enable plenty of opportunistic duplicate filtering during partitioning passes.  This allows 

us to circumvent the PCI-e cap of 825x10
6
 edges/sec per GPU.  With four GPUs, we 

demonstrate traversal rates of 7.4 and 8.3 billion edges/sec for the uniform-random and 

RMAT datasets respectively. 

As expected, this strong-scaling is not linear.  For example, we observe 1.5x, 

2.1x, and 2.5x speedups when traversing rmat.2Mv.128Me using two, three, and four 

GPUs, respectively.    Adding more GPUs reduces the percentage of duplicates per 

processor and increases overall PCI-e traffic.   

 Fig. 75 further illustrates the impact of opportunistic duplicate culling for 

uniform random graphs up to 500M edges and varying out out-degree %̅.  Increasing %̅ 

yields significantly better performance.  Other than a slight performance drop at n=8 

million vertices when the bitmask exceeds the L2 cache size, graph size has little impact 

upon traversal throughput.   

Fig. 74.  Average multi-GPU traversal rates.  Harmonic means are normalized with respect to the single GPU 

configuration. 
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very favorably to state-of-the-art multicore implementations across our entire range of 

benchmarks, which spans five orders of magnitude in graph diameter. 

Beyond graph search, this chapter distills several general themes for 

implementing sparse and dynamic problems for the GPU machine model: 

• In contrast to coarse-grained parallelism common on multicore processors, GPU 

kernels cannot afford to have individual threads streaming through unrelated sections 

of data.  Groups of GPU threads should cooperatively assist each other for data 

movement tasks. 

• Fusing heterogeneous tasks does not always produce the best results.  Global 

redistribution and compaction of fine-grained tasks can significantly improve 

performance when the alternative would allow significant load imbalance or 

underutilization. 

• The relative memory traffic from global task redistribution can be less costly than 

anticipated.  The data movement from reorganization may be insignificant in 

comparison to the actual over-fetch traffic from existing sparse memory accesses. 

• It is useful to provide separate implementations for saturating versus fleeting 

workloads.  Hybrid approaches can leverage a shorter code-path for retiring 

underutilized phases as quickly as possible.  
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Chapter 7  

 

Conclusion 

 

 

 

 

 

 

7.1 SUMMARY 

This dissertation has addressed many of the challenges inherent to the construction of 

cooperative parallelizations for GPU architecture.  Despite contemporary opinion to the 

contrary, we have shown GPU architecture to be exceptionally well-suited for 

computations having fine-grained, dynamic allocation dependences between concurrent 

tasks.  Our primary examples are parallel sorting and graph traversal, two archetypal 

applications for this problem genre.  Our implementations for both of these problems 

achieve the fastest published performance on any fully-programmable microarchitecture.   

The ability to cooperatively reserve space within shared data structures is a 

fundamental aspect of parallel computing.  Although atomic operations are presently the 

conventional tool for implementing concurrent data placement, our analyses show they 

are incongruous with the bulk-synchronous and SIMD nature of the GPU machine model.  

We demonstrate prefix sum as a superior alternative for implementing cooperative 

allocation among many parallel threads.    
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The development of efficient parallelizations for prefix sum was critical to this 

research.  Our efficiency stems from flexible granularity coarsening, the ability to 

provide proper balance between serial and parallel phases of computation for the target 

architecture.  By reducing the computational overhead of local prefix sum by several 

factors, we created an inflection point in the design space for many cooperative problems 

where it now becomes feasible to: 

• Benefit from kernel fusion, i.e., the colocation of application-specific logic within 

prefix sum kernels with significantly reduced (or negligible) overhead 

• Perform fine-grained workload redistribution 

To demonstrate the viability and generality of our designs, we constructed cooperative 

GPU implementations for a variety of parallel list-processing primitives, evaluating their 

performance across a wide spectrum of problem sizes, types, and target architectures. 

However, it became clear that “concrete” implementations are simply not 

performance-portable, particularly if we want to reuse intra-CTA subroutines for 

common tasks.  Out of necessity, we developed a higher-level programming abstraction 

for policy-based tuning where the programmer expresses the “general shape” of their 

solution, leaving many of the performance sensitive details unbound.   We found the C++ 

type system to be useful as a mechanism for specializing code generation via template 

metaprogramming, particularly as our tuning decisions affect data structure and layout 

within shared memory.  Our autotuning results demonstrate the ability to consistently 

discover good specializations for the specific problem instance at hand. 
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7.2 LIMITATIONS AND FUTURE WORK 

7.2.1 The CTA serialization idiom 

CTA serialization has several drawbacks.  The increased granularity of computation can 

lead to load imbalance within and among GPU cores.  If the scheduling hardware within 

each core is unfair, warps within one CTA may repeatedly be given preference over those 

of another when either have ready candidates.  The result is a long tail of processor 

underutilization after the preferred CTAs have completed and only disfavored CTAs have 

work remaining.  We can curtail this effect to some degree by slightly oversubscribing 

each core with a constant amount of additional CTAs. 

Register pressure can also become an issue for kernels having more complicated 

tile-processing logic.  This is caused by increased register live ranges, a side effect of 

hoisting local variables from the tile processing loop.  The combination of excessive 

register pressure and aggressive common subexpression elimination (CSE) can lead to 

expensive spills to off-chip memory. 

As a compiler optimization, CSE is particularly advantageous for traditional CPU 

architecture where registers can be spilled to and recovered from nearby, high speed L1 

cache.  However, it is often more advantageous for GPU threads to simply recompute a 

result than to let it spill.  An interesting area of research for future investigation would be 

the tighter integration of CSE with register allocation, perhaps along with analytical cost 

models and program analysis of how many active threads will be affected. 

As another avenue of future work, CTA serialization is sufficiently simple to be 

automated by the compiler as an optimization step.  The compiler simply needs to wrap 

the data-parallel kernel code within a while-loop, sequentially virtualizing the concurrent 

CTAs expressed by the programmer. 
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7.2.2 Static metaprogramming 

The static metaprogramming techniques we describe in this dissertation are useful for 

achieving good performance on an abstract machine model where the overheads of 

runtime decision-making are substantially magnified by parallelism.  However, 

metaprogramming under the current model of compilation has two drawbacks.  Both are 

related to the fact that this extra programmer-supplied detail (e.g., the relationships 

between unrolling steps, tile sizes, and GPU architectures) is lost after the high-level 

source is compiled down into an intermediate representation.   

First, library developers of GPU primitives cannot possibly hope to distribute 

code in the form of precompiled binaries.  The number of specializations that would arise 

from simply compiling the cross-product of numeric data types across today’s existing 

architectures would result in untenable library bloating.  As an example of binary 

distribution bloat, the CUDPP library redistributable is 294MB [35].   

Instead, library providers must distribute high-level sources that can be #included, 

similar to the C++ standard template library.  This may place an unwanted burden on 

library authors who may not want to share the details of their high-level source code, or 

on developers who may not want to contend with lengthier compile times. 

Second, the metaprogramming approach is subject to performance regression by 

omission.  Although code specialization by data type can be driven by well-defined sets 

of traits (e.g., representation size, signed/unsigned, etc.), specialization by architecture-

version requires the compiler to be aware of all potential target processor configurations 

at compile-time.  New architectures are currently released around every 18 months.   

A better solution might entail a mechanism for the programming model to retain 

metaprogramming directives within the intermediate representation, allowing just-in-time 
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compilation by the loader/driver to specialize and unroll executable code for the specific 

target processor it has been deployed with. 

7.2.3 Sorting 

This dissertation presents very efficient radix sorting.  However, comparison-based 

methods are required for sorting problems where a lexicographic ordering of keys does 

not exist.  They are also more desirable when the key data type is sufficiently long and/or 

the input size of the sorting problem is relatively small.   

A prospective avenue of future research would be to investigate the design of 

comparison-based, top-down partitioning strategies, e.g., multi-pivot quicksort.  Our 

concurrent allocation strategies based upon parallel prefix sum should be directly 

applicable to the problem of constructing and tracking the dynamic, recursive partitioning 

of sorting inputs. 

7.2.4 Graph traversal 

Our multi-GPU implementation of sparse BFS leverages duplicate removal to 

significantly cut down the number of vertex-identifiers transmitted between GPUs.  An 

interesting extension of this technique would be to push such duplicate removal into the 

hierarchical interconnect of large scale systems (such as those evaluated by the Graph500 

benchmark [111]).  Using a randomized overlay network having log2p expected 

communication hops, one can imagine the entire system collectively acting as a 

progressive filter for eliminating the vast majority of edges before they ever arrive at their 

authoritative ownership nodes. 
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