
Allocation

with Application to

Allocation

with Application to

the

Doctor of Philosophy (Computer Science)

Allocation-oriented Algorithm Design

with Application to

the faculty of the School of Engineering

and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degre

Doctor of Philosophy (Computer Science)

Duane G. Merrill III

December 2011

oriented Algorithm Design

with Application to GPU Computing

A Dissertation

Presented to

aculty of the School of Engineering

and Applied Science

at the

University of Virginia

In Partial Fulfillment

equirements for the Degre

Doctor of Philosophy (Computer Science)

by

Duane G. Merrill III

December 2011

oriented Algorithm Design

GPU Computing

A Dissertation

Presented to

aculty of the School of Engineering

and Applied Science

University of Virginia

In Partial Fulfillment

equirements for the Degre

Doctor of Philosophy (Computer Science)

Duane G. Merrill III

December 2011

oriented Algorithm Design

GPU Computing

aculty of the School of Engineering

equirements for the Degree

Doctor of Philosophy (Computer Science)

oriented Algorithm Design

GPU Computing

oriented Algorithm Design

i

ABSTRACT

The wide data-parallelism of GPU processor design facilitates the execution of many

concurrent, fine-grained tasks with unprecedented performance and efficiency. However,

contemporary opinion regards GPU architecture as being poorly suited for many

parallelizations that impose dynamic dependences between processing elements. This

dissertation specifically attends to problems whose efficient solutions require cooperative

allocation, i.e., their dependences stem from dynamic data placement within shared

structures. The contribution of this thesis is a set of design patterns and reusable, tunable

software primitives that foster the construction of cooperative, allocation-oriented

parallelizations that are significantly faster, more efficient, more flexible, and more

performance-portable than the state of the art.

Whereas concurrent CPU programs typically leverage fine-grained atomic

operations for coordinating data placement, we demonstrate the advantages of parallel

prefix sum as a high performance, bulk-synchronous alternative for cooperative

allocation. We construct very efficient algorithms for global and local prefix sum by

employing flexible granularity coarsening techniques for properly balancing serial and

parallel workloads. The resulting efficiency gains permit kernel fusion techniques

ii

whereby application-specific logic can be incorporated within our prefix sum constructs

with little or no overhead.

To demonstrate the viability of our methods, we construct cooperative GPU

implementations for a variety of parallel list-processing primitives including reduction,

prefix scan, duplicate removal, histogram, and reduce-by-key. We evaluate their

performance across a wide spectrum of problem sizes, types, and target architectures. To

achieve performance-portability, we present a policy-based autotuning design idiom in

which we leave implementation decisions having opaque performance consequences

unbound within the program text. Finally, we showcase high performance

implementations for two archetypal problems in computer science: sorting and breadth-

first search (BFS). We achieve excellent performance for both genres, demonstrating

multiple factors of speedup over prior parallelizations for GPU and conventional multi-

core platforms.

iii

ACKNOWLEDGMENTS

To Jenny, my eternal confidante,

without whose love, support, and companionship

my purpose would surely be lost

To my parents, to my family,

through their sacrifice and achievements

my opportunities were possible

To my committee,

for gladly suffering my impenetrable prose

and helping me to better communicate

To Andrew, my advisor and mentor,

for the means to improve myself,

for letting my interests run on such a long leash,

and for the wisdom that this is all just a bit of history repeating

To Kevin Skadron and the Lava Lab,

for letting me monopolize their toys

To David Luebke,

for plugging me in

To Kim Hazelwood,

for supporting third-chances

To Mark Morgan,

for showing me how to program

and what Fred Brooks was writing about

To Michael, Nathan, and the NVR team,

for access

and the opportunity to have real-world impact

And to my friends and colleagues,

Karp, Anh, Zach, Ben,

Chris, Jen, Sam, Nate, Brian, Mike,

Howie, Kar, Sal, Yan, and Avenish

iv

TABLE OF CONTENTS

Abstract .. i

Acknowledgments.. iii

Table of Contents ... iv

List of Figures ... vii

List of Tables ... ix

List of Listings .. x

Chapter 1 Cooperative Allocation ... 1

1.1 Introduction .. 1

1.2 Dissertation Roadmap .. 5

1.3 Cooperative Algorithm Design .. 6

1.3.1 Suitability of atomic operations .. 9

1.3.2 Suitability of iterative stencil application ... 12

1.3.3 Suitability of prefix sum ... 15

1.4 Contributions .. 17

1.4.1 Prefix Scan .. 17

1.4.2 Sorting .. 18

1.4.3 Graph Traversal .. 19

1.4.4 Design Idioms ... 20

1.5 Chapter Summary ... 21

Chapter 2 GPU Machine and Programming Models .. 22

2.1 Introduction .. 22

2.2 Abstract Machine Model .. 22

2.3 Programming Model .. 25

2.4 Performance Modeling and Analysis ... 27

2.5 Performance Pitfalls ... 29

2.5.1 Non-uniform memory access costs... 29

2.5.2 Thread divergence .. 31

2.6 On the Suitability of GPU Architecture ... 32

2.6.1 Contention .. 32

2.6.2 Conclusions from workload and architectural studies 33

2.7 Chapter Summary ... 36

Chapter 3 Granularity coarsening & policy-based tuning .. 38

3.1 Introduction .. 38

3.1.1 Performance benefits .. 40

3.1.2 Software reusability benefits .. 41

3.2 Tunable Concurrency ... 42

v

3.2.1 Expressing all available concurrency is counterproductive 42

3.2.2 The insulation of “expression” from “mapping” is counterproductive 44

3.3 Granularity Coarsening .. 48

3.3.1 CTA serialization .. 49

3.3.2 Thread serialization .. 53

3.3.3 Involvement with the type system .. 56

3.4 Tuning via the Type System... 57

3.4.1 A simple example: data-parallel copy .. 58

3.4.2 Analysis of performance landscape across GPU architecture 63

3.4.3 Effectiveness of auto-tuning ... 67

3.5 Chapter Summary ... 69

Chapter 4 Parallel Prefix Scan .. 72

4.1 Introduction .. 72

4.2 Background .. 75

4.2.1 Prefix scan .. 75

4.3 Global CTA Decomposition ... 78

4.3.1 Scan-then-propagate ... 79

4.3.2 Reduce-then-scan.. 80

4.3.3 Two-level reduce-then-scan ... 81

4.4 Local Prefix Scan ... 82

4.4.1 Reduced-conflict Brent-Kung (RCBK) .. 82

4.4.2 Sequential-reduce-then-scan (SRTS) ... 85

4.4.3 SIMD Optimizations .. 86

4.4.4 Evaluation ... 88

4.5 Kernel Fusion ... 91

4.5.1 Segmented scan .. 92

4.5.2 Duplicate removal... 93

4.5.3 Reduce-by-key .. 93

4.5.4 Histogram ... 94

4.6 Chapter Summary ... 95

Chapter 5 Radix Sorting .. 97

5.1 Introduction .. 97

5.2 Background .. 99

5.2.1 GPU sorting applications .. 99

5.2.2 Parallel sorting networks and the impracticality of output-oriented design . 100

5.2.3 The radix sorting method .. 102

5.2.4 Parallel radix sorting ... 103

5.2.5 GPU parallelizations of other sorting methods ... 106

vi

5.3 Our Radix Sorting Strategy .. 107

5.3.1 “Multi-scan” prefix sum as allocation runtime ... 107

5.3.2 Multi-scan downsweep kernel operation .. 113

5.4 Optimizations ... 116

5.4.1 Composite scan ... 116

5.4.2 Early exit... 117

5.4.3 Flexible tuning .. 118

5.5 Analytical Model .. 119

5.6 Evaluation ... 120

5.6.1 Configuration and methodology ... 121

5.6.2 Overall sorting rates.. 122

5.6.3 Resource utilization .. 123

5.6.4 Computational workloads ... 124

5.6.5 Memory workloads ... 125

5.6.6 Key diversity... 126

5.7 Chapter Summary ... 128

Chapter 6 Sparse Graph Traversal .. 129

6.1 Introduction .. 129

6.2 Background .. 131

6.2.1 Sparse graph representation .. 132

6.2.2 Sequential BFS ... 133

6.2.3 Parallel BFS .. 134

6.3 Benchmark Suite .. 140

6.3.1 Graph Datasets .. 140

6.3.2 Logical Frontier Plots ... 141

6.4 Micro-benchmark Analyses ... 143

6.4.1 Isolated Neighbor Gathering .. 143

6.4.2 Isolated Status-lookup .. 148

6.4.3 Coupling of Gathering and Lookup .. 150

6.4.4 Concurrent Discovery ... 152

6.5 Single-GPU Parallelizations ... 157

6.5.1 Expand-contract (out-of-core vertex queue) ... 157

6.5.2 Contract-expand (out-of-core edge queue) ... 159

6.5.3 Two-phase (out-of-core vertex and edge queues) .. 161

6.5.4 Hybrid ... 161

6.5.5 Evaluation ... 162

6.6 Multi-GPU Parallelization .. 167

6.6.1 Design ... 167

vii

6.6.2 Evaluation ... 168

6.7 Chapter Summary ... 170

Chapter 7 Conclusion .. 172

7.1 Summary .. 172

7.2 Limitations and Future Work ... 174

7.2.1 The CTA serialization idiom .. 174

7.2.2 Static metaprogramming... 175

7.2.3 Sorting .. 176

7.2.4 Graph traversal ... 176

References ... 177

Index ... 186

LIST OF FIGURES

Fig. 1. Simple output-oriented stencil parallelizations .. 7

Fig. 2. Run-length decoding having dynamic input dependences 8

Fig. 3. Copy throughput as a function of decreasing global atomic workload 10

Fig. 4. Copy throughput as a function of decreasing shared atomic workload 11

Fig. 5. Example O(n) global reduction .. 13

Fig. 6. Example O(n
2
) sorting network .. 13

Fig. 7. Example O(|V|
2
) sparse graph traversal (BFS) ... 14

Fig. 8. Search space dataflow for 4-queens problem ... 14

Fig. 9. Example of exclusive prefix sum for computing scatter offsets for run-length

decoding .. 16

Fig. 10. Recursive Brent-Kung construction for prefix sum of 16 inputs 16

Fig. 11. Example GPU processor organization. ... 23

Fig. 12. Bulk-synchronous kernel invocation and global data flow. 26

Fig. 13. Alternative dataflow constructions for 8-element prefix sum 43

Fig. 14. Example CTA decompositions for a data-parallel transformation 49

Fig. 15. “Copy” kernel instruction overhead vs. CTA granularity 50

Fig. 16. “Copy” kernel utilized bandwidth vs. problem size n .. 50

Fig. 17. Example CTA decompositions for global reduction .. 51

Fig. 18. Cooperative instruction overhead vs. CTA granularity 52

Fig. 19. Recursive, pair-wise parallelization of local CTA reduction 53

viii

Fig. 20. Recursive, three-phase parallelization of local CTA reduction 54

Fig. 21. Alternative memory layouts for raking reduction in shared memory 56

Fig. 22. “Copy” kernel performance histograms of tuning configurations 61

Fig. 23. Performance histograms of tuning configuration “strength” 66

Fig. 24. Global reduction performance comparison .. 68

Fig. 25. Examples of prefix sum variants. ... 75

Fig. 26. Alternative constructions for 16-element prefix sum ... 77

Fig. 27. Example operation of a fully-recursive scan-then-propagate CTA

decomposition ... 79

Fig. 28. Example operation of a fully-recursive reduce-then-scan CTA decomposition 80

Fig. 29. Example operation of a two-level reduce-then-scan CTA decomposition 81

Fig. 30. Example operation of Blelloch exclusive scan ... 83

Fig. 31. Example operation of our reduced-conflict Brent-Kung (RCBK) exclusive scan

... 84

Fig. 32. Example operation of our conflict-free sequential-reduce-then-scan (SRTS) scan

... 85

Fig. 33. The operation of an unrolled, divergence-free three-level SIMD “warpscan” ... 87

Fig. 34. Global prefix sum throughput .. 88

Fig. 35. Global computational overhead .. 88

Fig. 36. Scan kernel utilized bandwidth... 89

Fig. 37. Scan kernel computational overhead .. 89

Fig. 38. Kernel fusion of application code into scan kernels ... 91

Fig. 39. Segmented scan throughput .. 93

Fig. 40. Duplicate removal throughput .. 93

Fig. 41. Reduce-by-key throughput ... 94

Fig. 42. Histogram throughput ... 94

Fig. 43. The traditional split operation... 103

Fig. 44. Procedures for distribution sorting ... 105

Fig. 45. A typical recursive CTA decomposition for prefix scan 109

Fig. 46. A fixed, two-level CTA decomposition for prefix scan 109

Fig. 47. GTX 285 memory wall ... 112

Fig. 48. Free cycles within a downsweep scan kernel ... 112

Fig. 49. Free cycles within a downsweep sorting scan/scatter kernel 112

Fig. 50. Intra-CTA multi-scan operation incorporating fused binning and scatter logic114

Fig. 51. GTX285 keys-only and key-value pair radix sorting rates. 122

Fig. 52. GTX285 saturated sorting rates for various radix bits d 122

Fig. 53. Resource utilization for 32-bit key-value sorting ... 123

Fig. 54. Computational workload for 32-bit key-value sorting 124

Fig. 55. Memory workload for 32-bit key-value sorting ... 125

ix

Fig. 56. Memory vs. compute workload ratios for individual sorting kernels 126

Fig. 57. Sorting performance with varying key entropy .. 127

Fig. 58. Sorting performance for key distributions with banded ranges 127

Fig. 59. Example CSR representation ... 132

Fig. 60. Example sparse graph, corresponding CSR representation, and frontier evolution

for a BFS beginning at source vertex v0. ... 135

Fig. 61. Sample frontier plots of logical vertex and edge-frontier sizes 142

Fig. 62. Alternative neighbor-gathering strategies .. 145

Fig. 63. Neighbor-gathering behavior .. 147

Fig. 64. Status-lookup behavior ... 149

Fig. 65. Comparison of lookup vs. gathering. .. 150

Fig. 66. Comparison of isolated vs. fused lookup and gathering. 151

Fig. 67. Example of redundant adjacency list expansion due to concurrent discovery . 152

Fig. 68. Actual expanded and contracted queue sizes without local duplicate culling .. 153

Fig. 69 Redundant work expansion incurred by variants of our two-phase BFS

implementation ... 154

Fig. 70 Percentages of false-negatives incurred by status-lookup strategies. 156

Fig. 71 BFS traversal performance and workloads .. 162

Fig. 72. Sample wikipedia-20070206 traversal behavior ... 163

Fig. 73. NVIDIA C2050 traversal throughput. .. 165

Fig. 74. Average multi-GPU traversal rates ... 169

Fig. 75. Multi-GPU sensitivity to graph size and average out-degree � for uniform

random graphs ... 170

LIST OF TABLES

Table 1. Throughput limits of NVIDIA GPUs .. 28

Table 2. Max achievable DRAM bandwidth .. 62

Table 3. Corpus of tuning benchmarks ... 63

Table 4. Between-configs slowdown variance ... 65

Table 5. Within-configs slowdown variance .. 65

Table 6. Average bandwidth utilization of all 128MB tuning configurations 67

Table 7. Average bandwidth utilization of best 128MB tuning configurations 67

Table 8. Saturated 32-bit sorting rates ... 121

x

Table 9. Suite of benchmark graphs .. 141

Table 10. Single-socket performance comparison. .. 164

LIST OF LISTINGS

Listing 1. A straightforward kernel subroutine for CTAs to copy tiles 59

Listing 2. A tuning policy type for data-parallel copy ... 59

Listing 3. A generalized, policy-based kernel subroutine for CTAs to copy tiles of

elements .. 60

Listing 4. Blelloch PRAM exclusive scan algorithm ... 83

Listing 5. The simple sequential breadth-first search algorithm.................................... 132

Listing 6. A simple quadratic-work, vertex-oriented BFS parallelization 134

Listing 7. A linear-work BFS parallelization constructed using a global vertex-frontier

queue. .. 134

Listing 8. A linear-work, vertex-oriented BFS parallelization for a graph that has been

partitioned across multiple processors .. 138

Listing 9. GPU pseudo-code for warp-based, strip-mined neighbor-gathering 144

Listing 10. GPU pseudo-code for fine-grained, scan-based neighbor-gathering 144

Listing 11. GPU pseudo-code for a localized, warp-based duplicate-detection heuristic.

... 155

1

Chapter 1

Cooperative Allocation

1.1 INTRODUCTION

Efficiency. We use the term to describe how well we spend our time and effort.

Computer science is in many regards a study of efficiency. The algorithm encodes how

to solve a problem, the machine automates the solution for us, and the efficiency of their

pairing determines the practicality of the whole endeavor.

In order to improve machine efficiency, the current trend in processor architecture

is to embrace wider parallelism. With an emphasis on more processing elements per

chip, microprocessors can deliver increasingly higher throughput while maintaining

energy efficiency. Contemporary graphics processors – GPUs – are at the leading edge

of this trend. GPUs have evolved from fixed-function hardware into fully-programmable

processors capable of general-purpose computation. In contrast to mainstream CPU

architecture, GPUs provision tens of thousands of data-parallel threads.

GPUs have captured mindshare for their impressive peak throughput. Modern

GPUs are capable of trillions of floating point operations per second (teraFLOPS) from a

single microprocessor. They deliver very high throughput on parallel computations, but

2

require large amounts of fine-grained concurrency to do so. Unfortunately the physical

design tradeoffs for such wide parallelism can penalize algorithms having irregular,

dynamic, and cooperative behavior. GPU architecture is particularly sensitive to load

imbalance among processing elements and serialization from contended accesses to

memory.

This dissertation focuses on a particular class of problems for which GPUs are

perceived as being poorly-suited. The common theme amongst these problems is that

their solutions require cooperative allocation. We use this term to convey the notion that

dynamic data placement within shared structures plays a central role in their operation.

Parallel sorting, graph traversal, search space exploration, and duplicate removal are

commonplace examples of this problem genre. These problems all expose abundant fine-

grained concurrency, but their allocation (or relocation) behavior imposes global task

dependences upon otherwise independent operations. Threads must cooperate with each

other simply to determine where they can write their outputs.

Although the hardware is very efficient at scale, the traditional algorithmic

techniques for solving these problems are often not. Parallel programming coursework

typically illustrates multithreaded cooperation using fine-grained synchronization,

specifically atomic read-modify-write operations. These mechanisms work by serializing

updates within shared data structures. This type of serialization is particularly expensive

for GPUs in terms of efficiency and performance. Although mutual exclusion may be

suitable for the coarse-grained parallelism common to conventional CPU processors, it

does not scale well to tens of thousands of threads. Furthermore, the occurrence of

localized serialization between threads is typically more costly for GPU hardware. In

3

particular, many threads may be penalized when only a few are forced to wait for

contended access.

As a result, straightforward implementations of many cooperative problems often

demonstrate poor performance, particularly when compared to their CPU-based

counterparts. The underlying goal of this work is to distill efficient allocation-oriented

algorithms and design idioms for GPU processor architecture.

In particular, we focus on prefix sum as an alternative mechanism for data

placement. Parallel prefix sum is an algorithmic primitive that can be used to compute

space reservations for threads given their individual allocation requirements. Once these

output offsets are known, threads can perform contention-free writes into shared

structures. Cooperative allocation using local and global applications of efficient prefix

sum is the central theme of this dissertation.

Prefix sum is also useful within optimization steps meant to improve GPU

utilization by reorganizing sparse and uneven workloads into dense and uniform ones.

Any mechanism for reorganization must be efficient: the opportunistic performance

benefits must outweigh the additional overhead. When such optimizations become

worthwhile, the GPU performance landscape for many irregular problems can be

drastically improved.

However, prior implementations for GPU prefix sum were inflexible and

inefficient. They existed at the global level to be invoked by the host CPU program,

serving as black-box subroutines around which application-specific computation needed

to be suspended and resumed. They were expensive because their inputs and outputs had

4

to be placed in off-chip global memory, making them suitable only for problems large

enough to warrant enlisting the entire processor.

Furthermore, reusable implementations of prefix sum for small problems residing

in on-chip shared memory were virtually non-existent. The scalability of many

problems often hinges on hierarchical algorithms and data structures, and the ability to

allocate within small structures shared by a localized group of threads is often as

desirable as for large global ones.

In the absence of efficient and convenient GPU prefix sum, common practice for

allocation-oriented parallelizations is to either (a) implement them using inefficient

atomic operations; (b) avoid dynamic placement altogether by using work-inefficient

data-parallel algorithms instead; or (c) simply not bother using the GPU at all. As

processor design evolves towards wider data parallelism, all three would make poor

usage of GPU-like throughput computing cores.

This dissertation is characterized by two overlapping research agendas. The first

is the development of techniques for prefix scan that are several factors more efficient

than prior work. The second is the practical application of these techniques and other

idioms within a variety of algorithmic primitives and applications, substantially

improving their performance.

In particular, we showcase our efforts by addressing two dynamic problems

fundamental to computer science: sorting and breadth-first search (BFS). Both are

common building blocks for more sophisticated algorithms. Both have abundant

concurrency. Both elicit workloads representative of many problem genres: sorting

encompasses list processing, partitioning, and ordering behavior; and BFS exemplifies

5

dynamic workload management and pointer-chasing. And both and are simple enough

that we can analyze their behavior in depth.

1.2 DISSERTATION ROADMAP

This dissertation is organized into the following chapters:

• Chapter 1 continues with a discussion of cooperative parallelization idioms for

GPUs. We characterize the types of problems that benefit from efficient

allocation-oriented design. Furthermore, we illustrate the inefficiency of atomic

operations, the traditional mechanism for dynamic allocation.

• Chapter 2 describes the GPU abstract machine model, programming model, and

performance pitfalls that guide the design patterns and idioms we develop in this

dissertation. We also review the contemporary attitude regarding the use of GPUs

for cooperative problems, underscoring the need for better solution strategies.

• Chapter 3 describes two prominent design idioms that we incorporate throughout

this dissertation. We leverage granularity coarsening to balance the ratio of serial

versus parallel workloads such that concurrency scales with processor width rather

than problem size. Policy-based tuning allows us to tailor the granularity and

other algorithm configuration options to match the specific input and target

processor via the programming language’s type system.

• Chapter 4 presents our investigation of global and local algorithms for prefix scan1.

By improving the efficiency of prefix scan past the point of being memory-bound,

we leverage the kernel fusion design idiom to construct more sophisticated list-

1 Whereas prefix sum specifically incorporates the addition operator, prefix scan is the generalization for arbitrary

binary associative combining operators

6

processing primitives (e.g., segmented scan, duplicate removal, histogram, and

reduce-by-key) with little or no extra overhead.

• Chapter 5 describes our parallelization of high performance radix sorting.

• Chapter 6 presents our parallelization of breadth-first search for sparse graphs.

• Chapter 7 concludes by summarizing the contributions and limitations of the work

presented within this dissertation, commenting on opportunities for future

research.

1.3 COOPERATIVE ALGORITHM DESIGN

GPUs are designed for data-parallel transformations, i.e., threads within kernel programs

read input items from a global memory, process them independently, and write their

results back to memory.

In particular, the GPU machine and programming models favor stencil kernel

designs. This fundamental parallelization idiom is output-oriented. The stencil kernel is

written such that each thread produces a specific item in the output dataset, regardless of

what is computed by other threads. For stencil threads, the output location for each result

is expressed as a static function of thread identifier. (E.g., “thread t6 produces output6”.)

Furthermore, a given stencil thread is typically not intended to reference the entire

input. The specific inputs needed by each thread to compute the stencil operation are

either (a) referenced directly via thread identifier, or (b) referenced indirectly by other

directly-referenced inputs. As illustrated in Fig. 1, the stencil inputs for each thread are

often regular and structured, belonging to a small finite neighborhood within the input

dataset.

transformations having global

location

output items

Reduction, sorting, histogram

examples

transformation

cooperative dependences

(a)

Algorithm des

transformations having global

location may depend

output items

Reduction, sorting, histogram

examples.

However, a

transformation

cooperative dependences

• Shared data

problem is minimized when

threads

• Allocation dependences

placing

interested in

allocation dependences

architecture, and

(a) Single-input stencil

Fig. 1.

Algorithm design

transformations having global

may depend on knowledge of any/every input element. Even t

output items may be variable.

Reduction, sorting, histogram

However, a single stencil kernel is

transformations. Pure s

cooperative dependences

Shared data dependences

problem is minimized when

threads.

llocation dependences

placing consecutive elements

interested in what

allocation dependences

architecture, and constitute the primary subject of this dissertation.

stencil (representative of normalization, etc.)

. Simple output-

ign becomes interesting when we want to perform

transformations having global input dependences

on knowledge of any/every input element. Even t

be variable.

Reduction, sorting, histogram, map

single stencil kernel is

Pure stencil kernels require in

cooperative dependences between threads.

dependences. For example,

problem is minimized when

llocation dependences. For example, threads must coordinate

consecutive elements

 is computed by their peers, but rather

allocation dependences between threads

constitute the primary subject of this dissertation.

(representative of normalization, etc.)

-oriented stencil parallelizations

becomes interesting when we want to perform

dependences

on knowledge of any/every input element. Even t

 Many useful primitives have this charac

, map-reduce, and duplicate

single stencil kernel is

tencil kernels require in

threads. Such dependences may stem from

. For example,

problem is minimized when intermediate

For example, threads must coordinate

consecutive elements into a shared buffer

is computed by their peers, but rather

between threads

constitute the primary subject of this dissertation.

(representative of normalization, etc.) (b)

samplers, convolution, iterative and Poisson solvers,

matrix multiplication

oriented stencil parallelizations

becomes interesting when we want to perform

dependences, i.e., the result destined for each output

on knowledge of any/every input element. Even t

useful primitives have this charac

nd duplicate

single stencil kernel is unsuitable for

tencil kernels require independent computation

Such dependences may stem from

. For example, the overall work for a global reduction

rmediate partial results

For example, threads must coordinate

into a shared buffer.

is computed by their peers, but rather

between threads are an artifact of shared

constitute the primary subject of this dissertation.

(b) Neighborhood

samplers, convolution, iterative and Poisson solvers,

matrix multiplication

oriented stencil parallelizations. (Emphasis on dependences for thread

becomes interesting when we want to perform

the result destined for each output

on knowledge of any/every input element. Even t

useful primitives have this charac

nd duplicate-removal are commonplace

unsuitable for performing

dependent computation

Such dependences may stem from

the overall work for a global reduction

results can be shared

For example, threads must coordinate when concurrently

. In this case, threads are

is computed by their peers, but rather how many

are an artifact of shared

constitute the primary subject of this dissertation.

Neighborhood-input stencil (representative

samplers, convolution, iterative and Poisson solvers,

matrix multiplication, etc.)

. (Emphasis on dependences for thread

becomes interesting when we want to perform

the result destined for each output

on knowledge of any/every input element. Even the number of

useful primitives have this characteristic.

removal are commonplace

performing

dependent computation with

Such dependences may stem from:

the overall work for a global reduction

can be shared between

when concurrently

In this case, threads are

how many. Cooperative

are an artifact of shared-memory

constitute the primary subject of this dissertation.

representative of image

samplers, convolution, iterative and Poisson solvers,

. (Emphasis on dependences for thread t2.)

7

becomes interesting when we want to perform data

the result destined for each output

he number of

teristic.

removal are commonplace

performing such

with no

the overall work for a global reduction

between

when concurrently

In this case, threads are not

Cooperative

emory

image

samplers, convolution, iterative and Poisson solvers,

Without cooperation, each

the entire problem. As an example,

stencil decomposition for run

number of times it is to be repeated. The desired transformation is to expand these tuples

into the output array. Each stencil thread must look at

should be written to its output location. This decomposition is fur

because it requires prior knowledge of how many threads to launch, i.e., how many

output items will be produced.

having gl

decomposition for our run

items, and each thread is tasked with determining where its result should be pla

input

how many threads to invoke.

task granularity of individual threads. Threads

exactly one item. In our example, arbitrarily large repeat

workload imbalance among threads. Furthermore, the shared

Without cooperation, each

the entire problem. As an example,

stencil decomposition for run

number of times it is to be repeated. The desired transformation is to expand these tuples

into the output array. Each stencil thread must look at

should be written to its output location. This decomposition is fur

because it requires prior knowledge of how many threads to launch, i.e., how many

output items will be produced.

Instead, an

having global allocation dependences.

decomposition for our run

items, and each thread is tasked with determining where its result should be pla

input-oriented idiom has the advantage of not needing a preprocessing step to determine

how many threads to invoke.

However, the input

task granularity of individual threads. Threads

exactly one item. In our example, arbitrarily large repeat

workload imbalance among threads. Furthermore, the shared

(a) Output

Fig. 2. Run

Without cooperation, each

the entire problem. As an example,

stencil decomposition for run

number of times it is to be repeated. The desired transformation is to expand these tuples

into the output array. Each stencil thread must look at

should be written to its output location. This decomposition is fur

because it requires prior knowledge of how many threads to launch, i.e., how many

output items will be produced.

Instead, an input

obal allocation dependences.

decomposition for our run

items, and each thread is tasked with determining where its result should be pla

oriented idiom has the advantage of not needing a preprocessing step to determine

how many threads to invoke.

However, the input

task granularity of individual threads. Threads

exactly one item. In our example, arbitrarily large repeat

workload imbalance among threads. Furthermore, the shared

Output-oriented stencil decomposition

Run-length decoding having dynamic input dependences

Without cooperation, each output-oriented

the entire problem. As an example,

stencil decomposition for run-length decoding. Each input tuple contains a chara

number of times it is to be repeated. The desired transformation is to expand these tuples

into the output array. Each stencil thread must look at

should be written to its output location. This decomposition is fur

because it requires prior knowledge of how many threads to launch, i.e., how many

output items will be produced.

input-oriented decomposition is often more intuitive for problems

obal allocation dependences.

decomposition for our run-length decoding example. Threads are mapped onto input

items, and each thread is tasked with determining where its result should be pla

oriented idiom has the advantage of not needing a preprocessing step to determine

how many threads to invoke.

However, the input-oriented decomposition has the consequence of increasing the

task granularity of individual threads. Threads

exactly one item. In our example, arbitrarily large repeat

workload imbalance among threads. Furthermore, the shared

tencil decomposition

length decoding having dynamic input dependences

oriented stencil thread would be required to read

the entire problem. As an example, Fig. 2a illustrates a hypothetical output

length decoding. Each input tuple contains a chara

number of times it is to be repeated. The desired transformation is to expand these tuples

into the output array. Each stencil thread must look at

should be written to its output location. This decomposition is fur

because it requires prior knowledge of how many threads to launch, i.e., how many

decomposition is often more intuitive for problems

obal allocation dependences. Fig.

length decoding example. Threads are mapped onto input

items, and each thread is tasked with determining where its result should be pla

oriented idiom has the advantage of not needing a preprocessing step to determine

oriented decomposition has the consequence of increasing the

task granularity of individual threads. Threads

exactly one item. In our example, arbitrarily large repeat

workload imbalance among threads. Furthermore, the shared

tencil decomposition

length decoding having dynamic input dependences

ncil thread would be required to read

a illustrates a hypothetical output

length decoding. Each input tuple contains a chara

number of times it is to be repeated. The desired transformation is to expand these tuples

into the output array. Each stencil thread must look at O(

should be written to its output location. This decomposition is fur

because it requires prior knowledge of how many threads to launch, i.e., how many

decomposition is often more intuitive for problems

Fig. 2b illustrates the input

length decoding example. Threads are mapped onto input

items, and each thread is tasked with determining where its result should be pla

oriented idiom has the advantage of not needing a preprocessing step to determine

oriented decomposition has the consequence of increasing the

 are no longer responsible for producing

exactly one item. In our example, arbitrarily large repeat-counts can lead to significant

workload imbalance among threads. Furthermore, the shared

(b) Input

length decoding having dynamic input dependences. (Emphasis on dependences for thread

ncil thread would be required to read

a illustrates a hypothetical output

length decoding. Each input tuple contains a chara

number of times it is to be repeated. The desired transformation is to expand these tuples

(n) inputs to determine what

should be written to its output location. This decomposition is further complicated

because it requires prior knowledge of how many threads to launch, i.e., how many

decomposition is often more intuitive for problems

b illustrates the input

length decoding example. Threads are mapped onto input

items, and each thread is tasked with determining where its result should be pla

oriented idiom has the advantage of not needing a preprocessing step to determine

oriented decomposition has the consequence of increasing the

are no longer responsible for producing

counts can lead to significant

workload imbalance among threads. Furthermore, the shared-memory architecture

Input-oriented decomposition

(Emphasis on dependences for thread

ncil thread would be required to read

a illustrates a hypothetical output-oriented

length decoding. Each input tuple contains a character and

number of times it is to be repeated. The desired transformation is to expand these tuples

) inputs to determine what

ther complicated

because it requires prior knowledge of how many threads to launch, i.e., how many

decomposition is often more intuitive for problems

b illustrates the input-oriented

length decoding example. Threads are mapped onto input

items, and each thread is tasked with determining where its result should be placed. The

oriented idiom has the advantage of not needing a preprocessing step to determine

oriented decomposition has the consequence of increasing the

are no longer responsible for producing

counts can lead to significant

memory architecture

decomposition

(Emphasis on dependences for thread t2.)

8

ncil thread would be required to read up to

oriented

cter and

number of times it is to be repeated. The desired transformation is to expand these tuples

) inputs to determine what

ther complicated

because it requires prior knowledge of how many threads to launch, i.e., how many

decomposition is often more intuitive for problems

oriented

length decoding example. Threads are mapped onto input

ced. The

oriented idiom has the advantage of not needing a preprocessing step to determine

oriented decomposition has the consequence of increasing the

are no longer responsible for producing

counts can lead to significant

memory architecture

.)

9

would still require each thread to inspect O(n) other inputs simply to determine where to

begin its output.

Regardless of input/output-oriented thread assignment, we would prefer to avoid

the overall quadratic workload for cooperative problems that arises when each thread

must independently inspect O(n) input items. In the following subsections, we describe

the suitability of three strategies for doing just that: (1) input-oriented atomic updates; (2)

output-oriented iterative stencil application; and (3) input-oriented prefix sum.

1.3.1 Suitability of atomic operations

Fine-grained synchronization is attractive for solving many problems having allocation

dependences. We can use atomic addition to trivially implement our input-oriented

example of run-length decoding (with relaxed ordering of output-runs). With a global

counter initialized to zero, threads can determine locations for their output-runs via

atomic addition on the shared counter using their repeat-count as the addend. The

operation returns the counter’s previous value which can then be used as a base scatter

offset for the calling thread.

Although atomics often provide ease of implementation, they can incur dramatic

processor underutilization. We illustrate atomic overhead by coupling it with a trivial

“copy” kernel whose threads simply read and write their 32-bit elements from global

input and output arrays. After loading an input, each thread performs an atomic addition

on a shared counter in off-chip global memory to provide a corresponding allocation

workload. We use 32M-element arrays, large enough to saturate the processor cores of

the last three generations of NVIDIA GPU architectures (GF100, GT200, and G92).

10

The plots in Fig. 3 illustrate the response of overall copy throughput as we

geometrically decrease the global atomic workload. This workload ranges from fine-

grained synchronization (where every thread performs an atomic addition after loading its

input) to only one atomic addition for every 2
18

 threads. As the atomic workload

decreases, we observe a transition from being rate-limited by atomic addition to being

rate-limited by global memory bandwidth.

By progressively relieving the memory subsystem from atomic overhead,

GTX480 copy throughput increases until it saturates at 151 GB/s (the peak achievable

bidirectional bandwidth for the processor). However, the copy kernel only achieves 650

MB/s at the finest granularity of atomic synchronization, a 233x slowdown versus

memory-saturated throughput. Fig. 3b reveals the situation is even worse for the older

GTX280: fine-grained synchronization incurs a 3,970x slowdown.

On the other hand, atomic usage can be harmless when used sparingly. We

observe the GTX480 is rate-limited at 82M global atomics/sec. As atomic workload is

decreased past bandwidth saturation, the average thread latency no longer decreases

correspondingly. Instead it is locked to the rate at which items can be copied through

(a) NVIDIA GTX480 (GF100 architecture)

(b) NVIDIA GTX280 (GT200 architecture)

Fig. 3. Copy throughput as a function of decreasing global atomic workload. (Shown in log-log scale.)

81.8

0.65

151.2

0.01

0.1

1

10

100

1000

0.01

0.1

1

10

100

1000

1 8 64 512 4096 32768 262144

1
0

9
b

y
te

s
/

se
c

1
0

6
g

-a
to

m
ic

s
/

se
c

Thread stride between gmem atomic ops

Global Atomic Rate Copy Rate

4.3

0.03

119.2

0.01

0.1

1

10

100

1000

0.01

0.1

1

10

100

1000

1 8 64 512 4096 32768 262144

1
0

9
b

y
te

s
/

se
c

1
0

6
g

-a
to

m
ic

s
/

se
c

Thread stride between gmem atomic ops

Global Atomic Rate Copy Rate

11

memory. When atomic addition is no longer the limiting factor, measured atomic

throughput begins to decrease along with decreased atomic workload. These sparse

atomic operations have negligible overall performance impact: copy throughput remains

at a plateau regardless of shrinking atomic workload.

Because processor cores can perform infrequent atomic reservation without

penalty, we can leverage software combining [109] to batch many local requests into a

single atomic operation. For example, threads local to a processor core would aggregate

local counts into a single addend. On the GTX480, one thread can then perform a single

global atomic reservation representing counts from 256 others without reducing overall

throughput. As described further in Chapter 6, we make use of global atomics for

aggregating allocation requests in our methods for GPU graph traversal.

The challenge for such “reservation-in-bulk” is computing the local aggregate

addend. Unfortunately local atomic operations within on-chip shared memory are also

not particularly efficient. Fig. 4 plots similar rate-limit transitions, this time with

decreasing shared-memory atomic workloads. For both GTX480 and GTX280, we see

(a) NVIDIA GTX480 (GF100)

(b) NVIDIA GTX280 (GT200)

Fig. 4. Copy throughput as a function of decreasing shared atomic workload. (Shown in log-log scale.)

771.6

6.17

151.2

1

10

100

1000

0.01

0.1

1

10

100

1000

1 8 64 512 4096 32768 262144

1
0

9
b

y
te

s
/

se
c

1
0

6
s-

a
to

m
ic

s
/

se
c

Thread stride between smem atomic ops

Smem Atomic Rate Copy Rate

621.5

4.97

118.9

1

10

100

1000

0.01

0.1

1

10

100

1000

1 8 64 512 4096 32768 262144

1
0

9
b

y
te

s
/

se
c

1
0

6
s-

a
to

m
ic

s
/

se
c

Thread stride between smem atomic ops

Smem Atomic Rate Copy Rate

12

that copy throughput suffers a 24x slowdown when every resident thread performs a

shared memory atomic operation.

The implication is that fine-grained contention, in global or nearby shared

memory, is simply too expensive for practical application. In Chapter 4, we show that we

can construct functionality comparable to fine-grained shared-memory atomics using

local prefix sum, and do so with zero slowdown under the cover of memory I/O.

Atomic operations have a second drawback in that access order is arbitrary. In

our example, the output-runs may not appear in the same order as their corresponding

inputs. This issue of unstable ordering precludes atomic operations from many problems.

Many list-processing problems have stable ordering constraints where a given output

allocation must be relative to the location of the input item (e.g., variants of array

compaction, duplicate-removal, counting sort, etc.). Even when stable ordering is not

required, an arbitrary ordering of output items can often destroy any inherent localities

that were present in the input dataset.

1.3.2 Suitability of iterative stencil application

In short, we prefer parallelizations that avoid contended updates to shared data structures.

The iterative stencil pattern is a common, straightforward approach for orchestrating

global dataflow without such contention. The idea is to string together a series of

homogenous stencil kernels, effecting a global transformation from many iterations of

neighborhood dataflow.

This static strategy works well for some problems. For global reduction, we can

iterate simple stencils in which threads reduce pair-wise neighbors. As illustrated in Fig.

5, threads within each kernel invocation read pairs of consecutive inputs, reduce them,

and

process requires

lead to functional solutions, the overall

alternative parallelizations having

networks

advance. As such, they can be implemented using

specific elements.

wise neighbor

sort

sorting networks

O

embedded expander graphs within the dataflow circuit.

and

to saturate the GPU.

Fig.

pair

and then write out the result

process requires

Iterative stencil appl

lead to functional solutions, the overall

alternative parallelizations having

networks are sorting strategies where the sequence of comparisons is statically known in

advance. As such, they can be implemented using

specific elements.

wise neighbor

Unfortunately this particular

sorting and has

sorting networks

O(nlogn) networks are known

embedded expander graphs within the dataflow circuit.

and/or practically i

to saturate the GPU.

Fig. 5. Example O

pair-wise stencil kernels

write out the result

process requires amortized

Iterative stencil appl

lead to functional solutions, the overall

alternative parallelizations having

are sorting strategies where the sequence of comparisons is statically known in

advance. As such, they can be implemented using

specific elements. Fig. 6

wise neighbor-swapping.

Unfortunately this particular

and has O(n
2
) work complexity.

sorting networks [10] improve the

) networks are known

embedded expander graphs within the dataflow circuit.

practically inefficient networks

to saturate the GPU.

O(n) global reduction

wise stencil kernels.

write out the results. This repeats

amortized O(n) work, which is optimal for

Iterative stencil application is less

lead to functional solutions, the overall

alternative parallelizations having dynamic

are sorting strategies where the sequence of comparisons is statically known in

advance. As such, they can be implemented using

6 illustrates a

.

Unfortunately this particular

) work complexity.

improve the

) networks are known [3], they

embedded expander graphs within the dataflow circuit.

nefficient networks

uction constructed from

This repeats until the last pair is reduced.

) work, which is optimal for

ication is less effective for

lead to functional solutions, the overall work performed

dynamic allocation behavior.

are sorting strategies where the sequence of comparisons is statically known in

advance. As such, they can be implemented using

a simple parallelization

Unfortunately this particular sorting network is isomorphic to bubble/insertion

) work complexity. Methods based upon

improve the complexity

, they have extremely large

embedded expander graphs within the dataflow circuit.

nefficient networks are not well

constructed from Fig. 6

pair-wise swapping

until the last pair is reduced.

) work, which is optimal for reduction

effective for other problems.

work performed can be

allocation behavior.

are sorting strategies where the sequence of comparisons is statically known in

advance. As such, they can be implemented using static stencil

mple parallelization

sorting network is isomorphic to bubble/insertion

Methods based upon

complexity to O(nlog
2
n

extremely large

embedded expander graphs within the dataflow circuit. At scale, t

are not well-suited for problem sizes large enough

6. Example O(n2

wise swapping stencil kernels

until the last pair is reduced.

reduction.

other problems.

can be asymptotically inferior to

allocation behavior. For example,

are sorting strategies where the sequence of comparisons is statically known in

stencils that conditionally swap

mple parallelization where threads

sorting network is isomorphic to bubble/insertion

Methods based upon Batcher’s bitonic and 0

n). Although w

extremely large practical constants

At scale, these asymptotically

for problem sizes large enough

2) sorting network

stencil kernels.

until the last pair is reduced. The entire

 Although it may

asymptotically inferior to

For example, sorting

are sorting strategies where the sequence of comparisons is statically known in

that conditionally swap

where threads perform

sorting network is isomorphic to bubble/insertion

Batcher’s bitonic and 0

Although work-optimal

practical constants due to

hese asymptotically

for problem sizes large enough

) sorting network constructed from

13

The entire

Although it may

asymptotically inferior to

sorting

are sorting strategies where the sequence of comparisons is statically known in

that conditionally swap

perform pair-

sorting network is isomorphic to bubble/insertion

Batcher’s bitonic and 0-1

optimal

due to

hese asymptotically

for problem sizes large enough

constructed from

based solutions, particularly for sorting problems large enough to saturate the GPU.

Eff

partitioning.

keys

oriented stencil designs whose threads rigidly produce specific output items.

5, w

also be implemented via

time step, this approach launches one thread per vertex

in the previous iteration.

discovers

having

vertex is inspected during every iteration, and there may

case.

Fig.

(BFS)

map one thread per vertex.

We would prefer work

based solutions, particularly for sorting problems large enough to saturate the GPU.

Efficient methods like quicksort, sample sort, and radix sort

partitioning.

keys into different

oriented stencil designs whose threads rigidly produce specific output items.

, we describe the work

Other problems suffer a similar fate

also be implemented via

time step, this approach launches one thread per vertex

in the previous iteration.

discovers its

having n vertices and

ertex is inspected during every iteration, and there may

case.

Fig. 7. Example O

(BFS). Neighbor-

map one thread per vertex.

We would prefer work

based solutions, particularly for sorting problems large enough to saturate the GPU.

icient methods like quicksort, sample sort, and radix sort

partitioning. They are constructed from

into different output

oriented stencil designs whose threads rigidly produce specific output items.

e describe the work-efficient parallelization of radix sorting

Other problems suffer a similar fate

also be implemented via

time step, this approach launches one thread per vertex

in the previous iteration.

its vertex has been marked, it marks the neighbors of that vertex. For a graph

vertices and m edges, the overall work complexity is quadratic

ertex is inspected during every iteration, and there may

O(|V|2) sparse graph traversal

-expansion stencil kernels

map one thread per vertex.

We would prefer work-optimal

based solutions, particularly for sorting problems large enough to saturate the GPU.

icient methods like quicksort, sample sort, and radix sort

are constructed from

output bins. This allocation behavior does

oriented stencil designs whose threads rigidly produce specific output items.

efficient parallelization of radix sorting

Other problems suffer a similar fate

also be implemented via repeated data

time step, this approach launches one thread per vertex

in the previous iteration. This parall

vertex has been marked, it marks the neighbors of that vertex. For a graph

edges, the overall work complexity is quadratic

ertex is inspected during every iteration, and there may

sparse graph traversal

expansion stencil kernels

optimal O(nlogn

based solutions, particularly for sorting problems large enough to saturate the GPU.

icient methods like quicksort, sample sort, and radix sort

are constructed from iterative passes that place

This allocation behavior does

oriented stencil designs whose threads rigidly produce specific output items.

efficient parallelization of radix sorting

Other problems suffer a similar fate. The breadth

data-parallel stencil application. During each search

time step, this approach launches one thread per vertex

parallelization is illustrated in

vertex has been marked, it marks the neighbors of that vertex. For a graph

edges, the overall work complexity is quadratic

ertex is inspected during every iteration, and there may

Fig. 8. Search space dataflow for 4

stencil application

parallelism.

logn) comparison

based solutions, particularly for sorting problems large enough to saturate the GPU.

icient methods like quicksort, sample sort, and radix sort

iterative passes that place

This allocation behavior does

oriented stencil designs whose threads rigidly produce specific output items.

efficient parallelization of radix sorting

. The breadth-first search of sparse graphs can

parallel stencil application. During each search

time step, this approach launches one thread per vertex in the graph

is illustrated in

vertex has been marked, it marks the neighbors of that vertex. For a graph

edges, the overall work complexity is quadratic

ertex is inspected during every iteration, and there may n

Search space dataflow for 4

stencil application is unsuitable for arbitrary nested/recursive

) comparison-based or

based solutions, particularly for sorting problems large enough to saturate the GPU.

icient methods like quicksort, sample sort, and radix sort all rely on dynamic

iterative passes that place variable

This allocation behavior does not lend itself to o

oriented stencil designs whose threads rigidly produce specific output items.

efficient parallelization of radix sorting using prefix sum

first search of sparse graphs can

parallel stencil application. During each search

in the graph to see if it was visited

is illustrated in Fig. 7.

vertex has been marked, it marks the neighbors of that vertex. For a graph

edges, the overall work complexity is quadratic

n BFS iterations in the worst

Search space dataflow for 4-queens problem

is unsuitable for arbitrary nested/recursive

based or O(n) position

based solutions, particularly for sorting problems large enough to saturate the GPU.

all rely on dynamic

variable numbers of

lend itself to outpu

oriented stencil designs whose threads rigidly produce specific output items. In Chapter

using prefix sum.

first search of sparse graphs can

parallel stencil application. During each search

to see if it was visited

 When a thread

vertex has been marked, it marks the neighbors of that vertex. For a graph

edges, the overall work complexity is quadratic O(n
2
+m). Every

BFS iterations in the worst

queens problem. Homogenous

is unsuitable for arbitrary nested/recursive

14

) position-

based solutions, particularly for sorting problems large enough to saturate the GPU.

all rely on dynamic

numbers of

utput-

Chapter

first search of sparse graphs can

parallel stencil application. During each search

to see if it was visited

When a thread

vertex has been marked, it marks the neighbors of that vertex. For a graph

). Every

BFS iterations in the worst

omogenous

15

We would prefer O(n+m) linear-work graph traversal, which means we need a

mechanism for tracking the dynamic frontier of discovered-but-unexplored vertices

between BFS iterations. The implication is that GPU threads would need to cooperate in

order to allocate and place newly-discovered vertices within a shared work queue. We

describe work-efficient BFS parallelizations constructed from prefix sum in Chapter 6.

Finally, iterative stencil application completely fails for nested and recursive

parallelism. Such problems exhibit arbitrary expansion and contraction of work items,

implying global allocation dependences.

Consider the well-known n-queens “toy” search space exploration problem

illustrated in Fig. 8. The problem is to identify valid configurations for placing n chess

queens on an n x n chessboard. The general solution strategy progressively places more

queens on the chessboard, concurrently evaluating configurations having the same

number of queens. The number of subsequent configurations produced by each

evaluation is a dynamic quantity, unknown until runtime. A given configuration may

expand into one, ten, a hundred more, or none at all. Unlike quadratic sorting and graph

search, the output locations for each evaluation depend on the quantities of subsequent

configurations produced by other concurrent evaluations.

In short, the repetitive application of homogenous stencils can be suitable for

managing well-structured global data dependences, but not for dynamic allocation

dependences within arbitrarily-sized data structures.

1.3.3 Suitability of prefix sum

As a facilitator of cooperative allocation, prefix sum combines the best features of both

atomic allocation and repeated stencil application. Like atomic updates, it facilitates

input

applicat

element

utili

straightforward. We take the allocation requirements for each thread, put them in a list,

and feed it to prefix

should start writing its output elements.

example, the

The

element.

illustrates a 16

This

Fig.

scatter offsets for run

preserved.

input-oriented

application, it preserves input order and avoids contended updates.

As a list

element is computed to be the sum of the numbers occurring earlier in the input list.

utility of using prefix

straightforward. We take the allocation requirements for each thread, put them in a list,

and feed it to prefix

should start writing its output elements.

Fig. 9

example, the

The prefix sum

element. Thread

The history of prefix sum is rooted in circuit design for carry

illustrates a 16

This construction, along with many others, is

Fig. 9. Example of exclusive prefix sum for computing

scatter offsets for run

preserved.

oriented cooperative

ion, it preserves input order and avoids contended updates.

As a list-processing primitive, p

is computed to be the sum of the numbers occurring earlier in the input list.

using prefix-sum

straightforward. We take the allocation requirements for each thread, put them in a list,

and feed it to prefix sum

should start writing its output elements.

9 illustrates

example, the thread t0 wants to

prefix sum computes the

Thread t0 writes its

The history of prefix sum is rooted in circuit design for carry

illustrates a 16-element Brent

construction, along with many others, is

of exclusive prefix sum for computing

scatter offsets for run-length decoding

cooperative allocation with linear work. Like

ion, it preserves input order and avoids contended updates.

processing primitive, p

is computed to be the sum of the numbers occurring earlier in the input list.

sum for performing

straightforward. We take the allocation requirements for each thread, put them in a list,

sum. Prefix sum

should start writing its output elements.

illustrates prefix sum

wants to produce

computes the scatter offset

rites its items at offset zero,

The history of prefix sum is rooted in circuit design for carry

element Brent-Kung

construction, along with many others, is

of exclusive prefix sum for computing

length decoding. Input order is

allocation with linear work. Like

ion, it preserves input order and avoids contended updates.

processing primitive, prefix sum

is computed to be the sum of the numbers occurring earlier in the input list.

for performing input

straightforward. We take the allocation requirements for each thread, put them in a list,

sum then computes the offsets for where each threa

should start writing its output elements.

prefix sum in the context of run

produce two items

scatter offset needed by each thread to write its

at offset zero,

The history of prefix sum is rooted in circuit design for carry

Kung [20] circuit construction for inclusive prefix sum.

construction, along with many others, is statically

of exclusive prefix sum for computing

. Input order is

Fig.

of 16 inputs

addition operators are performed at pads.

allocation with linear work. Like

ion, it preserves input order and avoids contended updates.

refix sum produces an output list

is computed to be the sum of the numbers occurring earlier in the input list.

input-oriented,

straightforward. We take the allocation requirements for each thread, put them in a list,

then computes the offsets for where each threa

in the context of run

items, t1 one item

needed by each thread to write its

at offset zero, t1 at offset two,

The history of prefix sum is rooted in circuit design for carry

circuit construction for inclusive prefix sum.

statically recursive in nature. This implies

Fig. 10. Recursive Brent

of 16 inputs. Live values are carried on

addition operators are performed at pads.

allocation with linear work. Like repetit

ion, it preserves input order and avoids contended updates.

produces an output list

is computed to be the sum of the numbers occurring earlier in the input list.

oriented, cooperative

straightforward. We take the allocation requirements for each thread, put them in a list,

then computes the offsets for where each threa

in the context of run-length expansion.

item, t2 zero items,

needed by each thread to write its

at offset two, t3 at offset three,

The history of prefix sum is rooted in circuit design for carry-over adders.

circuit construction for inclusive prefix sum.

recursive in nature. This implies

Recursive Brent-Kung construction for prefix sum

. Live values are carried on

addition operators are performed at pads.

repetitive stencil

produces an output list where each

is computed to be the sum of the numbers occurring earlier in the input list.

cooperative allocation is

straightforward. We take the allocation requirements for each thread, put them in a list,

then computes the offsets for where each threa

length expansion. In this

zero items, and so on.

needed by each thread to write its output

at offset three, etc.

over adders. Fig.

circuit construction for inclusive prefix sum.

recursive in nature. This implies

Kung construction for prefix sum

. Live values are carried on “wires” and

addition operators are performed at pads.

16

stencil

where each

is computed to be the sum of the numbers occurring earlier in the input list. The

allocation is

straightforward. We take the allocation requirements for each thread, put them in a list,

then computes the offsets for where each thread

In this

and so on.

output

etc.

Fig. 10

circuit construction for inclusive prefix sum.

recursive in nature. This implies

Kung construction for prefix sum

“wires” and

17

that we can orchestrate the global dataflow of prefix sum within GPU memory via the

repeated application of stencil kernels having only neighborhood dependences.

Throughout this dissertation, we promote prefix sum as an efficient, high

performance primitive for solving problems having dynamic allocation dependences.

1.4 CONTRIBUTIONS

This dissertation makes contributions in the following areas:

1.4.1 Prefix Scan

Prefix scan is a fundamental list-processing primitive for computing recurrence relations.

In the form of parallel prefix sum, it is a useful mechanism by which concurrent threads

can cooperatively compute scatter offsets for writing data into shared structures. Our

prefix scan work makes the following contributions:

• Parallelization strategies. We present new variants of local scan and segmented

scan that are 1.8x computationally-efficient than prior work. At the global level,

we present a reduce-then-scan decomposition that requires 25% less global

memory traffic and only a constant amount global storage for intermediate results.

Our strategies fully leverage the GPU’s global memory bandwidth and will scale

with future bandwidth improvements. We demonstrate 1.7x and 3.8x speedups

over prior work [113] for global and segmented global scan, respectively.

• Parallel primitives. We have constructed BackForty [6], an open-source C++

library of fundamental data transformations for the NVIDIA CUDA parallel

computing framework [34]. We employ our prefix scan techniques and design

idioms to construct implementations of scan, segmented scan, reduction, list

compaction, duplicate removal, and histogram. Furthermore, our implementations

18

of sorting and reduction-by-key allow users to express computation in the familiar

map-reduce model of parallel task decomposition [38]. These algorithms

demonstrate several factors of speedup over prior work [35, 113] for a diversity of

problem sizes and data types.

1.4.2 Sorting

The need to rank and order data is pervasive, and many algorithms are fundamentally

dependent upon sorting and partitioning operations. Our sorting work makes the

following contributions:

• Parallelization strategy. We present a GPU parallelization for radix sorting passes

that is constructed within a “multi-scan runtime” for computing multiple

concurrent prefix sums, one for each partitioning bin. The granularity of our

approach is more tunable than prior work, requiring memory traffic that is

inversely proportional to the number of radix bits per digit. This provides

flexibility for future improvements in computational throughput. We also describe

a novel optimization for early termination that significantly improves performance

for commonplace sorting problems whose key distributions have low variance.

• High performance. Our tunable implementation achieves multiple factors of

speedup over prior GPU sorting implementations across all generations

programmable NVIDIA GPUs. We demonstrate sustained sorting rates in excess

of 1.2 billion 32-bit keys/sec and 342 million 64-bit keys/sec. These sorting rates

are the fastest published for any fully-programmable microarchitecture. Put in

context, contemporary CPU parallelizations achieve 240 million 32-bit keys/sec

19

[98] and reconfigurable FPGAs have demonstrated 250 million 64-bit keys/sec

[73].

1.4.3 Graph Traversal

Breadth-first search (BFS) is a core primitive for graph traversal. It is representative of

many computations whose memory accesses and workload distributions are irregular and

data-dependent, and serves as a computational kernel within a number of benchmark

suites. Our BFS work makes the following contributions:

• Parallelization strategy. We present a GPU parallelization for breadth-first search

that performs an asymptotically-optimal linear amount of work. Our approach is

the first to incorporate fine-grained parallel adjacency list expansion. We also

introduce local duplicate detection techniques for avoiding race conditions that

create redundant work. We also describe the first design for multi-GPU graph

traversal.

• Empirical performance characterization. We present detailed analyses that

isolate and analyze the expansion and contraction aspects of BFS throughout the

traversal process. We reveal that serial and warp-centric expansion techniques

described by prior work significantly underutilize the GPU for important classes of

sparse graph datasets. We also show that, counter intuitively, the fusion of

neighbor expansion and inspection within the same kernel often yields worse

performance than performing them separately.

• High performance. We demonstrate excellent performance on a broad spectrum

of structurally diverse synthetic and real-world graphs. Our implementation

achieves traversal rates in excess of 3.3 billion and 8.3 billion traversed edges per

20

second (TE/s) for single and quad-GPU configurations, respectively. Put in

context, contemporary parallel implementations for single-socket and quad-socket

multi-core CPUs have demonstrated 0.7 billion and 1.3 billion TE/s respectively

for similar datasets [2].

1.4.4 Design Idioms

• Kernel fusion and the prefix sum “allocation runtime”. Throughout this

dissertation, we advocate a kernel-fusion design idiom where we construct variants

of global prefix sum, embedding within them problem-specific logic that will

realize behavior for sorting, list compaction, graph traversal, etc. This is an

inversion of the usual pattern for program composition promoted by Blelloch [17] ,

i.e., where application logic calls down into prefix sum as a subroutine.

• Granularity coarsening. The data parallel programming paradigm encourages

programmers to express all of the available concurrency inherent to their problem.

This leads to substantial inefficiencies from redundant operations and unnecessary

rounds of communication. Instead, our approach is to construct parallelizations

where logical threads are a multiple of machine width, not problem size. We do

this by increasing the granularity, i.e., amount of serial work performed by each

thread, warp, and CTA.

• Templated “policy-based” tuning via the type system. The GPU programming

model forces programmers to make implementation decisions that have opaque

performance consequences. We show diverse and non-intuitive performance

landscapes for thousands of program variants all implementing the same

algorithmic strategies, yet parameterized with different configurations for thread

21

blocking, parallel widths and steps (task concurrency and granularity), cache

modifiers for data movement, algorithm selection, etc. Our philosophy is to leave

these decisions unbound within the program text, allowing the programmer (or the

compiler, or the runtime) to specialize them for specific target microarchitectures

and problem instances. By incorporating the formal type system into our tuning

methodology, we are able to co-optimize application code alongside reusable

library components.

1.5 CHAPTER SUMMARY

Contemporary opinion is that GPU architecture is not well suited for problems that

require dynamic and irregular data movement within shared data structures. They lack

the practical atomic read-modify-write mechanisms that multithreaded algorithms have

traditionally leveraged for cooperative allocation. Unfortunately many problems exist for

which the only known efficient solutions require dynamic, fine-grained data allocation

and/or relocation. Instead of performing contended updates for cooperative allocation,

we focus on parallelization strategies that incorporate GPU-friendly algorithms for prefix

sum.

22

Chapter 2

GPU Machine and Programming Models

2.1 INTRODUCTION

This background chapter discusses the general perception of suitability of GPU

architecture for cooperative workloads. The prevailing attitude is that GPUs are poor

environments for problems having dynamic data movement, i.e., cooperative allocation

within shared structures.

To provide important context for this discussion, we first review the abstract GPU

machine and programming models, focusing on details pertaining to cooperation and

contention. We also we discuss performance pitfalls that can lead to inefficient algorithm

design, providing intuition for the design patterns and idioms we develop in this

dissertation. Furthermore, we describe our philosophy of rate-limited performance

analysis, the means by which we evaluate the practical efficiencies of our constructions.

2.2 ABSTRACT MACHINE MODEL

The “soul” of GPU architecture is very different from conventional multi-core CPU

design. The abstract GPU machine model is fundamentally geared towards high-

throughput (versus low-latency) computing. As a parallel architecture, it is designed to

process

SPMD

scheduled execution contexts, or

GPUs contain tens of processor cores, each comprising tens of homogeneous processing

elements or data

multiple data) and SMT

execution onto these lanes

instruction

machines. A pure SIMD design connotes a single instruction stream for the entire

processor. SIMD has two scalability issues that preven

of threads: signal propagation delay and underutilization.

delay can result in undesirable timing skew amongst large numbers of SIMD elements

that are intended to execute in lock

divergence

memory access, is granted exclusive access to words in memory, etc. The remaining

lanes sit idle when this occurs.

process large quantities of concurrent, fine

SPMD (singl

scheduled execution contexts, or

Fig. 11

GPUs contain tens of processor cores, each comprising tens of homogeneous processing

elements or data

multiple data) and SMT

execution onto these lanes

SIMD techniques are architecturally efficien

instruction-issue can service many data

machines. A pure SIMD design connotes a single instruction stream for the entire

processor. SIMD has two scalability issues that preven

of threads: signal propagation delay and underutilization.

delay can result in undesirable timing skew amongst large numbers of SIMD elements

that are intended to execute in lock

divergence, i.e.,

memory access, is granted exclusive access to words in memory, etc. The remaining

lanes sit idle when this occurs.

large quantities of concurrent, fine

(single program, multiple data)

scheduled execution contexts, or

11 illustrates contemporary GPU proc

GPUs contain tens of processor cores, each comprising tens of homogeneous processing

elements or data-paths called

multiple data) and SMT

execution onto these lanes

SIMD techniques are architecturally efficien

issue can service many data

machines. A pure SIMD design connotes a single instruction stream for the entire

processor. SIMD has two scalability issues that preven

of threads: signal propagation delay and underutilization.

delay can result in undesirable timing skew amongst large numbers of SIMD elements

that are intended to execute in lock

, i.e., when only a

memory access, is granted exclusive access to words in memory, etc. The remaining

lanes sit idle when this occurs.

large quantities of concurrent, fine

e program, multiple data)

scheduled execution contexts, or thread

illustrates contemporary GPU proc

GPUs contain tens of processor cores, each comprising tens of homogeneous processing

paths called lanes

multiple data) and SMT (simultaneous

execution onto these lanes.

SIMD techniques are architecturally efficien

issue can service many data

machines. A pure SIMD design connotes a single instruction stream for the entire

processor. SIMD has two scalability issues that preven

of threads: signal propagation delay and underutilization.

delay can result in undesirable timing skew amongst large numbers of SIMD elements

that are intended to execute in lock

only a subset of threads takes a conditional branch, stalls on a

memory access, is granted exclusive access to words in memory, etc. The remaining

lanes sit idle when this occurs.

Fig. 11. Example GPU processor organization.

large quantities of concurrent, fine-grained tasks.

e program, multiple data) processors

threads, run copies of the same

illustrates contemporary GPU proc

GPUs contain tens of processor cores, each comprising tens of homogeneous processing

lanes. Processor cores use SIMD

(simultaneous multithreading

SIMD techniques are architecturally efficien

issue can service many data paths. However, GPUs are not exclusively SIMD

machines. A pure SIMD design connotes a single instruction stream for the entire

processor. SIMD has two scalability issues that preven

of threads: signal propagation delay and underutilization.

delay can result in undesirable timing skew amongst large numbers of SIMD elements

that are intended to execute in lock-step.

subset of threads takes a conditional branch, stalls on a

memory access, is granted exclusive access to words in memory, etc. The remaining

Example GPU processor organization.

grained tasks. GPUs are

processors in that tens of thousands of hardware

, run copies of the same

illustrates contemporary GPU processor organization. High performance

GPUs contain tens of processor cores, each comprising tens of homogeneous processing

. Processor cores use SIMD

multithreading) techniques to map threads of

SIMD techniques are architecturally efficient in that one hardware unit for

paths. However, GPUs are not exclusively SIMD

machines. A pure SIMD design connotes a single instruction stream for the entire

processor. SIMD has two scalability issues that prevent its application across thousands

of threads: signal propagation delay and underutilization. Cross

delay can result in undesirable timing skew amongst large numbers of SIMD elements

 Underutilization is caused by thread

subset of threads takes a conditional branch, stalls on a

memory access, is granted exclusive access to words in memory, etc. The remaining

Example GPU processor organization.

GPUs are often classified as

in that tens of thousands of hardware

, run copies of the same kernel program.

essor organization. High performance

GPUs contain tens of processor cores, each comprising tens of homogeneous processing

. Processor cores use SIMD (single instruction,

) techniques to map threads of

t in that one hardware unit for

paths. However, GPUs are not exclusively SIMD

machines. A pure SIMD design connotes a single instruction stream for the entire

t its application across thousands

Cross-chip signal

delay can result in undesirable timing skew amongst large numbers of SIMD elements

rutilization is caused by thread

subset of threads takes a conditional branch, stalls on a

memory access, is granted exclusive access to words in memory, etc. The remaining

Example GPU processor organization.

often classified as

in that tens of thousands of hardware

program.

essor organization. High performance

GPUs contain tens of processor cores, each comprising tens of homogeneous processing

ingle instruction,

) techniques to map threads of

t in that one hardware unit for

paths. However, GPUs are not exclusively SIMD

machines. A pure SIMD design connotes a single instruction stream for the entire

t its application across thousands

chip signal propagation

delay can result in undesirable timing skew amongst large numbers of SIMD elements

rutilization is caused by thread

subset of threads takes a conditional branch, stalls on a

memory access, is granted exclusive access to words in memory, etc. The remaining

23

often classified as

in that tens of thousands of hardware-

essor organization. High performance

GPUs contain tens of processor cores, each comprising tens of homogeneous processing

ingle instruction,

) techniques to map threads of

t in that one hardware unit for

paths. However, GPUs are not exclusively SIMD

machines. A pure SIMD design connotes a single instruction stream for the entire

t its application across thousands

propagation

delay can result in undesirable timing skew amongst large numbers of SIMD elements

rutilization is caused by thread

subset of threads takes a conditional branch, stalls on a

memory access, is granted exclusive access to words in memory, etc. The remaining

24

Instead, GPUs typically implement fixed-size SIMD groupings of threads called

warps. The width of the warp (e.g., 32 threads) corresponds loosely to the number of

SIMD lanes per processor core. Distinct warps are not run in lockstep and may diverge.

Using SMT techniques, each processor core maintains and schedules amongst the

execution contexts of many warps. The degree of GPU multithreading is often an order

of magnitude higher than for conventional architectures. Instead of two or four

instruction streams, GPU cores typically multiplex 30-50 warp contexts.

This style of SMT enables GPUs to “hide” latency by switching amongst warp

contexts when architectural, data, and control hazards would normally introduce stalls.

The result is a more efficient utilization of physical processing elements. Maximal

instruction throughput occurs when the number of thread contexts is much greater than

the aggregate number of SIMD lanes per processor. As such, the GPU’s throughput

response to workload size makes the processor appear wider than it physically is,

particularly at the point where performance saturation occurs.

The high degree of multithreading relieves GPU microarchitecture from latency-

reducing techniques such as out-of-order execution, branch prediction, speculative

execution, etc. As a result, the latencies of individual operations are comparatively much

higher than on modern CPUs. Although this compromise is affordable for dependence-

free computation, it compounds the expense of synchronization between threads,

particularly serialization from fine-grained2 atomic operations.

Communication between threads is achieved by reading and writing data to

various shared memory spaces. The machine model exposes three levels of explicitly

2 When describing an operation or task, we use the term fine-grained to connote that the amount of computation

entailed is very small compared to the data needed to perform it. Often, the quantities of fine-grained operations and

threads performing them are roughly equivalent (as opposed to batched or aggregated in some way).

25

managed storage that vary in terms of visibility and latency: per-thread registers, shared

memory local to a collection of warps running on the same processor core, and a large

global memory in off-chip DRAM that is accessible by all threads. Threads must

explicitly move data from one memory space to another.

Unlike traditional CPU architecture, GPUs do not implement data caches for the

purpose of maintaining the program’s working set in nearby, low-latency storage. Doing

so requires an expensive write-coherent cache hierarchy in which the last-level cache

constitutes the majority of on-chip storage. Rather, the inverse is true for GPUs: the

cumulative register file comprises the bulk of on-chip storage. A much smaller, read-

only cache hierarchy often exists for the primary purpose of smoothing over irregular

memory access patterns. The local exchange of intermediate computations amongst

nearby threads must be explicitly managed in shared memory.

Furthermore, contemporary GPUs are not interrupt-driven. Instead of servicing

and reacting to external events in their environment, their emphasis is on throughput-

oriented processing. As such, they are not designed to run general-purpose operating

systems. Rather, modern GPUs serve as peripheral accelerators on which CPU host

programs can manage data and dispatch work. The physical GPU interface is via a

motherboard or backplane interconnect such as PCI-express [94].

2.3 PROGRAMMING MODEL

Similar to SPMD programming models like MPI [86] and PVM [108], a kernel is an

imperative function executed by a collection of logical threads. These logical threads are

mapped onto hardware threads by a scheduling runtime, either in software or hardware.

Thread behavior can be sp

which portion of the problem to operate on.

computation, and write their results back to global device memory. Global

only guaranteed consistent after kernel termination.

orchestrates global data flow by sequentially invoking new kernel instances, each of

which is presented a consistent view of the res

convenient for mapping blocks of logical threads onto physical processor cores. The

CUDA

thread array

homogeneous CTAs that encapsulates all of the threads for a given kernel. Thread

execut

dimensions.

coherence in shared memory spaces is achieved th

Different programmatic barriers exist for different memory spaces. CTA

instructions exist for local shared memory. Global memory is guaranteed to be consistent

Fig.

Thread behavior can be sp

which portion of the problem to operate on.

Threads read their inputs from global device memory, perform some finite

computation, and write their results back to global device memory. Global

only guaranteed consistent after kernel termination.

orchestrates global data flow by sequentially invoking new kernel instances, each of

which is presented a consistent view of the res

Grouping constructs help facilitate problem decomposition in a way that is

convenient for mapping blocks of logical threads onto physical processor cores. The

CUDA [34]

thread array

homogeneous CTAs that encapsulates all of the threads for a given kernel. Thread

execution can be further specialized by CTA identifier as well as CTA and grid

dimensions.

Cooperation amongst threads is based on the bulk

coherence in shared memory spaces is achieved th

Different programmatic barriers exist for different memory spaces. CTA

instructions exist for local shared memory. Global memory is guaranteed to be consistent

Fig. 12. Bulk-synchronous kernel invocation and global data flow.

Thread behavior can be sp

which portion of the problem to operate on.

Threads read their inputs from global device memory, perform some finite

computation, and write their results back to global device memory. Global

only guaranteed consistent after kernel termination.

orchestrates global data flow by sequentially invoking new kernel instances, each of

which is presented a consistent view of the res

Grouping constructs help facilitate problem decomposition in a way that is

convenient for mapping blocks of logical threads onto physical processor cores. The

 programming framework exposes two levels of g

 (CTA) that will be assigned to the same processor core, and a

homogeneous CTAs that encapsulates all of the threads for a given kernel. Thread

ion can be further specialized by CTA identifier as well as CTA and grid

Cooperation amongst threads is based on the bulk

coherence in shared memory spaces is achieved th

Different programmatic barriers exist for different memory spaces. CTA

instructions exist for local shared memory. Global memory is guaranteed to be consistent

synchronous kernel invocation and global data flow.

Thread behavior can be specialized by thread identifier, allowing threads to determine

which portion of the problem to operate on.

Threads read their inputs from global device memory, perform some finite

computation, and write their results back to global device memory. Global

only guaranteed consistent after kernel termination.

orchestrates global data flow by sequentially invoking new kernel instances, each of

which is presented a consistent view of the res

Grouping constructs help facilitate problem decomposition in a way that is

convenient for mapping blocks of logical threads onto physical processor cores. The

programming framework exposes two levels of g

(CTA) that will be assigned to the same processor core, and a

homogeneous CTAs that encapsulates all of the threads for a given kernel. Thread

ion can be further specialized by CTA identifier as well as CTA and grid

Cooperation amongst threads is based on the bulk

coherence in shared memory spaces is achieved th

Different programmatic barriers exist for different memory spaces. CTA

instructions exist for local shared memory. Global memory is guaranteed to be consistent

synchronous kernel invocation and global data flow.

ecialized by thread identifier, allowing threads to determine

which portion of the problem to operate on.

Threads read their inputs from global device memory, perform some finite

computation, and write their results back to global device memory. Global

only guaranteed consistent after kernel termination.

orchestrates global data flow by sequentially invoking new kernel instances, each of

which is presented a consistent view of the results from the previous

Grouping constructs help facilitate problem decomposition in a way that is

convenient for mapping blocks of logical threads onto physical processor cores. The

programming framework exposes two levels of g

(CTA) that will be assigned to the same processor core, and a

homogeneous CTAs that encapsulates all of the threads for a given kernel. Thread

ion can be further specialized by CTA identifier as well as CTA and grid

Cooperation amongst threads is based on the bulk

coherence in shared memory spaces is achieved th

Different programmatic barriers exist for different memory spaces. CTA

instructions exist for local shared memory. Global memory is guaranteed to be consistent

synchronous kernel invocation and global data flow.

ecialized by thread identifier, allowing threads to determine

Threads read their inputs from global device memory, perform some finite

computation, and write their results back to global device memory. Global

only guaranteed consistent after kernel termination. As depicted in

orchestrates global data flow by sequentially invoking new kernel instances, each of

ults from the previous

Grouping constructs help facilitate problem decomposition in a way that is

convenient for mapping blocks of logical threads onto physical processor cores. The

programming framework exposes two levels of g

(CTA) that will be assigned to the same processor core, and a

homogeneous CTAs that encapsulates all of the threads for a given kernel. Thread

ion can be further specialized by CTA identifier as well as CTA and grid

Cooperation amongst threads is based on the bulk

coherence in shared memory spaces is achieved through synchronization barriers

Different programmatic barriers exist for different memory spaces. CTA

instructions exist for local shared memory. Global memory is guaranteed to be consistent

synchronous kernel invocation and global data flow.

ecialized by thread identifier, allowing threads to determine

Threads read their inputs from global device memory, perform some finite

computation, and write their results back to global device memory. Global

As depicted in Fig.

orchestrates global data flow by sequentially invoking new kernel instances, each of

ults from the previous kernel instance

Grouping constructs help facilitate problem decomposition in a way that is

convenient for mapping blocks of logical threads onto physical processor cores. The

programming framework exposes two levels of grouping: a

(CTA) that will be assigned to the same processor core, and a

homogeneous CTAs that encapsulates all of the threads for a given kernel. Thread

ion can be further specialized by CTA identifier as well as CTA and grid

Cooperation amongst threads is based on the bulk-synchronous

rough synchronization barriers

Different programmatic barriers exist for different memory spaces. CTA

instructions exist for local shared memory. Global memory is guaranteed to be consistent

ecialized by thread identifier, allowing threads to determine

Threads read their inputs from global device memory, perform some finite

computation, and write their results back to global device memory. Global memory is

Fig. 12, the host

orchestrates global data flow by sequentially invoking new kernel instances, each of

kernel instance.

Grouping constructs help facilitate problem decomposition in a way that is

convenient for mapping blocks of logical threads onto physical processor cores. The

rouping: a cooperative

(CTA) that will be assigned to the same processor core, and a grid

homogeneous CTAs that encapsulates all of the threads for a given kernel. Thread

ion can be further specialized by CTA identifier as well as CTA and grid

synchronous model [116]

rough synchronization barriers

Different programmatic barriers exist for different memory spaces. CTA-wide barrier

instructions exist for local shared memory. Global memory is guaranteed to be consistent

26

ecialized by thread identifier, allowing threads to determine

Threads read their inputs from global device memory, perform some finite

memory is

he host

orchestrates global data flow by sequentially invoking new kernel instances, each of

.

Grouping constructs help facilitate problem decomposition in a way that is

convenient for mapping blocks of logical threads onto physical processor cores. The

cooperative

grid of

homogeneous CTAs that encapsulates all of the threads for a given kernel. Thread

ion can be further specialized by CTA identifier as well as CTA and grid

[116]:

rough synchronization barriers.

wide barrier

instructions exist for local shared memory. Global memory is guaranteed to be consistent

27

at the boundaries between sequential kernel invocations. An important consequence is

that problems with global dependences often require multiple kernel invocations.

2.4 PERFORMANCE MODELING AND ANALYSIS

Empirical performance models are important for developing intuition regarding the actual

costs of various aspects of program behavior. However, GPU models of algorithm

performance can be difficult to construct and parameterize. Parallel performance models

commonly describe runtime as a function of three parameters:

1) The problem input size n

2) The number p of scalar tasks actively making progress

3) Additive, empirically determined duration-constants having units time/operation,

e.g., timeload + timemul + timestore

The idea is to compose a model of individual task time from component operations and

then account for the mapping of n tasks onto a system with degree of parallelism p.

Unfortunately this approach is difficult to parameterize for deeply multithreaded

architectures. Both effective parallelism and the duration-constants are actually dynamic

quantities.

For example, the effective parallelism p corresponds neither to physical processor

cores nor to logical threads. Increasing the number of active warps per core from one

warp to two will typically decrease overall runtime because the physical cores were

previously undersubscribed. However, increasing the number of active warps per core

from 31 to 32 will likely have negligible effect. The effective parallelism is determined

by the processor saturation point, which is dependent on the exact numbers and types of

architectural hazards experienced by the instantaneous workload.

28

Similarly, individual task latencies in saturated conditions are not what they

would be if measured in isolation. For example, the latency measured in clock cycles for

a local CTA-wide reduction will depend on how many other CTAs are resident on the

processor core and what they are doing.

The difficulties of such empirical parameterization suggest an alternative model.

Instead of models constructed from notions of parallelism and task duration, the high

degree of multithreading allows us to construct simple rate-limited performance models

for most saturating workloads. Rather than modeling individual task time, we simply

decouple the component operations into separate workloads then determine which is rate-

limiting the entire computation. In the copy example from Section 1.3.1, all computation

on the GTX480 processor is limited by 82M atomics/sec regardless of the presence of

load and store instructions. Table 1 lists various rate-limits for saturating workloads for

the GPUs most frequently evaluated within this dissertation.

This dissertation primarily focuses on problems large enough to warrant the wide

parallelism of the GPU. We use this simple approach throughout to characterize and

analyze large-scale workloads. Unless otherwise specified, we generally consider the

performance modeling of small, fleeting workloads to be the subject of future work.

Model Architecture

Bidirectional

DRAM

Bandwidth

(10
9
 bytes / sec)

Instruction

Throughput

(10
9
 scalar thread-

instructions / sec)

Global Atomic

Throughput

(10
6
 atomics / sec)

Local Atomic

Throughput

(10
6
 atomics / sec)

GTX580 GF110 177 791 90.0 908

GTX480 GF100 159 672 81.8 771

Tesla C2050 GF100 128 514 67.5 591

GTX285 GT200 137 354 4.5 721

GTX280 GT200 125 311 4.3 623

9800 GTX+ G92 63 235 5.0 n/a

Table 1. Throughput limits of NVIDIA GPUs. Bandwidth is maximum-achievable from auto-tuning (§3.4.1). Global

atomic throughput is to a single shared word. Local atomic throughput is to a single shared word per CTA.

29

2.5 PERFORMANCE PITFALLS

Efficient algorithm design requires an understanding of potential performance pitfalls. In

general, architectural mismatches are a class of performance casualties that result when

software components make assumptions that do not align with the structure of the system

within which they operate [47, 107]. We describe two of the more prominent mismatches

between the GPU machine and programming models that lead to inefficient

implementations: variable memory access cost from SIMD access patterns; and thread

divergence.

2.5.1 Non-uniform memory access costs

The programming model presents programmers with several physical memory spaces,

each having a single method of accessing the words within. Without knowledge of the

hardware, the programmer can only presume a uniform cost for references across each

memory space.

GPU hardware often violates this presumption, causing a mismatch with the

programming model. Performance is particularly sensitive to memory access patterns. A

straightforward, naive treatment of memory can often lead to significant underutilization,

a performance aspect not reflected in GPU programming languages [21, 62, 65, 81, 82,

89, 110]. One can often do better by designing algorithms around more complex memory

models that accurately reflect the behavior of the underlying hardware. However, it is

possible to worsen the situation if these assumptions do not match the specific hardware

at hand.

Snyder’s notion of architecture mismatch [107] was concerned with tree-shaped

memory topologies that resulted in different service latencies for different memory

30

locations. The problem is not quite the same for the GPU programming model. Rather,

the mismatch stems from SIMD access patterns. Performance variances are less about

access location and more about the specific pattern of references being made by other

threads within the warp. We next describe how these variations can arise in both off-chip

global memory and on-chip shared memory.

Global memory access patterns. Global memory performance is affected by

coalescing. For a SIMD instruction that accesses global memory, the individual accesses

for each thread can be combined/bundled together by the memory subsystem into a single

memory transaction if every reference falls within the same contiguous global memory

segment. The performance discrepancies between coalesced and non-coalesced accesses

can be as large as an order of magnitude. Bus transactions are on the order of 128 bytes,

making it particularly wasteful if each thread induces a separate transaction for a single 4-

byte memory reference.

To improve coalescing, we demonstrate the effective use of local prefix sum for

reorganizing work among CTA threads. By locally rearranging tasks within the CTA, the

threads within individual warps have better locality of reference. We show this

optimization provides significantly better throughput for sorting and graph traversal.

Shared memory access patterns. Local shared memory performance is affected

by bank conflicts. Physical memories often aggregate individual cells into larger units of

sequentially-accessible storage. Performance is highest when warps of threads make

“broadside” accesses into these banks, i.e., each thread within the warp accesses a word

within a different bank. Bank conflicts occur when threads within the same warp access

31

different words within the same memory bank, causing the individual accesses to be

serialized by the hardware.

Parallel prefix sum is a cooperative problem that can be vulnerable to significant

slowdown from excessive bank conflicts. In this work, we develop several variants of

local prefix sum that avoid bank conflicts without additional instruction overhead. We

use the programming language’s type system to abstract the rules for bank conflicts,

providing flexibility and portability for our solutions.

2.5.2 Thread divergence

The GPU programming model presents an abstraction of concurrent, threaded execution.

Each logical thread behaves as if it has its own program counter, register set, and stack

space. This abstraction implies two properties of thread behavior. The first is that

threads are presumably free to pursue their own independent path through the program.

The second is that threads are scheduled fairly and generally proceed at a uniform rate.

The SIMD nature of the underlying hardware violates these presumptions,

causing a mismatch with the programming model. In reality, logical threads are grouped

into warps of execution. A single program counter is shared by all threads within the

warp. Warps, not threads, are free to pursue independent paths through the kernel

program.

To provide the illusion of individualized control flow, the execution model must

transparently handle branch divergence. This situation occurs when a conditional branch

instruction would redirect a subset of threads down the taken path, leaving the others to

continue the fall-through path. Because threads within the warp proceed in lockstep

fashion, the warp must necessarily execute both halves of the branch, masking off SIMD

32

lanes where appropriate. The two prevalent mechanisms for implementing such

conditional execution are compiler-inserted instruction predicates and hardware-managed

divergence stacks.

These mechanisms can lead to an inherently unfair scheduling of logical threads.

In the worst case, only one logical thread may be active while all others effectively

occupy the remaining SIMD lanes, yet perform no work. The GPU’s relatively large

SIMD widths exacerbate the problem. Branch divergence can impose an order of

magnitude slowdown in overall computing throughput.

This SIMD aspect of GPU architecture has similar performance repercussions

when a subset of the warp must stall for other reasons. Contended accesses from atomic

operations are a relevant example. In contrast, prefix sum constructions are largely free

of control flow divergence and contention, allowing our work to avoid control and data

hazards that would otherwise lead to idle SIMD lanes.

2.6 ON THE SUITABILITY OF GPU ARCHITECTURE

There is a general perception that GPUs are poorly-suited for cooperative parallelism,

i.e., when dependences exist among tasks that will be performed by different processing

elements. This is reflected in contemporary workload and architectural studies that have

expressed concern over the GPU’s ability to handle various forms of dynamic contention.

2.6.1 Contention

In the PRAM (parallel random-access machine) model of parallel computation [45, 49],

cooperation is realized by the exchange of data though shared memory spaces. Parallel

algorithm performance on real hardware is heavily influenced by the amount of

serialization that arises from contention in shared memory spaces.

33

Serialization from contention may be implicitly introduced by the hardware or

explicitly by the program. The physical networking between processing elements and

memory imposes implicit contention: there will be hard limits on the number of

simultaneous accesses to the same memory location. As previously described, GPUs

incorporate various forms of combining networks having specific rules regarding

transaction coalescing and bank conflicts.

Furthermore, cooperative algorithms explicitly introduce contention. They must

synchronize concurrent accesses around updates to shared data in order to maintain a

consistent view of global state. Barriers and atomic read-modify-write operations are two

common mechanisms for such explicit synchronization. Coarse-grained barriers ensure

all threads have progressed to the same point before letting any continue. Conversely,

fine-grained atomics allow threads to manage a consistent view of shared data while

unrelated tasks proceed unimpeded.

Nearly all modern processors support a form of atomic read-modify-write

operation, e.g., test-and-set, fetch-and-add, compare-and-swap, load-linked/store-

conditional, etc. Although atomics implemented by most GPU microarchitecture, their

performance is incompatible with wide data parallelism. To illustrate, the simple data

movement kernels we present in Section 1.3.2 incur 200-1700x slowdown with the

introduction of atomic workloads.

2.6.2 Conclusions from workload and architectural studies

The lack of efficient fine-grained atomics contributes to the notion that GPUs are less

practical for cooperative parallelizations. Without atomics, parallelizations requiring

contended access would seem to require fundamentally different algorithms than those

34

that perform well on mainstream multi-core CPUs. This disparity is revealed by GPU

benchmark suites. In comparing their heterogeneous Rodinia benchmark suite [27] with

the multi-core PARSEC suite [14], Che et al. note that fine-grained synchronization

figures much more prominently in the latter, despite principle component analysis

showing that both sets of workloads cover similar application spaces [28].

“Different” often has a negative connotation for two reasons. The first is simply

that it requires new effort. Cooperative parallelizations designed for CPUs are not

suitable for GPU architecture. Alternative, atomic-free strategies must be developed

The second is that it carries an implied uncertainty, a non-obvious factor for how

best to implement cooperation. The inefficiencies of existing methods are reflected in

several ways. First, the performance speedups we demonstrate within this dissertation

indicate the significant headroom for improvement. Additionally, the workload studies

we review below report that GPU architecture is lacking in features that facilitate

parallelizations with explicit contention. Such studies are important tools for distilling

important architectural features.

In their rebuttal of GPU performance claims, Lee et al. express several criticisms

relating to a perceived dearth of support for fine-grained thread cooperation [76]. Their

survey of throughput problems reports lackluster GPU performance for many list, tree,

and graph-based algorithms when evaluated alongside competent and comparable multi-

core implementations and processors. With respect to contention, they advocate atomic

support for histogram parallelization [119] and recommend specialized vector read-

modify-write operations for improved atomics within SIMD lanes3. They suggest tree-

3 We note that histogram is fundamentally a counting problem. The amortized contention within counting networks has

been provably shown to be significantly lower than with single-variable shared counters [44].

35

structured search [70] would benefit from a fine-grained ability to expand work among

SIMD lanes, i.e., to cooperatively enlist nearby threads for related tasks4. They observe

the radix sorting passes of prior work [98] to incur excessive instruction overhead from

inefficient prefix sum and speculated that GPU SIMD width is too wide. They advocate

a coherent cache hierarchy for improved cross-core communication using atomics.

Finally they recommend hardware accelerated task queues for fine-grained workload

management, pushing the burden of contention from software into hardware.

With regard to parallel graph computation, Bader et al. posited fine-grained

atomic operations as a critically important architectural feature for task and status

management [8, 7]. Hong et al. have suggested the absence of efficient GPU atomics

precludes the construction of shared queues needed for work-optimal graph traversal [63,

64]. Instead, they advocate a quadratic-work method for BFS that avoids contention

altogether, a method only suitable for a narrow regime of sparse graphs having small

constant diameter. Furthermore they only recommend the GPU for select traversal

phases having abundant bulk concurrency.

With the exception of the linear-work BFS parallelization by Luo et al. [79], all

prior published GPU implementations have implemented the quadratic method to avoid

the challenges of dynamic queue management. In fact, Hussein et al. performed

quadratic BFS on the GPU largely to avoid the cost of transferring the GPU-resident

graph to the CPU just for BFS and then back again [66].

A common criticism from GPU application benchmarking efforts is that

performance would often be improved by fine-grained task and data reorganization for

improved balance and memory reference locality, an optimization not trivially

4 In Chapter 6, we demonstrate cooperative enlistment for BFS using efficient local prefix sum.

36

implemented without atomics. Che et al. [28], Bakhoda et al. [9], and Kerr et al. [69]

show that many benchmark workloads exhibit low activity factor (the average fraction of

thread that are active at a given time) and low memory efficiency (the fraction of explicit

warp accesses versus the actual number of memory transactions). These statistics

indicate irregular control flow and memory references, both of which are the result of

sub-optimal mappings between threads and data items.

With a perfect mapping of data and threads, the analyses by Zhang et al. indicate

several factors of potential speedup for many benchmark applications [122]. Their G-

Streamline framework is able to achieve some of this speedup via dynamic data

reordering and job swapping between threads. The difficulties of fine-grained thread

cooperation, however, led them to a pipelined implementation where the CPU handles the

details of these transformations in advance. This reflects the notion that fine-grained data

and job reorganization is impractical within the GPU itself.

As a result of these studies, there is a strong feeling that GPUs are not well-suited

for parallel algorithms having dynamic data structures, dynamic workloads, and dynamic

access patterns. Unfortunately, the known work-efficient algorithms for many important

problems often have one or more of these characteristics. The constructions we describe

within this dissertation serve as existence proofs that many of these concerns can be

adequately addressed using counting networks, i.e., variants of prefix sum.

2.7 CHAPTER SUMMARY

The GPU is capable of efficiently executing large quantities of concurrent, ultra-fine-

grained tasks. It derives much of its efficiency from SIMD hardware where a single

instruction stream drives the same computation on multiple data elements. The high-

37

throughput philosophy of GPU architecture engenders wide SIMD, heavy multithreading,

and long instruction latencies. These characteristics are particularly problematic for the

dynamic, fine-grained synchronization mechanisms that multithreaded algorithms have

traditionally leveraged for making coherent updates to shared memory.

Without practical mechanisms for atomic read-modify-write operations, the

prevailing attitude is that GPUs are poor environments for dynamic data movement.

Furthermore, workload studies have revealed that the opportunistic rearrangement of

tasks and/or data would significantly reduce the burden of the architecture’s restrictive

access patterns and sensitivity to load imbalance. As a result, alternatives to atomic

operations (such as prefix sum) have significant opportunity to improve the performance

of parallelizations having allocation dependences.

38

Chapter 3

Granularity coarsening & policy-based tuning

3.1 INTRODUCTION

Parallel programming is difficult. We can generalize the inherent challenges of parallel

programming as stemming from two related sources: expressing parallelism, and

mapping the expression of parallelism onto real hardware. The former encapsulates the

creative aspects of devising and authoring a clean, concise, and correct description of

concurrent tasks. The latter comprises the practical aspects of compiling and scheduling

such descriptions of computation and data movement onto the underlying hardware for

efficient execution.

The twin burdens of expression and mapping have historically fallen separately

upon the shoulders of the programmer and the compiler/runtime, respectively. For

sequential programs, compilers have largely succeeded in providing performance-

portability across variations in microarchitecture, and have done so without explicit

guidance from the programmer.

However, the effectiveness of this arrangement is unlikely to continue as

contemporary processor architecture embraces ever-increasing parallelism. To achieve

39

performance-portability across diverse problem types and microarchitecture variants, we

argue that parallel programs should incorporate flexible granularity coarsening, a sliding

scale of parallel versus sequential computation. This allows the expensive aspects of

communication and the redundant aspects of data parallelism to scale with the width of

the processor rather than the problem size. We show this idiom to be critically important

for obtaining good performance, particularly for GPU parallelizations that are

cooperative in nature. In this chapter, we describe our philosophy of expressing tunable

concurrency with an eye toward producing good performance across a diversity of GPU

hardware and problem instances.

The requirement for flexible granularity (or flexible program-composition in

general) complicates the manner in which we express concurrency. The program must be

expressed in terms of both serial and concurrent behavior. We want to leave unbound

both: (1) the number of steps each phase is to be run; and (2) the width of parallelism for

each phase. Our approach incorporates aspects of metaprogramming, i.e., programmer

effort is split among two aspects: (1) expressing the template program, i.e., a general

description how the target machine is to perform its computation; and (2) expressing the

metaprogram, i.e., rules and guidance for the compiler to follow when mapping the

template program onto a specific problem and processor.

In this fashion, we can author the “general shape” of an implementation, leaving

many of the performance-sensitive details unbound. Our approach uses parametric policy

types that describe how the compiler should expand, couple, and select from various

phases of sequential and parallel computation. In general, we use such tuning policy to

40

insulate both the programmer and the program text from implementation details having

opaque performance consequences.

3.1.1 Performance benefits

Metaprogramming allows us to explore the space of reasonable tuning policies,

evaluating the performance of thousands of alternative program specializations. From the

perspective of the programmer, it is a relief to be freed from many of the tuning decisions

that are necessary to concretize a cooperative parallelization, yet are largely opaque in

terms of their performance impact for a target processor that may not yet even be known.

To demonstrate, we expend the programming effort to implement only a single,

generic high-level implementation for the following primitives: parallel copy, reduction,

scan, and reduce-by-key. We then explore the tuning space of these four problems for a

variety of data types and problem sizes across three generations of NVIDIA GPUs

(GF100, GT200, and G92). Our results show:

• A large performance variance among reasonable specializations (which

programmers could be expected to implement explicitly)

• That we can identify specializations that maximally utilize the underlying

processor for many combinations of problem type and architecture

• That the highest performing specializations are different for distinct architecture

versions, data types, and problem sizes

• That no single specialization for a given problem performs very well across all

data types, problem sizes, and architectures

41

3.1.2 Software reusability benefits

Furthermore, our tuning approach dramatically improves software reusability. Software

reuse is a critical aspect of good software development practice. However, GPU

computing has received criticism for lack of software reuse [91]. The current trend in

GPU library development is to provide developers with repositories of high-level data

transformations (e.g., global reduction, sort, etc.) that can be invoked by sequential code

on the host platform.

While these “host-side” primitives unburden the programmer from writing any

parallel device software, libraries of “device-side” subroutines do not exist. For example,

there are no collections of device subroutines for performing local reduction or local

prefix sum within a CTA. This is an aspect of GPU software development that has

heretofore been neglected.

We believe the dearth of reusable software components for constructing GPU

kernels corresponds to a lack of performance flexibility. The performance of kernel code

can be significantly affected by problem type, problem size, and specific GPU processor

architecture. There is little value in providing libraries of reusable device subroutines

that cannot be tailored for the specific problem and processor at hand.

Our explicit use of the type system for template metaprogramming provides us

with the interface flexibility needed for software reusability as well as performance

tuning. Reusable subroutines can be co-optimized with the enclosing kernel source. All

of the kernels described within this dissertation are composed from our BackForty library

of reusable, tunable device subroutines for common CTA activities (e.g., workload

management, data movement, variants of local reduction and scan, etc.) [6].

42

3.2 TUNABLE CONCURRENCY

In this section, we further describe our perspective on the difficulties of parallel

programming and the necessity for design idioms that facilitate the flexible coupling of

diverse parallel and serial algorithmic phases. In particular, we focus on two prevalent

attitudes regarding parallel software development that we feel are ultimately

counterproductive:

• It is simpler (and thus preferable) to express all available concurrency within

software.

• It is simpler (and thus preferable) to insulate the expression of such concurrency

from the process of efficiently mapping it onto the underlying hardware.

3.2.1 Expressing all available concurrency is counterproductive

Imperative algorithms for asynchronous, multithreaded models of computation are

notoriously hard to construct, prove correct, maintain, and debug. The inherent non-

determinism often leads to unanticipated interactions that are difficult to diagnose. Over

the years, many programming models, languages, and APIs have been designed with the

intent of simplifying the expression of parallel algorithms.

Many of these abstractions are designed for the program to specify all available

concurrency. For example, SISAL [83], MultiLisp [54], and VHDL [67] are well-known

declarative languages for expressing data dependences. These dependences dictate the

global flow of computation, and all independent operations can proceed in parallel. In a

similar vein, OpenMP [36], CUDA [34], and map-reduce [38] are examples of popular

imperative paradigms for specifying data-parallel operations to be performed on every

data element. The abstract GPU machine model supports this idiom through thread

43

virtualization, i.e., the decoupling of logical threads from hardware threads.

Programmers are encouraged to construct data-parallel task decompositions that

instantiate a unique logical thread for every data item.

This idiom of parallel expression simplifies many decisions for the programmer.

It allows to them to remain oblivious to hardware details and focus on encoding a single

parallelization that simply expresses the smallest granularity of concurrent tasks.

However, this style of task decomposition has important consequences for

cooperative problems. When logical threads scale with input size, so does the amount of

communication through memory. Communication between logical threads often results

in the same data being loaded back into registers on the same processor core, yet at the

expense of many clock cycles and costly synchronization for correctness. We would

prefer not to move such data at all. This implies that communication overhead should

scale with physical processing elements, not problem size.

Furthermore, much of the instruction workload also scales with logical threads.

Local computation within a CTA typically involves computing conditional predicates,

performing offset calculations, initializing local variables and shared memory, etc. Many

(a) Serial: n-1 depth and O(n) size (b) Brent-Kung: 2log2n - 1 depth and

O(n) size

(c) Kogge-Stone: log2n depth and

O(nlog2n) size

Fig. 13. Alternative dataflow constructions for 8-element prefix sum

x0 x1 x2 x3 x4 x5 x6 x7

x0:x0
x0:x1

x0:x2
x0:x3

x0:x4
x0:x5

x0:x6
x0:x7

x0 x1 x2 x3 x4 x5 x6 x7

x0:x0
x0:x1

x0:x2
x0:x3

x0:x4
x0:x5

x0:x6
x0:x7

x0 x1 x2 x3 x4 x5 x6 x7

x0:x0
x0:x1

x0:x2
x0:x3

x0:x4
x0:x5

x0:x6
x0:x7

44

of these operations are identical across CTAs. For example, thread ti in one CTA is

likely to have the same activation schedule and access the same shared memory locations

as thread ti in all other CTAs. These identical instructions are effectively redundant when

they are ultimately executed on the same SIMD lanes. When the number of CTAs scales

with problem size, this redundant computation does as well.

We can apply the idiom of granularity coarsening to reduce the presence of

unnecessary computation and communication. We do this by increasing the granularity,

i.e., amount of serial work performed by each thread, warp, and CTA. Our goal is to

construct parallelizations where logical threads are a multiple of machine width, not

problem size. As we further illustrate in Section 3.3, granularity coarsening significantly

improves our ability to efficiently map the implementation onto various underlying

hardware.

3.2.2 The insulation of “expression” from “mapping” is counterproductive

A clear, concise, elegant, and correct program is not particularly useful if it does not map

well to the specific processor it is to be executed on. For sequential computation, the

responsibility of constructing this mapping has traditionally fallen on the shoulders of the

optimizing compiler with little to no visibility from the program. For parallel programs, a

philosophy of complete insulation from the mapping process is less useful for achieving

both portability and performance. At worst, it is counterproductive. In this section we

discuss three aspects of mapping that would benefit from explicit guidance from the

program: algorithm selection, scheduling, and variable concurrency.

Algorithm selection. For many problems, no single parallelization is best across

all processor architectures and input sizes, types, and data. As discussed in Chapter 2,

45

different processor genres can require fundamentally different algorithms for solving the

same problem, and the preference of one algorithm over another can depend on problem

size and data type [5].

In an ideal world, we would like our compilers to be able to: (a) detect that a

program implements a particular algorithm; and (b) discover an alternative parallelization

that might be better suited for the underlying hardware. For example, we might want to

detect that the program expresses a work-efficient parallelization of prefix sum having

depth 2log2n (e.g., Fig. 13b) and replace it with a shorter, work-inefficient construction

having depth log2n (e.g., Fig. 13c) when the problem size drops below the warp width.

In an ideal world, we would like our compilers to be able to: (a) detect that a

program implements a particular algorithm; and (b) discover an alternative parallelization

that might be better suited for the underlying hardware. However, it is extremely difficult

for compilers to synthesize alternative, fungible parallelizations, particularly for problems

having non-trivial data dependences. In the general case, it is impossible [95, 96].

This motivates an alternative paradigm having a less opaque relationship between

the expression of the parallel program and its compilation, e.g., one in which the compiler

is provided with algorithmic alternatives and rules for guiding selection among them

based upon problem type and target processor.

Scheduling and resource management. The challenges of mapping programs

onto parallel hardware extend beyond algorithm selection and choice. Even when the

basic outline of an algorithm is a good fit for the underlying machine model, an efficient

scheduling of tasks on one processor can result in significant underutilization on another.

This is exacerbated on contemporary GPUs, where the hardware resources provisioned

46

for each thread (e.g., registers, shared memory, etc.) are intimately intertwined with co-

scheduling, i.e., thread blocking.

Logical threads are dispatched onto processor cores by CTA. The number of

resident, active CTAs per core is limited by the core’s resources, namely the aggregate

register file, local shared memory, and scheduling contexts. For example, the NVIDIA

GF100 architecture provisions 32K 32-bit registers, 48KB shared memory, and

scheduling resources for 1,536 threads per core. The configuration space for thread

blocking is quite large, including such alternatives as:

a) Three resident 512-thread CTAs (1536 threads/core), 16KB shmem per CTA, 21

registers per thread

b) Six resident 128-thread CTAs (768 threads/core), 8KB shmem per CTA, 42

registers per thread

c) Eight resident 64-thread CTAs (512 threads/core), 6KB shmem per CTA, 64

registers per thread

What should the program specify? The performance consequences are opaque. More

resident threads does not necessarily imply greater throughput if computation or memory

is already saturated. More independent CTAs can provide a greater diversity of

instantaneous thread behavior for better core utilization. The same diversity, however,

can be harder on read-only cache hierarchies. More CTAs also reduces the amount of

shared scratch available to each for local cooperation.

Furthermore, the complex relationships between these details explicitly affect the

imperative behavior of threads, e.g., the locations in shared memory that threads must

read and write from. On one hand, we can encode these relationships directly within our

47

kernel programs, having each thread dynamically compute many of the derivative details

it will need (e.g, offsets, strides, etc.) from parameters supplied by the host program.

Alternatively, we can encode these relationships statically using the type system,

allowing the much of this information to be computed at compile time.

The compiler can do a much better job of code generation if the thread blocking

information can be specified at compile time. Without knowledge of the desired number

of resident threads per core, the compiler must perform conservative register allocation

under the assumption that the core may be fully occupied with threads. By specifying a

combination of desired CTA occupancy and CTA size that is below the maximum thread

residency for the core, the compiler can allocate more registers per thread. This can

significantly improve performance by minimizing costly spills and lowering dynamic

instruction overhead via common subexpression elimination.

In our evaluations, we illustrate large performance variances among reasonable

thread blocking configurations that programmers could be expected to implement

explicitly. Unfortunately there is little information to guide selection from the space of

diverse, yet functionally-equivalent alternatives. Without precise analytical models for

complex and data-dependent scheduling interactions on specific target architecture,

empirical performance tuning is a compelling approach for optimizing hierarchical thread

blocking.

Variable concurrency. Parallel programming adds an important facet to

performance tuning: the amount of concurrency expressed. As a deeply multithreaded

architecture, GPUs are designed to be saturated with concurrency, a feature that is

ostensibly well-suited to the programming idiom of expressing all available concurrency.

48

From the perspective of mapping programs onto hardware, this idiom is attractive

in several ways. First, the approach ensures that the concurrency expressed by a given

program is both maximal and scales with problem size. These two properties are useful

for achieving strong and weak scaling, respectively. Second, the idiom provides good

portability. It abstracts away the physical details of processor cores and SIMD widths

that may vary across GPUs. Finally, the oversubscription of processing elements with

short-lived tasks helps ensure good load balancing and overall utilization.

As we show in the following section, however, this simplistic approach leads to

substantial inefficiencies that stem from redundant computations and unnecessary rounds

of communication between logical threads. Instead, we advocate design approaches

where programmers explicitly express both serial and cooperative phases of their

algorithms and rules for how they should be coupled. Although such flexible granularity

coarsening complicates the expression of the program, we prefer to leave the granularity

of serial work performed by CTAs, and warps, and threads unbound until the compiler

and/or runtime maps their operation onto the target hardware.

3.3 GRANULARITY COARSENING

This section describes two important design idioms for applying granularity coarsening

with respect to CTAs, warps, and threads: CTA-serialization and thread serialization.

We make extensive use of these two patterns throughout this dissertation. Along the

way, we illustrate examples of unnecessary overheads that are incurred by programs that

are rigidly constructed to express all available concurrency.

3.3.1

The CUDA

number of threads

illustrates this for a simple data

exactly one

corresponds to the number of threads in a CTA.

scheduling granularity

problem in which the number of CTAs launched

for each CTA

each CTA is responsible for serially processing

number

5 To avoid further overloading of the term “block”, we use

3.3.1 CTA serialization

The CUDA

number of threads

illustrates this for a simple data

exactly one

corresponds to the number of threads in a CTA.

scheduling granularity

Fig. 14

problem in which the number of CTAs launched

for each CTA

each CTA is responsible for serially processing

number of logical

To avoid further overloading of the term “block”, we use

to process to completion before terminating or obtaining another block of input.

Fig. 14

ti
le

CTA0

CTA serialization

The CUDA programming model encourages

number of threads, and thus the number of CTAs,

illustrates this for a simple data

exactly one tile5 of data, typically where the number of data elements

corresponds to the number of threads in a CTA.

scheduling granularity b, the kernel will launch

14b illustrates

problem in which the number of CTAs launched

for each CTA is wrapped within in

each CTA is responsible for serially processing

of logical threads scales with processor wid

To avoid further overloading of the term “block”, we use

s to completion before terminating or obtaining another block of input.

(a) Data

(b) CTA serialization (each CTA iteratively processes multiple tiles)

14. Example CTA decompositions for a data

programming model encourages

, and thus the number of CTAs,

illustrates this for a simple data-parallel transformation

of data, typically where the number of data elements

corresponds to the number of threads in a CTA.

, the kernel will launch

illustrates an alternative

problem in which the number of CTAs launched

wrapped within in a

each CTA is responsible for serially processing

threads scales with processor wid

To avoid further overloading of the term “block”, we use

s to completion before terminating or obtaining another block of input.

(a) Data-parallel CTA decomposition (one tile per CTA)

(b) CTA serialization (each CTA iteratively processes multiple tiles)

Example CTA decompositions for a data

programming model encourages data

, and thus the number of CTAs,

parallel transformation

of data, typically where the number of data elements

corresponds to the number of threads in a CTA.

, the kernel will launch a grid of

an alternative CTA decomposition for the same data

problem in which the number of CTAs launched

a while-loop.

each CTA is responsible for serially processing

threads scales with processor wid

To avoid further overloading of the term “block”, we use tile to describe a block of input data that a CTA is designed

s to completion before terminating or obtaining another block of input.

parallel CTA decomposition (one tile per CTA)

(b) CTA serialization (each CTA iteratively processes multiple tiles)

Example CTA decompositions for a data-parallel transformation

data-parallel decompositions where the

, and thus the number of CTAs, scales with problem size.

parallel transformation (e.g., copy)

of data, typically where the number of data elements

corresponds to the number of threads in a CTA. For a given proble

a grid of C =

CTA decomposition for the same data

problem in which the number of CTAs launched C is constant.

. When C is a fixed multiple of

each CTA is responsible for serially processing O(n/(pb)) tiles.

threads scales with processor width instead of

to describe a block of input data that a CTA is designed

s to completion before terminating or obtaining another block of input.

parallel CTA decomposition (one tile per CTA)

(b) CTA serialization (each CTA iteratively processes multiple tiles)

parallel transformation

parallel decompositions where the

scales with problem size.

(e.g., copy). Each CTA processes

of data, typically where the number of data elements

For a given proble

= n/b CTAs.

CTA decomposition for the same data

is constant. The tile

is a fixed multiple of

)) tiles. Because

instead of problem size.

to describe a block of input data that a CTA is designed

s to completion before terminating or obtaining another block of input.

parallel CTA decomposition (one tile per CTA)

(b) CTA serialization (each CTA iteratively processes multiple tiles)

parallel transformation. Tile size b=4 elements

parallel decompositions where the

scales with problem size. Fig.

. Each CTA processes

of data, typically where the number of data elements b in a tile

For a given problem of size n

CTA decomposition for the same data-parallel

The tile-processing logic

is a fixed multiple of cores

Because C is O(p

problem size.

to describe a block of input data that a CTA is designed

=4 elements.

…

CTAn

49

parallel decompositions where the

Fig. 14a

. Each CTA processes

in a tile

n and

parallel

processing logic

cores p,

p), the

to describe a block of input data that a CTA is designed

n/b-1

50

We illustrate the effectiveness of this technique for a trivial data-parallel “copy”

kernel. Threads simply read and write their 32-bit elements from one global array to

another. We use 64M-element arrays, large enough to saturate the GTX480 memory

subsystem. Fig. 15 plots the number of dynamic thread-instructions executed per input

element as a function of the number of CTAs launched by the kernel. We vary the CTA

count from the minimum number needed to occupy the processor (8p=120 CTAs) to fully

data-parallel (n/b = 64K CTAs where b=1024).

We observe that dynamic instruction overhead increases linearly with the number

of CTAs invoked. With fewer CTAs, the computational savings from reduced

concurrency and increased serial processing are substantial. Compared to the strictly

data-parallel extreme on the right hand side, restricting the amount of concurrency to the

width of the processor reduces the overall computational workload by 57%.

Two factors contribute to these savings. First, the reduced number of logical

threads lowers the overall thread-setup overhead. This includes instructions for loading

the kernel parameters into registers, computing the offset of the CTA’s first tile, the offset

Fig. 15. “Copy” kernel instruction overhead vs. CTA

granularity for 64M-element datasets (GTX480)

Fig. 16. “Copy” kernel utilized bandwidth vs. problem

size n (no CTA serialization, GTX480)

0

1

2

3

4

5

6

7

8

0 8192 16384 24576 32768 40960 49152 57344 65536

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
/i

n
p

u
t

e
le

m
e

n
t

Grid size C (CTAs launched)

0

20

40

60

80

100

120

140

160

180

256 2048 16384 131072 1048576 8388608 67108864

U
ti

li
ze

d
 B

a
n

d
w

id
th

 (
G

B
/s

)

Problem size n (32-bit elements, log-scale)

of the thread into that tile, etc.

processing

decompositions.

for parallel

The host program further invokes log

reductions into a single aggregate result.

saturate the

example, the second level of a 64M element reduction tree

contains only 64K elements

saturates for inputs larger than 8M elements (

invocations

fully utilizing the processor.

our reduction example. When

Fig.

elements

of the thread into that tile, etc.

processing loop

This

decompositions.

for parallel reduction.

The host program further invokes log

reductions into a single aggregate result.

However,

saturate the processor

example, the second level of a 64M element reduction tree

contains only 64K elements

saturates for inputs larger than 8M elements (

invocations leave the GPU under

fully utilizing the processor.

As an alternative,

ur reduction example. When

(a) logb-level tree: each CTA processes one tile

Fig. 17. Example CTA decompositions for global reduction

elements.

tile

tile

CTA0

K
e

rn
e

l s
e

q
u

e
n

c
e

of the thread into that tile, etc.

loop, further reducing the workload per input element

This CTA serialization

decompositions. Fig. 17a illustrates

reduction. Each CTA computes a partial reduction from its tile of

The host program further invokes log

reductions into a single aggregate result.

However, GPUs are only efficient when

processor.

example, the second level of a 64M element reduction tree

contains only 64K elements

saturates for inputs larger than 8M elements (

leave the GPU under

fully utilizing the processor.

As an alternative,

ur reduction example. When

level tree: each CTA processes one tile

mple CTA decompositions for global reduction

tile

of the thread into that tile, etc. Second

further reducing the workload per input element

CTA serialization idiom

a illustrates

Each CTA computes a partial reduction from its tile of

The host program further invokes log

reductions into a single aggregate result.

GPUs are only efficient when

. This is rarely true for the interior of the reduction tree. For

example, the second level of a 64M element reduction tree

contains only 64K elements. Unfortunately the memory subsystem for the GTX480 only

saturates for inputs larger than 8M elements (

leave the GPU undersubscribed. O

fully utilizing the processor.

As an alternative, Fig. 17b illustrates

ur reduction example. When C is a constant multiple of

level tree: each CTA processes one tile

mple CTA decompositions for global reduction

CTAn/b

Second, the compiler

further reducing the workload per input element

idiom is also

a illustrates the traditional

Each CTA computes a partial reduction from its tile of

The host program further invokes logbn - 1 reduction

reductions into a single aggregate result.

GPUs are only efficient when

This is rarely true for the interior of the reduction tree. For

example, the second level of a 64M element reduction tree

Unfortunately the memory subsystem for the GTX480 only

saturates for inputs larger than 8M elements (Fig.

subscribed. Only the first reduction kernel is capable of

b illustrates the

is a constant multiple of

level tree: each CTA processes one tile (b)

mple CTA decompositions for global reduction. CTAs are comprised of four threads. Tile size

b-1

u
n
d

e
r-

s
u
b

s
c
ri
b

e
d

compiler can hoist

further reducing the workload per input element

also particularly

the traditional recursive

Each CTA computes a partial reduction from its tile of

1 reduction kernel

GPUs are only efficient when the problem size is large

This is rarely true for the interior of the reduction tree. For

example, the second level of a 64M element reduction tree with

Unfortunately the memory subsystem for the GTX480 only

Fig. 16). Th

nly the first reduction kernel is capable of

the CTA serialization

is a constant multiple of p and roughly the same order of

(b) Two-level: CTAs are reused to process multiple tiles

. CTAs are comprised of four threads. Tile size

can hoist operations

further reducing the workload per input element.

particularly effective

recursive data-parallel

Each CTA computes a partial reduction from its tile of

kernels to reduce these partial

the problem size is large

This is rarely true for the interior of the reduction tree. For

with branching factor

Unfortunately the memory subsystem for the GTX480 only

). The second and third kernel

nly the first reduction kernel is capable of

CTA serialization idiom

and roughly the same order of

level: CTAs are reused to process multiple tiles

. CTAs are comprised of four threads. Tile size

operations out of the

effective for recu

parallel decomposition

Each CTA computes a partial reduction from its tile of b elements.

s to reduce these partial

the problem size is large enough to

This is rarely true for the interior of the reduction tree. For

branching factor b=1024

Unfortunately the memory subsystem for the GTX480 only

e second and third kernel

nly the first reduction kernel is capable of

idiom as applied to

and roughly the same order of

level: CTAs are reused to process multiple tiles

. CTAs are comprised of four threads. Tile size b=4

51

out of the tile-

for recursive

decomposition

elements.

s to reduce these partial

enough to

This is rarely true for the interior of the reduction tree. For

=1024

Unfortunately the memory subsystem for the GTX480 only

e second and third kernel

nly the first reduction kernel is capable of

as applied to

and roughly the same order of

level: CTAs are reused to process multiple tiles

=4

52

magnitude as b, we only need a single-CTA kernel to reduce one tile of C partials. This

two-level CTA decomposition finishes the inefficient part of parallel reduction as quickly

as possible.

Furthermore, the cost of aggregating partial reductions between tiles is much

lower. For sequentially-processed tiles, we can simply leave these partials in registers

instead of exchanging them through global memory. We obviate O(n/b) global memory

reads and writes at a savings of 2-4 instructions per round-trip (offset calculations, load,

store). Instead, we only require O(C) global communication for partials, where C is

now independent of n.

(a) Global parallel reduction (b) Global parallel prefix sum

(c) Global parallel partitioning (16-way)

Fig. 18. Cooperative instruction overhead vs. CTA granularity (GTX480)

0

2

4

6

8

10

12

0 8192 16384 24576 32768 40960 49152 57344 65536

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
p

e
r

in
p

u
t

e
le

m
e

n
t

Grid size C (CTAs launched)

0

5

10

15

20

25

30

0 8192 16384 24576 32768 40960 49152 57344 65536

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
p

e
r

in
p

u
t

e
le

m
e

n
t

Grid size C (CTAs launched)

0

10

20

30

40

50

60

70

0 8192 16384 24576 32768 40960 49152 57344 65536

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
p

e
r

in
p

u
t

e
le

m
e

n
t

Grid size C (CTAs launched)

53

The two-level decomposition is also more energy-efficient. The energy required

to move a 32-bit word through DRAM is currently on the order of 2,000 pJ [13]. The

energy cost of leaving it in a register and simply reading it later is roughly 1.7 pJ.

Fig. 18 illustrates the effectiveness of CTA serialization for the cooperative

problems of global reduction, prefix sum, and multi-way partitioning (for radix sorting).

By only invoking as many CTAs as can be actively resident on the processor, we

demonstrate computational savings of 67% for reduction, 42% for prefix sum, and 27%

for partitioning.

3.3.2 Thread serialization

In this subsection, we discuss the merits of granularity coarsening for local cooperation

with the CTA. The programming model’s hierarchical memory spaces and grouping

constructs encourage the decomposition of globally-cooperative problems into

independent subproblems (tiles) that can be can be processed in nearby shared memory

with much better locality.

Fig. 19. Recursive, pair-wise parallelization of local CTA reduction. Lighter dataflow arrows indicate partials left in

registers.

barrier

…

…

…

barrier

…

…

…

barrier

barrier

barrier

barrier

barrier

…

…

t0

t0

t1

t3 t15

t31

t63t15

t6 t7

t0 t1

t0

t0

t7

t3

t0 t1

t0

t12

54

When expressed at their finest granularity, the task dependences for many

cooperative parallelizations comprise binary trees of communication through shared

memory spaces. Reduction and prefix sum are commonplace examples. At each

timestep, the expressed concurrency is geometrically decreasing (or increasing). Fig. 19

illustrates such pair-wise reduction as mapped onto threads within a CTA.

Despite its simplicity and abundant concurrency, this parallelization is quite

inefficient on GPU architecture. Each of the b-1 reduction operators has an operand that

needs to be written, synchronized, and read from shared memory. After performing an

operator, threads must also evaluate a conditional to determine whether they will be

active in the subsequent level. For example, a 1024-thread CTA requires 4,224 thread-

instructions6 to reduce a tile of b=1024 elements.

A much better fit is the generic, three-phase construction illustrated in Fig. 20.

Each phase seeks to either increase the amount of sequential work within a given storage

6 The actual width of the final five reduction levels is the warp-width wSIMD=32, regardless of deactivated threads.

Fig. 20. Recursive, three-phase parallelization of local CTA reduction. Lighter dataflow arrows indicate partials left in

registers.

barrier

t3

t3

t3

t2

t2

t2

t1

t1

t1

t0

t0

t0

… … … … tT- 1tT/2 + 1tT/2 tT/2 + 2tT/4 + 1tT/4 tT/4 + 2 tT/2 - 1t1t0 t2 tT/4 -1 t3T/4+1t3T/4 t3T/4+2t3T/4 -1

t1 t3

t3

t0 t3t2t1

Se
q

u
e

n
ti

al

re
d

u
ct

io
n

in
 r

e
gi

st
e

rs

Se
q

u
e

n
ti

al
 r

e
d

u
ct

io
n

in
 s

h
ar

e
d

 m
e

m
o

ry

C
o

o
p

e
ra

ti
ve

,

w
ar

p
-s

yn
ch

ro
n

o
u

s

re
d

u
ct

io
n

55

class (e.g., registers, shared memory, etc.) or exploit a particular aspect of the abstract

machine model (e.g., lock-step thread progress within the warp):

1) Sequential reduction in registers. This phase decouples the tile size b from the

CTA size pCTA. Each thread loads b/pCTA items. It is important that this phase be

wide enough to saturate the global memory subsystem with requests. The loaded

elements are sequentially reduced in registers without read, write, and barrier

instructions.

2) Sequential reduction in shared memory. We place the partials from the previous

step into shared memory, invoke a barrier, and then reduce the parallelism to the

SIMD width wSIMD of the processor core. One warp then serially rakes7 over the

shared partials for pCTA/wSIMD steps without write and barrier instructions.

3) Cooperative, warp-synchronous reduction. Finally, the single raking warp

performs a synchronization-free, pair-wise reduction in shared memory of the

partial reductions computed in the previous phase. We exploit the lock-step SIMD

behavior of threads within the same warp to avoid explicit barrier synchronization.

This construction only requires one barrier-synchronized exchange through shared

memory that is accompanied by a single conditional for reducing the degree of

parallelism. All other steps are free of conditionals, and the bulk of the reduction

operators (first phase) are free of any shared memory overhead. Compared with the pair-

wise example, this three-phase construction only requires 1,440 thread-instructions to

reduce a tile of b=1024 elements using a 128-thread CTA with wSIMD=32, a savings of

67%.

7 Raking is a strategy for assigning a set of threads p to process a much larger data set. Each thread is assigned an even-

share of consecutive inputs to process serially, i.e., the stride between threads is p and the stride between elements for

a given thread is 1. Alternatively, strip mining iteratively stripes the mapping of threads across the input set, i.e., the

stride between threads is 1 and the stride between elements for a given thread is p.

of

phases to any particular widths and depths when authoring our programs.

example, t

ult

the

bind these parameters after empirically tuning for a specific problem and target

arc

3.3.3

The layout of shared memory for second

discussion. The shared, physical memory per GPU core is comprised of sequentially

(b)

memory

Fig.

The total number of partials to rake

partials. Local shared memory is comprised of 16 banks having a stride of four bytes per bank.

This example serves to illustrate the importance of expressing

of cooperation from

phases to any particular widths and depths when authoring our programs.

example, the tile size, CTA size, and warp size

ultimately dictate the number of steps to

the size and layout

bind these parameters after empirically tuning for a specific problem and target

architecture.

3.3.3 Involvement with

The layout of shared memory for second

discussion. The shared, physical memory per GPU core is comprised of sequentially

(b) Conflict-free raking reduction

memory)

Fig. 21. Alternative

The total number of partials to rake

partials. Local shared memory is comprised of 16 banks having a stride of four bytes per bank.

This example serves to illustrate the importance of expressing

cooperation from multiple algorithmic phases. However, we do not want to

phases to any particular widths and depths when authoring our programs.

he tile size, CTA size, and warp size

imately dictate the number of steps to

size and layout of shared memory

bind these parameters after empirically tuning for a specific problem and target

hitecture.

Involvement with the type system

The layout of shared memory for second

discussion. The shared, physical memory per GPU core is comprised of sequentially

raking reduction with

Alternative memory layouts for raking reduction in shared memory

The total number of partials to rake

partials. Local shared memory is comprised of 16 banks having a stride of four bytes per bank.

m0 m1 m2

t0

t8

t12

t4

This example serves to illustrate the importance of expressing

multiple algorithmic phases. However, we do not want to

phases to any particular widths and depths when authoring our programs.

he tile size, CTA size, and warp size

imately dictate the number of steps to

shared memory

bind these parameters after empirically tuning for a specific problem and target

the type system

The layout of shared memory for second

discussion. The shared, physical memory per GPU core is comprised of sequentially

(a) Raking reduction with four

with padding (four

emory layouts for raking reduction in shared memory

The total number of partials to rake pCTA = 64. Warp

partials. Local shared memory is comprised of 16 banks having a stride of four bytes per bank.

m3 m4 m5

t1

t9

t13

t5

This example serves to illustrate the importance of expressing

multiple algorithmic phases. However, we do not want to

phases to any particular widths and depths when authoring our programs.

he tile size, CTA size, and warp size

imately dictate the number of steps to statically

shared memory needed for thread

bind these parameters after empirically tuning for a specific problem and target

the type system

The layout of shared memory for second phase of

discussion. The shared, physical memory per GPU core is comprised of sequentially

Raking reduction with four-

padding (four bytes of padding for every

emory layouts for raking reduction in shared memory

Warp-width wSIMD

partials. Local shared memory is comprised of 16 banks having a stride of four bytes per bank.

m6 m7 m8

t2

t10

t14

t6

This example serves to illustrate the importance of expressing

multiple algorithmic phases. However, we do not want to

phases to any particular widths and depths when authoring our programs.

he tile size, CTA size, and warp size are the unbound tuning parameters that

statically unroll each phase. They also dictate

needed for thread communica

bind these parameters after empirically tuning for a specific problem and target

phase of local reduction

discussion. The shared, physical memory per GPU core is comprised of sequentially

Raking reduction with four-way bank conflicts

ng for every sixteen 32

emory layouts for raking reduction in shared memory (phase

SIMD = 16 threads. Each raking thread reduces four 32

partials. Local shared memory is comprised of 16 banks having a stride of four bytes per bank.

m9 m10 m11

This example serves to illustrate the importance of expressing the “general shape”

multiple algorithmic phases. However, we do not want to

phases to any particular widths and depths when authoring our programs.

are the unbound tuning parameters that

unroll each phase. They also dictate

communication

bind these parameters after empirically tuning for a specific problem and target

local reduction warrants additional

discussion. The shared, physical memory per GPU core is comprised of sequentially

way bank conflicts

sixteen 32-bit partials

(phase2 of three-phase local reduction).

= 16 threads. Each raking thread reduces four 32

partials. Local shared memory is comprised of 16 banks having a stride of four bytes per bank.

m12 m13 m14

t3

t11

t15

t7

the “general shape”

multiple algorithmic phases. However, we do not want to bind these

phases to any particular widths and depths when authoring our programs. In this

are the unbound tuning parameters that

unroll each phase. They also dictate

tion. We prefer to

bind these parameters after empirically tuning for a specific problem and target

warrants additional

discussion. The shared, physical memory per GPU core is comprised of sequentially

bit partials placed into shared

phase local reduction).

= 16 threads. Each raking thread reduces four 32

m15

56

the “general shape”

bind these

In this

are the unbound tuning parameters that

unroll each phase. They also dictate

We prefer to

bind these parameters after empirically tuning for a specific problem and target

warrants additional

discussion. The shared, physical memory per GPU core is comprised of sequentially-

placed into shared

phase local reduction).

= 16 threads. Each raking thread reduces four 32-bit

57

accessible storage banks. Bank conflicts arise when threads within the same warp access

different words residing in the same memory bank. A bank can only service one thread

at a time. This results in the undesirable serialization of otherwise concurrent memory

accesses.

Without proper padding, many of the concurrent reads made by threads in our

raking warp would target the same memory banks. For example, the raking threads in

Fig. 21a experience four-way bank conflicts for every read from shared memory, causing

each read instruction to be replayed four times. The number of memory banks is a

multiple of the stride between raking threads. Alternatively, the padding in Fig. 21b

ensures no bank conflicts, as the number of banks and thread stride are relatively prime.

The formal data type being reduced affects the following aspects of shared

memory layout: (1) the placement of padding; (2) the placement-offset for storing each

partial reduction into shared memory; and (3) the raking offsets for raking threads.

Continuing the example in Fig. 21, local reduction of 64-bit doubles would require eight

bytes of padding for every eight doubles placed into shared memory. For 8-bit

characters, our example requires no padding: all 64 characters fit within one row of

memory banks.

In short, our tuning decisions, the problem type, and the target architecture all

affect the data types we use to organize communication through shared memory.

3.4 TUNING VIA THE TYPE SYSTEM

Our design idiom for tuning via the type system uses the language’s support for template-

based metaprogramming to ease the burden of granularity selection and algorithmic

choice. We author our parallel algorithms such that they can be specialized by tuning

58

policy. We express such tuning policy using reflective C++ types. Our kernel

procedures are parameterized to accept such policy types as template parameters. Within

the procedure, we can then express various aspects of its behavior in terms of the

information carried within the policy type.

In this fashion, we can author the “general shape” of an implementation, leaving

many of the performance-sensitive details unbound. We can then use (and reuse) this

code later by binding it with a tuning configuration policy that matches the specific

problem at hand. The configuration policy guides the compiler in unrolling and

generating well-tuned code.

Because the policy is statically known to the compiler, we eliminate the need for

any runtime decision-making with each logical thread. The overhead of runtime

decision-making (e.g., how many loads to unroll) is particularly costly on GPU-like

architectures having tens or hundreds of thousands of resident threads.

3.4.1 A simple example: data-parallel copy

Consider data-parallel copy as a trivial example. As one of the simplest stencil kernels,

threads simply load elements from a global input array and write them to equivalent

locations within the output array. Listing 1 illustrates a “concrete” tile-copying

subroutine in which a CTA copies a tile of 32-bit floats. Each thread loads and stores

exactly one float.

In practice, the ostensibly simple copy operation incorporates quite a few tuning

decisions that are opaque in terms of their performance impact for any given architecture

and problem type. Lines 2-14 in Listing 2 illustrate a parametric type Policy that can be

specialized in the following tuning dimensions:

59

a) The number of loads per thread per tile. This allows us to increase the number of

outstanding loads issued before stores at the expense of increased register pressure.

Reasonable configurations include 2
0
, 2

1
, and 2

2
 loads per thread per tile.

b) The number of items per load. Current NVIDIA GPUs support vector-loads of up

to four component elements. Reasonable configurations include 2
0
, 2

1
, and 2

2

elements per vector load.

c) The number of threads per CTA. Reasonable configurations include powers-of-

twos ranging from 2
5
 to 2

10
 threads.

Listing 1. A straightforward kernel subroutine for CTAs

to copy tiles of 32-bit floats from one global array to

another

Template parameters: None

Formal parameters:

• Global input and output arrays d_in, d_out

• Offset tile_offset into d_in/d_out of the tile to be

copied

• Optional limit guarded_elements on the number of tile

elements to copy

Other:

• Global variable thread_id for thread identifier

• Global variable cta_size for CTA-size in threads

1 __device__ void CopyTile(

1 float *d_in,

2 float *d_out,

3 size_t cta_offset,

4 size_t guarded_elements = cta_size)

5 {

6 if (thread_id < guarded_elements) {

7

8 // Load tile data

9 float data =

10 d_in[tile_offset + thread_id];

11

12 // Store tile data

13 d_out[tile_offset + thread_id] =

14 data;

15 }

16 }

Listing 2. A tuning policy type for data-parallel copy,

followed by an example parameterization of that type

specialized for large-problems of 8-byte elements on the

GF100 architecture.

1 // Tuning policy type

2 template <

3 // Problem instance type parameters

4 typename T,

5 int ARCHITECTURE,

6

7 // Tunable parameters

8 int LOG_THREADS,

9 int LOG_LOAD_VEC_SIZE,

10 int LOG_LOADS_PER_TILE,

11 ld::CacheModifier READ_MODIFIER,

12 st::CacheModifier WRITE_MODIFIER,

13 bool WORK_STEALING>

14 struct Policy;

15

16 // Example policy parameterization

17 // tuned for 8-byte data, large-size

18 // problems

19 typedef Policy<unsigned long long,

20 GF100, 8, 7, 1, 0, ld::cg,

21 st::cg, true>

22 LargeProblemPolicy8B;

60

d) Work-stealing. As algorithmic variants, we can either: (a) provide each CTA with

an even-share of input tiles; or (b) allow CTAs to “steal” tiles of work using bulk

atomic-addition as described in Chapter 1.3.1.

e) Caching directives. These modifiers affect cache behavior during loads and

stores. Current NVIDIA GPUs expose up to four variants: default caching at L2

Listing 3. A generalized, policy-based kernel subroutine for CTAs to copy tiles of elements from one global

array to another.

Template parameters:

• Tuning policy type Policy having the following type

definition fields:

o T (data type to be copied)

o SizeT (data type for offsets)

and enumerated constant fields:

o LOADS_PER_TILE (number of loads

per tile)

o LOAD_VEC_SIZE (elements per load

o THREADS (number of threads per CTA)

Formal parameters:

• Global input and output arrays d_in, d_out

• Offset tile_offset into d_in/d_out of the tile to be

copied

• Optional limit guarded_elements on the number of

tile elements to copy

Other:

• Device function LoadTileValid() for reading each

thread’s tile portion

• Device function StoreTileValid() for writing each

thread’s tile portion

1 template <typename Policy>

2 __device__ void CopyTile(

3 typename Policy::T *d_in,

4 typename Policy::T *d_out,

5 typename size_t tile_offset,

6 typename size_t guarded_elements =

7 Policy::ELEMENTS_PER_TILE)

8 {

9 // Tile data

10 typename Policy::T

11 data[Policy::LOADS_PER_TILE]

12 [Policy::LOAD_VEC_SIZE];

13

14 // Load tile

15 LoadTileValid <

16 Policy::LOADS_PER_TILE,

17 Policy::LOAD_VEC_SIZE,

18 Policy::THREADS,

19 Policy::READ_MODIFIER>(

20 data, d_in + tile_offset, guarded_elements);

21

22 // Store tile

23 StoreTileValid<

24 Policy::LOADS_PER_TILE,

25 Policy::LOAD_VEC_SIZE,

26 Policy::THREADS,

27 Policy::WRITE_MODIFIER> (

28 data, d_out + tile_offset, guarded_elements);

29 }

61

and L1 levels; no caching; cache in global L2 using smaller cache lines; and

tagging for preferential eviction.

Listing 3 illustrates a templated copy subroutine that expresses the “general shape” of

tile-copying. This procedure is not bound to a specific type of copy-element. In addition,

each thread loads and stores a tunable number of elements. Such tuning details are

encapsulated within the template parameter type Policy. An example “concrete” tuning

policy that we have identified for copying large lists of 8-byte elements is shown in

Listing 2, lines 18-20.

Fig. 22 illustrates the diversity of the corresponding performance landscape for

the current NVIDIA GF100 architecture (GTX480). These tuning options enumerate a

configuration space of 1,728 tuning variants per data type, per problem size. We evaluate

these specializations for a pair of “large” and “small” representative workloads: 128MB

and 128KB. Furthermore, we explore the configuration space for 1-byte, 2-byte, 4-byte,

and 8-byte data types for each problem size. We normalize the throughputs of each

tuning configuration against the maximum observed for its problem size and plot the

resulting slowdown histograms.

(a) Large problem size = 128MB, max throughput = 164 GB/s

(b) Small problem size = 128 KB, max throughput = 65 GB/s

Fig. 22. “Copy” kernel performance histograms of tuning configurations binned by normalized slowdown with respect

to the maximum throughput achieved (NVIDIA GTX 480).

0

100

200

300

400

500

600

700

800

900

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 o

f
tu

n
in

g
 c

o
n

fi
g

s

Percentage of maximum

8B elements

4B elements

2B elements

1B elements

0

100

200

300

400

500

600

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 o

f
 t

u
n

in
g

 c
o

n
fi

g
s

Percentage of maximum

8B elements

4B elements

2B elements

1B elements

62

The large problem size (Fig. 22a) is representative of datasets large enough to

saturate the memory subsystem. In general, the GTX480 is somewhat forgiving at this

problem size, i.e., it is skewed to the right. On average, 25% of all configurations

achieve more than 90% of the maximum achievable throughput (164 GB/s). However,

we observe that it is relatively much more difficult to achieve this performance when

copying 1-byte characters. Only 2% of configurations achieve more than 90% of

maximum on 1B problem instances.

The performance for the small problem size (Fig. 22b) is much more diverse.

Only 6% of all specializations fall within 90% of the maximum throughput (65 GB/s).

For the various problems discussed throughout this dissertation, we generally observe

that it is comparatively harder to find tuning configurations that are well-suited to small,

fleeting workloads.

We also observed the configurations corresponding to the straightforward

implementation specified in Listing 1 were not particularly competitive. For the large

128MB problems instances, the best 4-byte, 1-load, vector-1 configurations perform at

less than 90% of the maximum achievable bandwidth. For the small 128KB instances,

these configurations only achieve 65% of maximum. It is not obvious to the programmer

that this “concrete” implementation would perform so poorly.

Table 2. Max achievable DRAM bandwidth (10
9
 Bytes/s)

 GTX480 GTX280 9800 GTX+

Unidirectional (even-share) 163.4 135.6 67.8

Unidirectional (steal) 168.6 63.6 42.6

Bidirectional (even-share) 153.6 125.4 61.7

Bidirectional (steal) 163.7 85.3 55.5

63

Finally, we use this tunable kernel to determine the maximum-achievable DRAM

bandwidths for each of our three of our evaluation GPUs (GTX480, GTX280, and 9800

GTX+). We use these throughputs, listed in Table 2, to evaluate memory-bound

implementations throughout this dissertation.

3.4.2 Analysis of performance landscape across GPU architecture

In this section, we explore the cumulative tuning landscape for several data-parallel and

cooperative problems across the last three generations of NVIDIA GPU architecture.

Our results show:

• Large performance spread across reasonable specializations

• Specializations themselves have large performance variance across different

GPUs, problem types, and problem sizes

• No single specialization for a given problem performs exceedingly well across all

data types, problem sizes, and architectures

Table 3. Corpus of tuning benchmarks

Benchmark Description Kernel tuning dimensions
Tuning configs per

problem instance

Total

sample

evaluations

Global copy One kernel. Copy kernel: a, b, c, d, e 1,728 124,416

Global

reduction

Two kernels (“upsweep” and “spine”).

Each CTA within the “upsweep”

computes a partial reduction of its

portion. A single-CTA “spine” kernel

further reduces these partials.

Upsweep kernel:

Spine kernel:

a, b, c, d

a, b, c

8,748 104,976

Global prefix

sum

Three kernels (“upsweep”, “spine”,

and “downsweep”). See Chapter 4.

Upsweep kernel:

Spine kernel:

Downsweep kernel:

a, b, c

a, b, c

a, b, c

157,464 11,337,408

Reduce-by-key Three kernels (“upsweep”, “spine”,

and “downsweep”). See Chapter 4.

Upsweep kernel:

Spine kernel:

Downsweep Kernel:

a, b, c

a, b, c

a, b, c

157,464 11,337,408

64

Our evaluation is comprised of the following four benchmark problems: global copy,

global reduction, global prefix sum, and global reduce-by-key8. Table 3 lists the kernels

that comprise each benchmark and the dimensions along which we can tune each kernel.

For example, the reduce-by-key benchmark has three kernels, each of which can tuned by

loads-per-thread, items-per-load, and number-of-threads-per-CTA (a, b, and c from the

previous section). With three kernels and 54 tuning specializations per kernel, the

benchmark has an overall tuning domain of 157,464 tuning configurations.

Our investigation evaluates how different tuning policies respond to different

problem instances (where a problem instance is a specific combination of data type,

problem size, and GPU architecture). We evaluate the performance of each tuning

configuration across a sample space of 72 problem instances constructed from

combinations of the following:

• Four data types (1-byte, 2-byte, 4-byte, and 8-byte elements)

• Six problem sizes (128 KB, 512 KB, 2MB, 8MB, 32MB, and 128 MB)

• Three GPU architectures (NVIDIA GF100, GT200, G92 represented by GTX480,

GTX280, and 9800 GTX+ GPUs)

We are interested in gauging how performance varies between configurations as well as

within configurations. These two properties intuitively correspond to configuration

“strength” and “consistency”, respectively.

We normalize our performance samples to the interval [0,1] so that we may

generalize behavior across problem instances. For every problem instance, we identify

the tuning configuration that provides the best sample performance. (For example,

8 Reduce-by-key is the third phase of the map-reduce paradigm (after mapping and sorting) [38]. Given a list of key-

value pairs, it is analogous to a segmented reduction over the values where the segments are defined by regions of

consecutive, identical keys.

65

reducing 128 MB of 4-byte integers on GT200 maximally proceeds at 169 GB/s.) We

then normalize the performance samples of all configurations for that problem instance in

terms of relative slowdown against this “best” performance.

We use the statistical metrics between-group variance (s
2

B) and within-group

variance (s
2
W) for analyzing the diversities of configuration strength and consistency,

respectively [41]. The between-group variance is a measure of the variability of

configuration means around the grand mean. The within-group variance is a weighted

average of configuration variance, with weights determined by the number of problem

instance samples in each configuration. 9

Table 4 and Table 5 present the between-group and within-group variances,

respectively. The large ratios of s
2

B/s
2

W indicate that the broad majority of overall

variation between pairings of configurations and problem instances is due to differences

between configurations, i.e., certain configurations are innately better or worse than

others. The performance-slowdown histograms in Fig. 23 graphically illustrate the ample

performance variation amongst tuning configurations by binning configurations by their

average slowdown.

Furthermore, Table 4 also reveals that some architectures are relatively more

pliant than others. For example, the variances among tuning configurations are much

9 These metrics are used when performing statistical analysis of variance (ANOVA) to determine whether a set of

groups are significantly dissimilar.

Table 4. Between-configs slowdown variance (s
2

B)

 GTX480 GTX280 9800

GTX+

All

GPUs

Copy 0.52 0.08 0.48 0.40

Reduction 0.74 0.15 0.31 0.41

Scan 0.58 0.42 0.31 0.83

Reduce-by-key 0.53 0.38 0.25 0.91

Table 5. Within-configs slowdown variance (s
2

W)

 GTX480 GTX280 9800

GTX+

All

GPUs

Copy 0.03 0.04 0.14 0.07

Reduction 0.03 0.04 0.11 0.06

Scan 0.03 0.02 0.09 0.06

Reduce-by-key 0.01 0.01 0.03 0.02

66

lower for problem instances on the GTX280 than for the newer GTX480, particularly for

the reduction benchmark.

Despite being dwarfed by between-groups variance, the within-groups variance

s
2

W is also fairly significant. For example, the within-groups deviation sW for prefix sum

across all GPUs is √0.6 = 24%. This implies that performance is also strongly related to

problem instance, and that it will be relatively difficult to find tuning configurations that

are universally better than others.

The histograms in Fig. 23 corroborate the absence of tuning configurations that

perform well across the entire sample space of problem instances. “Well-rounded”

(a) Global copy

(b) Global reduction

(a) Global prefix sum

(b) Global reduce-by-key

Fig. 23. Performance histograms of tuning configuration “strength”. Configurations are binned by the harmonic mean

of their normalized slowdown across all problem instances.

0

1

2

3

4

5

6

7

8

9

10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 o

f
tu

n
in

g
 c

o
n

fi
g

s

C
u

m
u

la
ti

v
e

 %

Average slowdown

0

50

100

150

200

250

300

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 o

f
tu

n
in

g
 c

o
n

fi
g

s

C
u

m
u

la
ti

v
e

 %

Average slowdown

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 o

f
tu

n
in

g
 c

o
n

fi
g

s

C
u

m
u

la
ti

v
e

 %

Average slowdown

0

500

1000

1500

2000

2500

3000

3500

4000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
re

q
u

e
n

cy
 o

f
tu

n
in

g
 c

o
n

fi
g

s

C
u

m
u

la
ti

v
e

 %

Average slowdown

67

tuning configurations do not exist. For example, no single configuration for copy

averages more than 75% of the maximum-achievable performance across problem

instances. For reduction, prefix-sum, and reduce-by-key, the best all-purpose

configurations only average 73%, 73%, and 83% of what we can maximally achieve.

3.4.3 Effectiveness of auto-tuning

In this section, we evaluate how successful our tuning exploration is at identifying good

code specializations.

For large saturating problem sizes, we would like our memory-bound problems to

proceed at the maximum-achievable DRAM bandwidth for each device. Because of the

heavily overlapped nature of the GPU, we would expect that all memory-bound

specializations would yield equal performance.

However, Table 6 reveals this not to be the case. It presents the average

bandwidth utilization of tuning configurations paired with 128MB problem instances,

normalized to the DRAM bandwidth presented in Table 2. The implementations that

should be bandwidth-bound at this problem size (namely copy, reduction, and prefix sum)

are nowhere near maximum bandwidth utilization.

Our autotuning search is quite effective at finding configurations that perform at

peak or near-peak bandwidth. Selecting among only the best-performing configurations

Table 6. Average bandwidth utilization of all

128MB tuning configurations

 GTX480 GTX280 9800 GTX+

Copy 0.72 0.43 0.45

Reduction 0.61 0.32 0.35

Scan 0.59 0.46 0.47

Reduce-by-key 0.31 0.16 0.16

Table 7. Average bandwidth utilization of best

128MB tuning configurations

 GTX480 GTX280 9800 GTX+

Copy 1.00 0.99 0.99

Reduction 0.96 0.88 0.95

Scan 0.97 0.97 0.94

Reduce-by-key 0.67 0.38 0.33

68

for each of the 128MB problem instances, Table 7 shows that we can identify policy

configurations that perform exceptionally well for each data type (1B – 8B). Even for

our compute-bound problem (reduce-by-key), our best-performing configurations are

more than twice as fast.

We further illustrate the need for specialization by comparing our tuned global

reduction kernels against those provided by the Thrust library of GPU primitives [113].

Up until this point, we have only compared our best specializations with our own average

specializations. This raises the question of whether our average specializations are

representative of concrete implementations “in the wild.” Of the Thrust library of

parallel primitives, only the global reduction implementation shares the same overall

parallelization strategy10.

Fig. 24 illustrates our autotuned reduction performance advantage over the Thrust

implementation for both saturating 128MB and fleeting 128KB problem instances. For

large, GF100-based problems instances, the Thrust performances align with our average

configuration performance. In relation, our tuned specializations achieve a harmonic

10 Their implementations of scan, reduce-by-key, duplicate-removal, etc., all impose significantly larger memory

workloads than our parallelizations. For data-parallel copy, they defer to the CUDA cudaMemCopy() API.

(a) 128 MB problem instances (b) 128 KB problem instances

Fig. 24. Global reduction performance comparison between our autotuned and the “concrete” Thrust implementations.

1.7x
1.8x

1.7x
1.2x

1.3x

1.3x
1.1x

1.02x

1.05x

1.01x

1.01x
1.3x

GTX 480 GTX 280 9800 GTX+

0

20

40

60

80

100

120

140

160

180

1B 2B 4B 8B 1B 2B 4B 8B 1B 2B 4B 8B

M
e

m
 t

h
ro

u
g

h
p

u
t

(1
0

9
b

y
te

s
/s

)

Thrust

6.0x
3.3x

1.9x
1.5x

7.4x

4.7x
1.7x

1.7x

39.1x

26.0x
2.1x

2.0x

GTX 480 GTX 280 9800 GTX+

0

20

40

60

80

100

120

140

160

180

1B 2B 4B 8B 1B 2B 4B 8B 1B 2B 4B 8B

M
e

m
 t

h
ro

u
g

h
p

u
t

(1
0

9
b

y
te

s
/s

)

Thrust

Autotuned

69

mean speedup of 1.6x. Their large-problem performance is relatively much better for the

older GT200 and G92 architectures. We only achieve 1.14x and 1.08x speedups for

those GPUs, respectively.

Fig. 24b illustrates the importance of autotuning for small problem sizes. For this

subset of problem instances, the Thrust performance is representative of our grand-mean

configuration slowdown of 0.6 across all reduction problems. In relation, our tuned

specializations achieve harmonic mean speedups of 2.4x, 2.6x, and 3.9x for the GF100,

GT200, and G92 architectures, respectively.

3.5 CHAPTER SUMMARY

We believe the days of writing concrete device code for the GPU are numbered. If

mainstream software developers are to embrace the GPU computing paradigm, the

paradigm itself must embrace performance-portability. At this juncture, many

programmers appear willing to port their applications to the bulk-synchronous, data-

parallel programming model. However, they will certainly balk at having to reconstruct

their implementations in order achieve good utilization and efficiency when they wish to

adapt them to different problem types and/or new processor architectures.

This reflects our own experience while constructing reusable library primitives.

This chapter described the two related design idioms that we have developed in order to

achieve good performance-portability across a diversity of problem types and target

architectures: flexible granularity coarsening and tuning via the type system.

Flexible granularity coarsening. Many parallel programming paradigms

encourage programmers to express every last bit of concurrency inherent within their

problem in hope that the compiler and/or runtime will efficiently schedule it onto the

70

underlying hardware. Our profiling revealed that doing so often leads to substantial

inefficiencies from redundant operations and unnecessary rounds of communication.

This is particularly true for cooperative problems where the programmer dictates explicit

communications patterns, making it difficult or impossible for the compiler to restructure

such data flow in more efficient ways.

As an alternative, we demonstrated the utility of an idiom where programmers

express serial and cooperative phases of the algorithm, and rules for how these phases

should be coupled by the compiler. Our goal is for the concurrency expressed by the

compiled implementation to scale with the width of the target architecture, not problem

size.

Tuning via the type system. When authoring GPU programs, there are many

decisions that must be made in order to construct a concrete program, yet have

performance consequences that are opaque to the programmer. Achieving performance-

portability implies leaving these details unbound in the program text.

Among such decisions is the sliding scale of granularity coarsening described

above, which influences the layout of shared memory spaces that cooperating threads

communicate through. As such, the tuning process necessarily involves the programming

language’s type system. As a mechanism for expressing rules for compiler to construct

valid programs, the type system is both suitable and convenient for guiding the

compilation of specialized implementation variants.

In the course of our investigation, we validated two important arguments that

underscore the usefulness of our policy-based tuning idioms:

71

1) Inflexible, concrete implementations are often incapable of delivering good

performance across the domain of problem instances they might be expected to

address. It is particularly hard to simultaneously achieve good performance from a

single implementation on both large, saturating workloads and small, fleeting

workloads.

2) By expressing only the general “shape” of the solution in our program text, our

autotuning approach consistently discovers good program specializations for the

specific problem instance at hand.

Despite the added complexity of having to reason about both the execution of the

program and the execution of the compiler, we feel that long-term benefits of

performance-portability will be worth the effort.

72

Chapter 4

Parallel Prefix Scan

4.1 INTRODUCTION

Software developers rely on algorithmic primitives as basic building blocks for solving

more complex problems. A particularly useful primitive for list processing applications

on parallel machines is prefix scan (also known prefix reduction or simply as scan).

Given a list of input elements and a reduction operator, scan produces an output list

where each element is computed to be the reduction of the elements occurring earlier in

the input list. Implementations of parallel scan support a wide variety of problem

domains, e.g., sorting, stream compaction, construction of trees, cooperative queue

management, solving recurrence relations, etc. [16, 17, 61]

A salient characteristic of scan parallelizations is that the computational

granularity of concurrent tasks is miniscule, often comprising only a single binary

instruction (e.g., addition). This aspect of scan makes it particularly amenable to fine

grained computational environments, e.g., directly within electronic circuitry as well as

within software for wide parallel architectures such as vector and GPU processors.

73

The primary performance consequence of such small computational granularity is

that global memory bandwidth should be the limiting hardware resource. However, we

find this is not true of current GPU implementations of parallel scan: they either make

inefficient use of device memory accesses, exhibit high dynamic instruction counts, or

both [15, 35, 42].

We argue that common data-parallel programming patterns and design idioms are

responsible. The GPU programming model fundamentally encourages programmers to

decompose problems in ways that map unique threads onto individual data elements, i.e.,

the numbers of threads and their corresponding grouping constructs scale with problem

size.

However, prefix scan is not a data-parallel problem. It is a cooperative one. Its

efficient computation requires intermediate computations to be shared amongst parallel

processing elements. As a result, approaches incorporating a data-parallel style of thread

assignment impose unnecessary memory traffic in proportion to problem size. To

efficiently implement prefix scan on GPU architecture, we must increase the amount of

serial work (granularity coarsening) in order for communication overheads to scale with

processor width, not problem size.

Furthermore, simply improving scan efficiency to the point where it is bandwidth-

bound does not go far enough. In isolation, any bandwidth-bound parallelization is just

as fast as the next. However, further reducing the dynamic instruction count provides

room for other computations to be performed under the covers of memory latency as

well. The more efficient the scan implementation, the more application-specific

computation we can fuse into it without incurring additional performance overhead.

74

Throughout this dissertation, we advocate a design idiom of kernel-fusion where

we construct variants of global prefix scan, embedding within them problem-specific

logic that will realize behavior for sorting, duplicate removal, graph traversal, etc. This is

an inversion of the usual pattern for program composition where application logic would

call down into prefix sum as a subroutine.

Our work as described in this chapter makes contributions in the following areas:

Local parallelization strategies. We investigate two variants of intra-CTA prefix

scan having different degrees of granularity coarsening. One prioritizes low-latency for

small, fleeting problems and the other high-efficiency for large, saturating problems.

Their computational overheads are up to 1.8x lower than prior work, making them

bandwidth-bound and thus suitable for kernel fusion.

Global parallelization strategies. Our global scan implementations employ a

two-level reduce-then-scan CTA decomposition that imposes 25% less global memory

traffic and only requires a constant amount global storage for intermediate results. We

demonstrate 1.7x and 3.8x speedups for global scan and segmented-scan, respectively.

Parallel primitives. To demonstrate the utility of kernel fusion with efficient

prefix sum, we have constructed BackForty [6], an open-source C++ library of

fundamental list-processing transformations for the NVIDIA CUDA parallel computing

framework [34]. We provide high performance implementations of scan, segmented

scan, duplicate removal, histogram, and reduce-by-key that achieve several factors of

speedup over prior work [35, 113] across many diverse problem sizes and data types.

75

4.2 BACKGROUND

4.2.1 Prefix scan

Prefix scan is a higher-order function that consumes an n-element input list (x0, …, xn-1)

and a binary associative combing operator ⊕. It produces an output list (y0, …, yn-1)

where

yi = ⊕ xa when 0 < i < n

 0 ≤ a < i

 = id⊕ when i = 0

Multiple variations of scan exist, all having a prefix-dependency characteristic where the

i
th

 output element is a function of the previous input elements. The version described

above, exclusive scan, does not incorporate the i
th

 input element within the i
th

 output

reduction. As such, exclusive scans rely upon the existence of an identity element id⊕

having the property that xa ⊕ id⊕ = xa. For example, id+=0 for addition, id*=1 for

multiplication, etc.

Inclusive scan is similar with the exception yi = ⊕(x0, …, xi). Reverse scan (also

known as backward scan) processes the input elements with a “postfix dependency”, i.e.,

yi = ⊕(xi+1, …, xn-1). Segmented scan is a composition of scan instances: the input is a

sequence of list segments, typically delineated by marker flags, each of which is to be

[8, 6, 7, 5, 3, 0, 9]

(a) Input

[0, 8, 14, 21, 26, 29, 29]

(b) Exclusive prefix sum

[8, 14, 21, 26, 29, 29, 38]

(c) Exclusive prefix sum

[0, 8, 14, 0, 5, 0, 0]

(d) Segmented exclusive prefix sum for

segment flags [1, 0, 0, 1, 0, 1, 0]

Fig. 25. Examples of prefix sum variants.

76

scanned separately. Prefix sum connotes a prefix scan using addition as the binary

combining operator.

The long history of prefix sum is rooted in circuit design for parallel adders and

counting networks. Scan circuits are fundamental to the operation of fast adder hardware

[20, 105]. Software-based scan was popularized more than two decades ago as an

algorithmic building block for vector and array processor architectures [16, 17, 26].

Scan parallelizations. As per the boolean circuit model of parallel computation

[19, 117], scan parallelizations are evaluated by their size and depth complexities. The

size complexity of a circuit family (as a function of the input size n) is a measure of the

total number of operations performed. When consuming large, saturating inputs on the

GPU (p << n), overall runtime will be dictated by size complexity (also known as work

complexity).

The depth complexity is a measure of the length of the longest path from an input

value to an output, and is a performance indicator for how long the computation will take

given an unlimited number of parallel processing elements p. For small, fleeting

problems (p > n), runtime will be dictated by depth complexity.

Prefix scan can be thought of as a composition of n binary reductions. Although

these reductions could be performed separately, it is much more efficient to compose

them together in such a manner such that they share as many intermediate computations

as possible, reducing the overall size of the scan circuit.

The design space for parallel prefix circuits, i.e., all possible superpositions of the

parallel reduction trees, is quite large. Fig. 26 illustrates four common constructions for

prefix sum: sequential, Brent-Kung [20], Sklansky [105], and Kogge-Stone [74]. Like

many prefix scan constructions, they are recursive in nature and thus easily adaptable to

level

sequential implementation

the following

d+

lower bound of 2

depth

Fig.

binary reduction operations, and lines indic

many prefix scan constructions, they are recursive in nature and thus easily adaptable to

level-synchronous architectures such as the GPU.

Prefix

sequential implementation

the following

d+s ≥ 2n-2 [106]

lower bound of 2

depth-size optimal

(a) Sequential

(15

(c) Sklansky

(4

Fig. 26. Alternative constructions for 16

binary reduction operations, and lines indic

many prefix scan constructions, they are recursive in nature and thus easily adaptable to

synchronous architectures such as the GPU.

Prefix scan has O

sequential implementation

the following size-depth tradeoff: for a given network of size

[106]. The amount by which a given prefix network misses the depth

lower bound of 2n-2 is called its

size optimal (DSO). It is easy to see that the sequential prefix network is DSO.

Sequential: O(n) depth,

(15 levels, 15 operators)

Sklansky: O(log2n) depth,

(4 levels, 32 operators)

Alternative constructions for 16

binary reduction operations, and lines indic

many prefix scan constructions, they are recursive in nature and thus easily adaptable to

synchronous architectures such as the GPU.

O(n) work-complexity: all

sequential implementation imposes only

depth tradeoff: for a given network of size

. The amount by which a given prefix network misses the depth

is called its deficiency

(DSO). It is easy to see that the sequential prefix network is DSO.

) depth, O(n) size

, 15 operators)

depth, O(nlog2n) size

, 32 operators)

Alternative constructions for 16-element prefix sum

binary reduction operations, and lines indicate dataflow dependences.

many prefix scan constructions, they are recursive in nature and thus easily adaptable to

synchronous architectures such as the GPU.

complexity: all

ses only linear-work

depth tradeoff: for a given network of size

. The amount by which a given prefix network misses the depth

deficiency. A network with zero deficiency is called

(DSO). It is easy to see that the sequential prefix network is DSO.

element prefix sum. Computation proceeds from top to bottom, pads connote

ate dataflow dependences.

many prefix scan constructions, they are recursive in nature and thus easily adaptable to

synchronous architectures such as the GPU.

complexity: all n input element

work. Prefix networks are also subject to

depth tradeoff: for a given network of size

. The amount by which a given prefix network misses the depth

A network with zero deficiency is called

(DSO). It is easy to see that the sequential prefix network is DSO.

(b) Brent-Kung

(7 levels, 26 operators)

(d) Kogge-Stone

(4 levels, 59 operators)

. Computation proceeds from top to bottom, pads connote

ate dataflow dependences.

many prefix scan constructions, they are recursive in nature and thus easily adaptable to

input elements must

Prefix networks are also subject to

depth tradeoff: for a given network of size s gates and depth

. The amount by which a given prefix network misses the depth

A network with zero deficiency is called

(DSO). It is easy to see that the sequential prefix network is DSO.

-Kung: O(log2n) depth,

(7 levels, 26 operators)

Stone: O(log2n) depth,

(4 levels, 59 operators)

. Computation proceeds from top to bottom, pads connote

many prefix scan constructions, they are recursive in nature and thus easily adaptable to

must be read and the

Prefix networks are also subject to

gates and depth d levels,

. The amount by which a given prefix network misses the depth

A network with zero deficiency is called

(DSO). It is easy to see that the sequential prefix network is DSO.

) depth, O(n) size

(7 levels, 26 operators)

depth, O(nlog2n) size

(4 levels, 59 operators)

. Computation proceeds from top to bottom, pads connote

77

many prefix scan constructions, they are recursive in nature and thus easily adaptable to

and the

Prefix networks are also subject to

levels,

. The amount by which a given prefix network misses the depth-size

A network with zero deficiency is called

(DSO). It is easy to see that the sequential prefix network is DSO.

size

. Computation proceeds from top to bottom, pads connote

78

However, work-efficient DSO prefix networks become progressively difficult to find (or

disappear altogether) as the as the depth-constraint is made smaller.

This tradeoff between work-efficiency and low-latency has important

consequences for GPU prefix scan. Reducing the logical depth of local prefix

constructions at the expense of additional operators often worsens overall performance.

GPU processor cores are intended to be over-saturated with logical threads, causing

performance to be rate-limited by overall work. Thus smaller, deeper prefix

constructions are often preferable to larger constructions having shallower “logical”

depths. Our most efficient scan implementations incorporate long, deep phases of

sequential work (Fig. 26a), whereas prior work is constructed from work-inefficient

Kogge-Stone subroutines (Fig. 26d) [80, 102].

4.3 GLOBAL CTA DECOMPOSITION

A one-to-one mapping between levels of prefix scan dataflow and bulk-synchronous

GPU kernels would be impractical. Storing every intermediate result back to global

memory would be prohibitively expensive, particularly for constructions having sub-

optimal work-complexity.

Instead, the thread grouping hierarchy allows us to take advantage of the recursive

nature of many scan constructions. Consecutive kernels can be used to recursively

process fixed-size tiles of work locally within shared memory, ultimately communicating

a much smaller subset of intermediate values through global memory between kernel

invocations.

Prior GPU scan implementations have used fully-recursive approaches for

decomposing work into fixed-size tiles among CTAs. In this section, we review two such

variants (which

present our own variation

traffic and provides better o

4.3.1

The data flow within the Brent

existing in a balanced binary

leaves are supplied with the input elements and the interior nodes

accumulate partial reductions upwards towards

accumulated partial reductions are

the right child also accumulating the partial from the left

blocks of operators can be replaced with “tiles” of localized

and

101, 102]

tile.

reads

Fig.

processes

variants (which

present our own variation

traffic and provides better o

4.3.1 Scan-then

The data flow within the Brent

existing in a balanced binary

leaves are supplied with the input elements and the interior nodes

accumulate partial reductions upwards towards

accumulated partial reductions are

the right child also accumulating the partial from the left

This scan

blocks of operators can be replaced with “tiles” of localized

and b-way downsweep

101, 102] and Thrus

tile.

Fig. 27

reads b inputs and writes

Fig. 27. Example o

processes b=4 values.

variants (which we term them

present our own variation

traffic and provides better o

then-propagate

The data flow within the Brent

existing in a balanced binary

leaves are supplied with the input elements and the interior nodes

accumulate partial reductions upwards towards

accumulated partial reductions are

the right child also accumulating the partial from the left

scan-then-propagate

blocks of operators can be replaced with “tiles” of localized

downsweep distributions

and Thrust [113]

27 illustrates

inputs and writes

Example operation of a fully

=4 values.

we term them scan

present our own variation (two-level reduce

traffic and provides better overall processor utilization

propagate

The data flow within the Brent-Kung construction (

existing in a balanced binary-tree communication network. In the

leaves are supplied with the input elements and the interior nodes

accumulate partial reductions upwards towards

accumulated partial reductions are then propagat

the right child also accumulating the partial from the left

propagate approach is generalizable to

blocks of operators can be replaced with “tiles” of localized

distributions.

[113] employ this approach, typically with

illustrates this operation

inputs and writes b scan results back to global memory. The downsw

fully-recursive scan

scan-then-propagate

level reduce-then

verall processor utilization

Kung construction (

tree communication network. In the

leaves are supplied with the input elements and the interior nodes

accumulate partial reductions upwards towards

then propagat

the right child also accumulating the partial from the left

approach is generalizable to

blocks of operators can be replaced with “tiles” of localized

. The scan implementations by Sengupta et al.

employ this approach, typically with

operation with b=4 elements per tile

results back to global memory. The downsw

scan-then-propagate

propagate and

then-scan) which

verall processor utilization.

Kung construction (Fig.

tree communication network. In the

leaves are supplied with the input elements and the interior nodes

accumulate partial reductions upwards towards the root. In the

then propagated back downwards from the root, with

the right child also accumulating the partial from the left.

approach is generalizable to

blocks of operators can be replaced with “tiles” of localized

The scan implementations by Sengupta et al.

employ this approach, typically with

=4 elements per tile

results back to global memory. The downsw

propagate CTA decomposition

and reduce-then

which requires less memory

Fig. 26b) can be thought of as

tree communication network. In the upsweep phase

leaves are supplied with the input elements and the interior nodes

root. In the downsweep phase

ed back downwards from the root, with

approach is generalizable to arbitrary bases

blocks of operators can be replaced with “tiles” of localized b-element

The scan implementations by Sengupta et al.

employ this approach, typically with b=1024 elements per

=4 elements per tile. Each upsweep tile

results back to global memory. The downsw

CTA decomposition in which each

then-scan) and then

requires less memory

b) can be thought of as

upsweep phase

leaves are supplied with the input elements and the interior nodes progressively

downsweep phase

ed back downwards from the root, with

arbitrary bases. Recursive

ement upsweep scans

The scan implementations by Sengupta et al.

=1024 elements per

Each upsweep tile

results back to global memory. The downsw

in which each CTA

79

and then

requires less memory

b) can be thought of as

upsweep phase, the

progressively

downsweep phase, the

ed back downwards from the root, with

cursive

scans

The scan implementations by Sengupta et al. [80,

=1024 elements per

Each upsweep tile

results back to global memory. The downsweep

80

propagation phase unwinds the recursion. Each “fix-up” tile reloads the b intermediate

results from the corresponding upsweep scan tile, aggregates its incoming value from the

preceding level into each, and writes the updated b values back out to global memory.

Both upsweep and downsweep phases comprise complete b-ary trees having logbn

kernel launches and (n-1)/(b-1) tiles. Each tile requires 2b memory accesses, resulting in

4b(n-1)/(b-1)-2b overall memory traffic.

4.3.2 Reduce-then-scan

The reduce-then-scan decomposition is similar in that it also entails logbn levels of

kernels, but instead executes reduction kernels during the upsweep phase followed by

scan kernels during the downsweep phase. This technique was first popularized for the

Cray Y-MP by Chatterjee et al. [26] and demonstrated more recently for the GPU by

Dotsenko et al. [42].

Fig. 28 illustrates this operation with b=4 elements per tile. Each reduction tile

reads b inputs, aggregates them, and writes a single intermediate result back to global

device memory. The intermediate values computed during the reduction kernels are not

saved and must be recomputed later. The downsweep phase unwinds the recursion. Each

Fig. 28. Example operation of a fully-recursive reduce-then-scan CTA decomposition in which each CTA processes

b=4 values.

tile

tile

U
p

s
w

e
e

p

re
d

u
c
ti
o

n
D

o
w

n
s
w

e
e

p

s
c
a

n
n

in
g

T
im

e

1

2

3

4

5

tile

tile

upsweep reduction

require 2(

upsweep tile only produces one output (instead of

upsweep. The result is

performing some redundant calculations during the downsweep phase, the reduce

scan strategy moves 25% fewer bytes through global memory than scan

4.3.3

We employ

reduce

tile,

choose

with

scan problem

single CTA.

Fig.

values.

tile performs a scan of the

upsweep reduction

As with scan

require 2(n-1)/(

upsweep tile only produces one output (instead of

upsweep. The result is

performing some redundant calculations during the downsweep phase, the reduce

scan strategy moves 25% fewer bytes through global memory than scan

4.3.3 Two-level reduce

We employ

reduce-then-scan

tile, we simply

choose C large enough to saturate all

Fig. 29

with b=4 elements per tile

scan problem

single CTA.

Fig. 29. Example o

values.

performs a scan of the

upsweep reduction tile, seeded with the partial reduction

As with scan-then

1)/(b-1)-1 tiles

upsweep tile only produces one output (instead of

upsweep. The result is

performing some redundant calculations during the downsweep phase, the reduce

scan strategy moves 25% fewer bytes through global memory than scan

level reduce-then

We employ our CTA-serialization

scan decomposition of

we simply dispatch a fixed number

large enough to saturate all

29 illustrates the operation of a two

=4 elements per tile

scan problem (the “spine”

single CTA. Once completed,

Example operation of a two

performs a scan of the b partial reductions used as inputs to the corresponding

tile, seeded with the partial reduction

then-propagate, an

tiles. This approach has a performance advantage in that

upsweep tile only produces one output (instead of

upsweep. The result is 3b(n-1)/(b

performing some redundant calculations during the downsweep phase, the reduce

scan strategy moves 25% fewer bytes through global memory than scan

then-scan

serialization

decomposition of CTAs

dispatch a fixed number

large enough to saturate all

illustrates the operation of a two

=4 elements per tile. The outer

the “spine”) having C

Once completed, C

two-level reduce

partial reductions used as inputs to the corresponding

tile, seeded with the partial reduction

propagate, an n-element

This approach has a performance advantage in that

upsweep tile only produces one output (instead of

b-1)-b overall memory traffic

performing some redundant calculations during the downsweep phase, the reduce

scan strategy moves 25% fewer bytes through global memory than scan

 idiom (Chapter

CTAs. Instead of allocating

dispatch a fixed number of C CTAs

large enough to saturate all GPU cores.

illustrates the operation of a two

outer-level upsweep reduction

C inputs. The spine is small enough

 downsweep CTAs

reduce-then-scan CTA decomposition

partial reductions used as inputs to the corresponding

tile, seeded with the partial reduction from the preceding level.

element reduce-then

This approach has a performance advantage in that

upsweep tile only produces one output (instead of b), halving

overall memory traffic

performing some redundant calculations during the downsweep phase, the reduce

scan strategy moves 25% fewer bytes through global memory than scan

idiom (Chapter 3.3.1) to implement

. Instead of allocating

CTAs in which threads are “reused”. We

.

illustrates the operation of a two-level reduce

upsweep reduction

inputs. The spine is small enough

downsweep CTAs are dispatched to perform the

CTA decomposition

partial reductions used as inputs to the corresponding

from the preceding level.

then-scan scan prob

This approach has a performance advantage in that

), halving the memory traffic for the

overall memory traffic. At the

performing some redundant calculations during the downsweep phase, the reduce

scan strategy moves 25% fewer bytes through global memory than scan-then

) to implement

. Instead of allocating a unique CTA for every

in which threads are “reused”. We

level reduce-then-scan implementation

upsweep reduction produces

inputs. The spine is small enough

are dispatched to perform the

CTA decomposition in which each CTA processes

partial reductions used as inputs to the corresponding

from the preceding level.

scan problem will

This approach has a performance advantage in that

memory traffic for the

. At the expense of

performing some redundant calculations during the downsweep phase, the reduce-

then-propagate

) to implement a two-

a unique CTA for every

in which threads are “reused”. We

scan implementation

produces an inner-

inputs. The spine is small enough to scan using a

are dispatched to perform the

CTA processes b

81

partial reductions used as inputs to the corresponding

lem will

This approach has a performance advantage in that each

memory traffic for the

expense of

-then-

propagate.

-level

a unique CTA for every

in which threads are “reused”. We

scan implementation

-level

to scan using a

are dispatched to perform the

b=4

82

independent outer-level scan tiles, seeded with the appropriate aggregate from the spine.

When reducing or scanning sequential tiles, each CTA simply curries the aggregate

partial reduction from one tile to the next within registers.

The result is that an entire n-element computation requires only 3n+3C global

memory accesses. In comparison with the fully-recursive approaches, the advantages of

our two-level strategy are threefold:

i. Asymptotically fewer kernel launches: three versus versus O(logbn). Most

importantly, the undersubscribed interior is completed as quickly as possible.

ii. Asymptotically fewer global memory accesses for intermediate values: 3C

versus O(n).

iii. A constant amount of temporary storage (versus O(n) intermediate storage).

In independent work on parallel compaction, Billeter et al. have proposed similar two-

level CTA decompositions [15].

4.4 LOCAL PREFIX SCAN

As described in the previous section, our global scan comprises two types of CTA-wide

tile-processing routines: local reduction during upsweep and local scan during

downsweep. Chapter 3.3.2 describes our parallelization strategy for reducing upsweep

tiles. In this section, we present and evaluate two variants for scanning downsweep tiles,

each having different degrees of granularity coarsening: reduced-conflict Brent-Kung

(RCBK) and sequential-reduce-then-scan (SRTS).

4.4.1 Reduced-conflict Brent-Kung (RCBK)

Scan isomorphs to the Brent-Kung construction are commonly implemented using the

Blelloch PRAM algorithm presented in Listing 4 [16]. Unfortunately this parallelization

produces

excessive thread serialization.

four shared memory banks. Every memory access performed in time step

way conflicts

way conflicts

padding cells

requires

compensating

conflict

Fig.

on

arrows indicate potential bank conflicts.

produces progressively worse

excessive thread serialization.

four shared memory banks. Every memory access performed in time step

way conflicts

way conflicts

In prior w

padding cells

requires O(n

compensating

conflict-ridden original.

Fig. 30. Example operation of Blelloch exclusive scan

on n=8 elements using four threads. Same

arrows indicate potential bank conflicts.

progressively worse

excessive thread serialization.

four shared memory banks. Every memory access performed in time step

way conflicts in banks m1

way conflicts in m3.

In prior work, Harris et al. addressed

padding cells having geometric progression

n/32) extra

compensating the addressing

ridden original. [80]

Example operation of Blelloch exclusive scan

=8 elements using four threads. Same

arrows indicate potential bank conflicts.

progressively worse bank conflicts in

excessive thread serialization. Fig. 30

four shared memory banks. Every memory access performed in time step

1 and m3, and every access in

Harris et al. addressed

geometric progression

extra padding. However, the additional instruction overhead for

e addressing offsets

[80]

Example operation of Blelloch exclusive scan

=8 elements using four threads. Same-colored data flow

arrows indicate potential bank conflicts.

bank conflicts in

30 illustrates this behavior

four shared memory banks. Every memory access performed in time step

and every access in

Harris et al. addressed this

geometric progression factor 1/32.

However, the additional instruction overhead for

offsets resulted in

Example operation of Blelloch exclusive scan algorithm

colored data flow

bank conflicts in GPU shared memory, leading to

strates this behavior

four shared memory banks. Every memory access performed in time step

and every access in t2 incurs perfectly degenerate four

this problem with the

factor 1/32.

However, the additional instruction overhead for

resulted in overall slowdown compared to the

algorithm

Listing 4. Blelloch PRAM

algorithm

1 for d := 0 to log

2 do

3 for k := 0 to n

4 do

5 // upsweep into parent

6 m[k + 2

7 m[k + 2

8 od

9 od

10

11 m[n – 1] := m[n/2

12 m[n/2 –

13

14 for d := log

15 do

16 for k := 0 t

17 do

18 temp := m[k + 2

19

20 // downsweep into left child

21 m[k + 2

22

23 // downsweep into right child

24 m[k + 2

25 m[k + 2

26 od

27 od

shared memory, leading to

strates this behavior for wSIMD

four shared memory banks. Every memory access performed in time step

incurs perfectly degenerate four

with the insertion of

factor 1/32. In the limit, this approach

However, the additional instruction overhead for

overall slowdown compared to the

Blelloch PRAM

:= 0 to log2n

for k := 0 to n–1 by 2

// upsweep into parent

m[k + 2
d+1
 - 1] :=

m[k + 2
d+1
 - 1] + m[k + 2

1] := m[n/2 –

– 1] := id;

for d := log2n – 2 downto 0

for k := 0 to n–1 by 2

temp := m[k + 2
d

// downsweep into left child

m[k + 2
d
 - 1] := m[k + 2

// downsweep into right child

m[k + 2
d+1
 - 1] := temp +

m[k + 2
d+1
 - 1];

shared memory, leading to

SIMD = 4 threads and

four shared memory banks. Every memory access performed in time step t1 incurs two

incurs perfectly degenerate four

insertion of aperiodic

In the limit, this approach

However, the additional instruction overhead for

overall slowdown compared to the

Blelloch PRAM exclusive scan

n – 2

1 by 2
d+1
 in parallel

// upsweep into parent

1] :=

1] + m[k + 2
d
 -

 1];

2 downto 0

1 by 2
d+1
 in parallel

d
 – 1];

// downsweep into left child

1] := m[k + 2
d+1
 - 1];

// downsweep into right child

1] := temp +

1];

83

shared memory, leading to

4 threads and

incurs two-

incurs perfectly degenerate four-

aperiodic

In the limit, this approach

However, the additional instruction overhead for

overall slowdown compared to the

in parallel

 1];

in parallel

1];

31

operates by reusing the storage of the previous, our approach does not. Instead,

n-

stride between threads

that dynamically compute addressing offsets as a function of thread

unrolled as static constants.

instruction overhead than our SRTS parallelization (presented in the next subsection)

because threads must barrier and conditionally deactivate at each time step. However, it

maintains a much w

for quickly retiring undersubscribed

kernel

Fig.

using four threads. Same

As an alternative, we present a different

31 that only suffers two

operates by reusing the storage of the previous, our approach does not. Instead,

-2 extra memory cells for the storage of

stride between threads

that dynamically compute addressing offsets as a function of thread

unrolled as static constants.

This RCBK

instruction overhead than our SRTS parallelization (presented in the next subsection)

because threads must barrier and conditionally deactivate at each time step. However, it

maintains a much w

for quickly retiring undersubscribed

kernel in Fig.

Fig. 31. Example operation of

using four threads. Same

As an alternative, we present a different

that only suffers two-way bank conflicts. Whereas e

operates by reusing the storage of the previous, our approach does not. Instead,

2 extra memory cells for the storage of

stride between threads for

that dynamically compute addressing offsets as a function of thread

unrolled as static constants.

This RCBK paralleliz

instruction overhead than our SRTS parallelization (presented in the next subsection)

because threads must barrier and conditionally deactivate at each time step. However, it

maintains a much wider average degree of parallelism than SRTS, making it preferable

for quickly retiring undersubscribed

Fig. 29.

Example operation of our

using four threads. Same-colored data flow arrows indicate

As an alternative, we present a different

way bank conflicts. Whereas e

operates by reusing the storage of the previous, our approach does not. Instead,

2 extra memory cells for the storage of

for all memory access

that dynamically compute addressing offsets as a function of thread

unrolled as static constants.

parallelization is designed for low

instruction overhead than our SRTS parallelization (presented in the next subsection)

because threads must barrier and conditionally deactivate at each time step. However, it

ider average degree of parallelism than SRTS, making it preferable

for quickly retiring undersubscribed, single

our reduced-conflict Brent

colored data flow arrows indicate

As an alternative, we present a different

way bank conflicts. Whereas e

operates by reusing the storage of the previous, our approach does not. Instead,

2 extra memory cells for the storage of partial reductions

memory accesses.

that dynamically compute addressing offsets as a function of thread

ation is designed for low

instruction overhead than our SRTS parallelization (presented in the next subsection)

because threads must barrier and conditionally deactivate at each time step. However, it

ider average degree of parallelism than SRTS, making it preferable

, single-tile

conflict Brent-Kung (RCBK)

colored data flow arrows indicate 2-way

As an alternative, we present a different PRAM isomorph of

way bank conflicts. Whereas each step of the Blelloch algorithm

operates by reusing the storage of the previous, our approach does not. Instead,

partial reductions

. Unlike geometric padding approaches

that dynamically compute addressing offsets as a function of thread

ation is designed for low-latency scans. It carries a higher

instruction overhead than our SRTS parallelization (presented in the next subsection)

because threads must barrier and conditionally deactivate at each time step. However, it

ider average degree of parallelism than SRTS, making it preferable

 scenarios such as the upper

(RCBK) exclusive scan

way bank conflicts.

PRAM isomorph of Brent Kung

ach step of the Blelloch algorithm

operates by reusing the storage of the previous, our approach does not. Instead,

 and maintain a

Unlike geometric padding approaches

that dynamically compute addressing offsets as a function of thread-rank, ours can be

latency scans. It carries a higher

instruction overhead than our SRTS parallelization (presented in the next subsection)

because threads must barrier and conditionally deactivate at each time step. However, it

ider average degree of parallelism than SRTS, making it preferable

scenarios such as the upper

exclusive scan algorithm on

bank conflicts.

Brent Kung in

ach step of the Blelloch algorithm

operates by reusing the storage of the previous, our approach does not. Instead, we use

maintain a two-element

Unlike geometric padding approaches

rank, ours can be

latency scans. It carries a higher

instruction overhead than our SRTS parallelization (presented in the next subsection)

because threads must barrier and conditionally deactivate at each time step. However, it

ider average degree of parallelism than SRTS, making it preferable

scenarios such as the upper-level spine

algorithm on n=8 elements

84

in Fig.

ach step of the Blelloch algorithm

we use

element

Unlike geometric padding approaches

rank, ours can be

latency scans. It carries a higher

instruction overhead than our SRTS parallelization (presented in the next subsection)

because threads must barrier and conditionally deactivate at each time step. However, it

ider average degree of parallelism than SRTS, making it preferable

level spine

=8 elements

85

4.4.2 Sequential-reduce-then-scan (SRTS)

Fig. 32 illustrates our sequential-reduce-then-scan (SRTS) parallelization for local prefix

scan. This parallelization prioritizes efficiency, employing the thread-serialization

techniques we described for local reduction in Chapter 3.3.2. Similarly, SRTS

incorporates different phases of computation, each designed to either increase the amount

of sequential work within a given storage class (e.g., registers, shared memory, etc.) or

exploit a particular aspect of the abstract machine model (e.g., lock-step thread progress

within the warp):

Fig. 32. Example operation of our conflict-free sequential-reduce-then-scan (SRTS) scan algorithm on n=64 elements

using 16 threads and a warp width wSIMD=4 threads.

barrier

t3

t3

t3

t2

t2

t2

t1

t1

t1

t0

t0

t0

t3

t3

t0 t3t2t1

S
e

q
u

e
n

ti
a

l

re
d

u
ct

io
n

in
 r

e
g

is
te

rs

S
e

q
u

e
n

ti
a

l
re

d
u

ct
io

n

in
 s

h
a

re
d

 m
e

m
o

ry

C
o

o
p

e
ra

ti
ve

,

w
a

rp
-s

yn
ch

ro
n

o
u

s

re
d

u
ct

io
n

t3

t3

t3

t3

t3

t3

id id

id

id

id

id

t3

t3

t3

t2

t2

t2

t1

t1

t1

t0

t0

t0
barrier

S
e

q
u

e
n

ti
a

l
sc

a
n

in
 s

h
a

re
d

 m
e

m
o

ry

S
e

q
u

e
n

ti
a

l

sc
a

n

in
 r

e
g

is
te

rs

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t13t12 t14t11

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t13t12 t14t11

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t13t12 t14t11

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t13t12 t14t11

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t13t12 t14t11

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t13t12 t14t11

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t13t12 t14t11

t15t9t8 t10t5t4 t6 t7t1t0 t2 t3 t13t12 t14t11

86

1) Sequential reduction in registers. The accumulated partial reductions are then

placed in a grid of shared memory.

2) Sequential reduction in shared memory. The parallelism is reduced to a single

warp which performs a sequential raking reduction in each thread. Shared

memory is periodically padded to avoid bank conflicts (Chapter 3, Fig. 21).

3) Cooperative warp-synchronous scan. The single raking warp performs a

synchronization-free scan of the partials reduced in the previous phase. We

describe this “warpscan” procedure in more detail in the next subsection.

4) Sequential scan in shared memory. The raking warp performs a sequential scan

of the original partials placed into the grid, seeded with the exclusive prefixes

computed by the warpscan.

5) Sequential scan in registers. The entire CTA reactivates, each thread performing

a sequential reduction of its inputs, seeded with its exclusive prefix computed by

the raking warp in the shared grid.

Dotsenko et al. have previously demonstrated similar granularity coarsening for local

prefix scan [42]. Whereas we only implement a single shared memory raking phase, their

approach incorporates several (32-wide, 8-wide, and 1-wide stages). The overhead from

extra exchanges between raking grids and unused SIMD lanes prevents their

implementation from being bandwidth-bound.

4.4.3 SIMD Optimizations

The Kogge-Stone construction (Fig. 26b) works by progressively building partial

reductions from consecutive inputs. The strategy is easily implemented in software for

PRAM architectures [61], including GPUs [37, 59]. Unfortunately the construction

suf

typically necessitate double

smaller than or equal to the SIMD width

commonly known as “warpscan

undesired read/write interleavings. No explicit programmatic synchronization is needed.

Furthermore, the addition of shared memory pad

preclude

deactivate

warpscan

constructing hybrid scan strategies. As

parallelizations

suffers from suboptimal work complexity and write

typically necessitate double

However,

smaller than or equal to the SIMD width

commonly known as “warpscan

The lock

undesired read/write interleavings. No explicit programmatic synchronization is needed.

Furthermore, the addition of shared memory pad

preclude control flow divergence by relieving threads from having to conditionally

deactivate during successive

warpscan – the SIMD lanes are occupied rega

Because of its speed and efficiency, warpscan is an attractive building block for

constructing hybrid scan strategies. As

parallelizations

Fig. 33. The

fers from suboptimal work complexity and write

typically necessitate double

However, Kogge-

smaller than or equal to the SIMD width

commonly known as “warpscan

The lock-step progression of threads

undesired read/write interleavings. No explicit programmatic synchronization is needed.

Furthermore, the addition of shared memory pad

control flow divergence by relieving threads from having to conditionally

during successive

the SIMD lanes are occupied rega

Because of its speed and efficiency, warpscan is an attractive building block for

constructing hybrid scan strategies. As

parallelizations incorporate a single warpscan at the “center”

The operation of an unrolled, divergence

fers from suboptimal work complexity and write

typically necessitate double-buffering for safe operation.

-Stone variants can be

smaller than or equal to the SIMD width

commonly known as “warpscan” [80, 101]

step progression of threads

undesired read/write interleavings. No explicit programmatic synchronization is needed.

Furthermore, the addition of shared memory pad

control flow divergence by relieving threads from having to conditionally

during successive time step

the SIMD lanes are occupied rega

Because of its speed and efficiency, warpscan is an attractive building block for

constructing hybrid scan strategies. As

incorporate a single warpscan at the “center”

1. unsigned

2. m[idx

3. m[idx

4. m[idx

operation of an unrolled, divergence

fers from suboptimal work complexity and write

buffering for safe operation.

Stone variants can be

smaller than or equal to the SIMD width. Fig.

[80, 101].

step progression of threads precludes any

undesired read/write interleavings. No explicit programmatic synchronization is needed.

Furthermore, the addition of shared memory pad

control flow divergence by relieving threads from having to conditionally

time steps. (There is no benefit for

the SIMD lanes are occupied regardless.)

Because of its speed and efficiency, warpscan is an attractive building block for

constructing hybrid scan strategies. As an optimization, both RCBK and SRTS

incorporate a single warpscan at the “center”

unsigned int idx =

idx] += m[idx -

idx] += m[idx -

idx] += m[idx -

operation of an unrolled, divergence-free three

fers from suboptimal work complexity and write-after

buffering for safe operation.

Stone variants can be very efficient when the problem size is

Fig. 33 illustrates an intra

precludes any

undesired read/write interleavings. No explicit programmatic synchronization is needed.

Furthermore, the addition of shared memory padding populated by identity values

control flow divergence by relieving threads from having to conditionally

. (There is no benefit for

rdless.)

Because of its speed and efficiency, warpscan is an attractive building block for

an optimization, both RCBK and SRTS

incorporate a single warpscan at the “center”

= threadIdx.x

 1];

 2];

 4];

free three-level SIMD “warpscan”

after-read anti-dependences that

very efficient when the problem size is

illustrates an intra-warp construction

precludes any anti-dependence hazards or

undesired read/write interleavings. No explicit programmatic synchronization is needed.

populated by identity values

control flow divergence by relieving threads from having to conditionally

. (There is no benefit for such deactivation

Because of its speed and efficiency, warpscan is an attractive building block for

an optimization, both RCBK and SRTS

incorporate a single warpscan at the “center” of their computations

 + 4;

“warpscan” for an input size

dependences that

very efficient when the problem size is

warp construction

dependence hazards or

undesired read/write interleavings. No explicit programmatic synchronization is needed.

populated by identity values

control flow divergence by relieving threads from having to conditionally

deactivation during

Because of its speed and efficiency, warpscan is an attractive building block for

an optimization, both RCBK and SRTS

of their computations whe

for an input size n = 8.

87

dependences that

very efficient when the problem size is

warp construction

dependence hazards or

undesired read/write interleavings. No explicit programmatic synchronization is needed.

populated by identity values can

control flow divergence by relieving threads from having to conditionally

during

Because of its speed and efficiency, warpscan is an attractive building block for

an optimization, both RCBK and SRTS

where

= 8.

88

the concurrency drops below the warp size. However, the profligate use of warpscan as a

recursive tiling subroutine would be prohibitively expensive.

4.4.4 Evaluation

We evaluated our RCBK and SRTS scan constructs in the context of 32-bit global prefix

sum alongside the reference CUDPP v1.1 implementation. We used an NVIDIA

GTX285, sampling performance measurements directly from the GPU’s hardware

counters (which do not include driver and staging overheads). We present performance

data for 2,000 problem-instances having problem-size sampled log-normally from the

interval [2
5
, 22

27
].

Overall scan throughput. Fig. 34 plots global throughput as a function of

problem size. This analysis reflects the cumulative elapsed time for all kernel

invocations executed. For large saturating problem sizes (32M+ elements), CUDPP

averages 7.1B elements/sec. Our SRTS and RCKB-based scans both average 11.9B

elements/sec, a speedup of 1.7x.

By construction, the CUDPP implementation is less efficient due to its scan-then-

propagate CTA decomposition. Other performance and utilization concerns aside, our

Fig. 34. Global prefix sum throughput (overall)

Fig. 35. Global computational overhead (overall)

0

2

4

6

8

10

12

0 50 100 150

S
ca

n
 t

h
ro

u
g

h
p

u
t

(1
0

9
e

le
m

e
n

ts
/

se
c)

Problem size (millions)

SRTS

RCKB

CUDPP

0

10

20

30

40

50

60

0 50 100 150

T
h

re
a

d
-i

n
st

ru
ti

o
n

s
/

e
le

m
e

n
t

Problem size (millions)

CUDPP

RCKB

SRTS

89

two-level reduce-then-scan implementations should only be 1.3x faster by virtue of

imposing only ¾ as much memory traffic. The remainder of CUDPP slowdown derives

from processor underutilization from inner kernel launches and excessive computational

overhead.

Overall computational overhead. Fig. 35 plots the number of instructions per

element scanned as a function of problem size. For saturating problem sizes, CUDPP

averages 32.7 thread-instructions/element. Our SRTS and RCKB-based scans average

14.9 and 19.0 thread-instructions/element, respectively. Our SRTS implementation is

1.7x and 1.3x more efficient than CUDPP and RCKB, respectively.

Scan kernel throughput. Drilling down into the tile-scanning kernels, Fig. 36

plots the utilized bandwidth for each as a function of problem size. For saturating

problem sizes, the CUDPP scan kernel averages 112 GB/s, 81% bandwidth utilization.

Our SRTS and RCKB-based scans both average 138 GB/s, matching the peak-achievable

for the GPU (Chapter 2, Table 1).

Scan kernel computational overhead. Fig. 37 confirms the CUDPP scan kernel

to be compute-bound at 19.3 thread-instructions per 32-bit element. It is 8% higher than

Fig. 36. Scan kernel utilized bandwidth

Fig. 37. Scan kernel computational overhead

0

20

40

60

80

100

120

140

160

0 50 100 150

U
ti

li
ze

d
 b

a
n

d
w

id
th

 (
1

0
9

b
y

te
s/

s)

Problem size (millions)

SRTS scan

RCBK scan

CUDPP scan

0

5

10

15

20

25

0 50 100 150

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
/

e
le

m
e

n
t

Problem size (millions)

CUDPP scan

GTX285 memory wall

RCBK scan

SRTS scan

90

the GTX285 memory wall for scan kernels, which is plotted below in yellow at 17.9

thread-instructions/element11. Our SRTS and RCKB-based scans are both bandwidth-

bound, averaging only 15.8 and 10.9 thread-instructions/element, respectively. Our

SRTS kernel is 1.8x more efficient than CUDPP and provides substantial opportunity for

kernel fusion.

Single-CTA tile-processing latency. Low-latency prefix scan parallelizations are

preferable for fleeting workloads incapable of saturating GPU cores. For a single CTA

on an otherwise idle GPU, we used cycle counters to measure the average number of

cycles required to locally scan tiles of 512 elements.

Interestingly enough, the more efficient (yet deeper) SRTS parallelization is also

quicker on the NVIDIA GT200 architecture (GTX280):

• RCBK: 2,441 cycles

• SRTS: 1,472 cycles

However, the opposite is true for the newer GF100 architecture (GTX480):

• RCBK: 1,452 cycles

• SRTS: 1,660 cycles

Because shared memory is relatively “further away” on GF100, more local parallelism is

needed to overlap the additional latency. The disparity in performance response between

the two architectures underscores the importance of having flexible primitives capable of

autotuned algorithm selection.

11 (30 cores * 8 SIMD lanes per core * 1.48GHz clock * 8 bytes of traffic per 32-bit element)/(159GB/s) = 17.9 thread-

instrs/element.

4.5

Prefix scan was originally promoted as a software

pr

share many t

multithreaded scheduling and local scratchpad memories has altered the algorithm design

landscape.

encapsulation is broken and multiple dataflow transformations are encoded within the

same kernel procedure.

three

4.5 KERNEL FUSION

Prefix scan was originally promoted as a software

processor architectures more than two decades ago

share many t

multithreaded scheduling and local scratchpad memories has altered the algorithm design

landscape.

These features enable

encapsulation is broken and multiple dataflow transformations are encoded within the

same kernel procedure.

three key ideas

1) Bandwidth

deep multithreading of the GPU makes it easy to fill these cycles with useful work,

particularly when that work can be done within local scratch memories.

(a) Prefix sum as subroutine (unfused)

KERNEL FUSION

Prefix scan was originally promoted as a software

architectures more than two decades ago

share many traits with these forebears,

multithreaded scheduling and local scratchpad memories has altered the algorithm design

These features enable

encapsulation is broken and multiple dataflow transformations are encoded within the

same kernel procedure.

ideas:

Bandwidth-bound kernels

deep multithreading of the GPU makes it easy to fill these cycles with useful work,

particularly when that work can be done within local scratch memories.

(a) Prefix sum as subroutine (unfused)

Fig.

Prefix scan was originally promoted as a software

architectures more than two decades ago

raits with these forebears,

multithreaded scheduling and local scratchpad memories has altered the algorithm design

These features enable kernel fusion

encapsulation is broken and multiple dataflow transformations are encoded within the

same kernel procedure. Within the context of this dissertation, k

bound kernels leave

deep multithreading of the GPU makes it easy to fill these cycles with useful work,

particularly when that work can be done within local scratch memories.

(a) Prefix sum as subroutine (unfused)

Fig. 38. Kernel fusion of application code into scan kernels

Prefix scan was originally promoted as a software

architectures more than two decades ago

raits with these forebears, the relatively new combination of deeply

multithreaded scheduling and local scratchpad memories has altered the algorithm design

kernel fusion, a design idiom where funct

encapsulation is broken and multiple dataflow transformations are encoded within the

Within the context of this dissertation, k

leave compute resources underutiliz

deep multithreading of the GPU makes it easy to fill these cycles with useful work,

particularly when that work can be done within local scratch memories.

Kernel fusion of application code into scan kernels

Prefix scan was originally promoted as a software primitive

architectures more than two decades ago [17, 61]

the relatively new combination of deeply

multithreaded scheduling and local scratchpad memories has altered the algorithm design

, a design idiom where funct

encapsulation is broken and multiple dataflow transformations are encoded within the

Within the context of this dissertation, k

ompute resources underutiliz

deep multithreading of the GPU makes it easy to fill these cycles with useful work,

particularly when that work can be done within local scratch memories.

(b) Prefix sum as

Kernel fusion of application code into scan kernels

primitive for vector

[17, 61]. While GPU architecture

the relatively new combination of deeply

multithreaded scheduling and local scratchpad memories has altered the algorithm design

, a design idiom where funct

encapsulation is broken and multiple dataflow transformations are encoded within the

Within the context of this dissertation, kernel fusion leverages

ompute resources underutilized. However, the

deep multithreading of the GPU makes it easy to fill these cycles with useful work,

particularly when that work can be done within local scratch memories.

(b) Prefix sum as “allocation

Kernel fusion of application code into scan kernels

for vector and array

While GPU architecture

the relatively new combination of deeply

multithreaded scheduling and local scratchpad memories has altered the algorithm design

, a design idiom where funct

encapsulation is broken and multiple dataflow transformations are encoded within the

ernel fusion leverages

ed. However, the

deep multithreading of the GPU makes it easy to fill these cycles with useful work,

particularly when that work can be done within local scratch memories.

“allocation runtime” (fused)

91

and array

While GPU architectures

the relatively new combination of deeply

multithreaded scheduling and local scratchpad memories has altered the algorithm design

, a design idiom where functional

encapsulation is broken and multiple dataflow transformations are encoded within the

ernel fusion leverages

ed. However, the

deep multithreading of the GPU makes it easy to fill these cycles with useful work,

(fused)

92

2) Live state is expensive to move out to DRAM only to have it read back in again by

the next kernel. We reduce instruction counts, bandwidth demand, and energy by

retaining such state in registers or shared memory for the next computation.

3) Bandwidth-bound prefix sum kernels form a nice runtime abstraction for

performing allocation-oriented stream transformations. Fig. 38 illustrates the

fusion of allocation problems within prefix sum kernels. This saves the overhead

of writing allocation counts out to global memory, invoking a separate kernel, and

then reading the computed reservation offsets back in again.

As examples of such kernel fusion, this section presents derivatives of prefix sum that

implement segmented scan, duplicate removal, reduce-by-key, and histogram. We

demonstrate the advantages of this idiom by comparing our performance with equivalent

functionality implemented within the Thrust library of parallel primitives [113].

4.5.1 Segmented scan

The segmented scan problem is a composition of independent scan instances. Typically

these subproblems are concatenated within a single large input array and are delineated

by a second input array of head-flags. Segmented scan is a particularly useful primitive

for many top-down partitioning problems, e.g., parallel quicksort, acceleration structures,

etc. [16, 26, 92].

Fig. 39 compares our B40C segmented scan throughput versus Thrust for 128MB

problem sizes on the NVIDIA GTX280. We exhibit a 3.5x harmonic mean speedup

across data types.

93

4.5.2 Duplicate removal

Duplicate removal entails a straightforward fusion with prefix sum. Tiles of keys are

read and local flags are generated to mark discontinuities between keys and their

predecessors. We then perform a prefix sum over the flags to compute the scatter offsets

for writing the corresponding keys into the output stream. The flag vector is never

wholly realized in global memory: we simply (re)generate the flags for both upsweep and

downsweep kernels.

Fig. 40 compares our B40C segmented scan throughput versus Thrust for 128MB

problem sizes on the NVIDIA GTX280. We exhibit a 2.6x harmonic mean speedup

across data types.

4.5.3 Reduce-by-key

Reduce-by-key is the third phase of the map-reduce paradigm (after mapping and sorting)

[38]. Given a list of key-value pairs, it is analogous to a segmented reduction over the

values where the segments are defined by regions of consecutive, identical keys.

We perform reduce-by-key using a variant of segmented prefix scan. Tiles of

keys are read and local head-flags are generated where discontinuities are observed. We

Fig. 39. Segmented scan throughput (GTX280)

Fig. 40. Duplicate removal throughput (GTX280)

2.5x
3.1x

5.0x

4.8x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1B 2B 4B 8B

T
h

ro
u

g
h

p
u

t
(1

0
9

e
le

m
e

n
ts

/s
)

Problem data type

Thrust B40C
2.8x

2.9x

3.1x

1.9x

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1B 2B 4B 8B

T
h

ro
u

g
h

p
u

t
(1

0
9

e
le

m
e

n
ts

/s
)

Problem data type

Thrust B40C

94

then perform a segmented scan over the corresponding values and head-flags, yet we also

compute a prefix sum of the head-flags. The scanned head-flags now convey the scatter

offsets for writing the corresponding value reductions into the output stream.

Fig. 41 compares our B40C segmented scan throughput versus Thrust for 128MB

problem sizes on the NVIDIA GTX280. We exhibit a 2.2x harmonic mean speedup

across data types.

4.5.4 Histogram

GPUs have been criticized for their lack of suitable atomics for performing contended

updates to histogram counts [76]. An alternative strategy that is perhaps better suited to

bulk-synchronous architectures entails first sorting the keys and then performing a variant

of reduce-by-key where the associated values are all implicitly 1. As we describe in

Chapter 5, GPUs are particularly adept at high performance sorting. Furthermore, the

early-exit sorting optimizations we present are well-suited to the types of low-entropy

key distributions common to histogram problems.

Fig. 41. Reduce-by-key throughput (GTX280)

Fig. 42. Histogram throughput (GTX280)

2.6x
2.4x

2.5x

1.6x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1B 2B 4B 8B

T
h

ro
u

g
h

p
u

t
(1

0
9

e
le

m
e

n
ts

/s
)

Problem data type

Thrust B40C

2.5x
2.7x

2.6x

1.8x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1B 2B 4B 8B

T
h

ro
u

g
h

p
u

t
(1

0
9

e
le

m
e

n
ts

/s
)

Problem data type

Thrust B40C

95

Fig. 42 compares our B40C histogram construction throughput versus Thrust for

128MB problem sizes for previously-sorted datasets on the NVIDIA GTX280. We

exhibit a 2.3x harmonic mean speedup across data types.

We note that we can radix sort uniform-random 32-bit keys on the GTX280 at

534M keys/s. Paired with our consecutive-histogram rate of at nearly 3B keys/s, we can

compute histograms of at an overall rate of 450M keys/s. This is a 100x speedup versus

the naive approach of global atomics, which is rate-limited at 4.5M atomics/s (Chapter 2,

Table 1).

4.6 CHAPTER SUMMARY

Parallel prefix scan is core algorithmic primitive for constructing parallel programs. Due

to the relatively fine-grained ratio of computation to operand size (e.g., one addition 32-

bit addition instruction versus 12 bytes of operands and results), GPU parallelizations of

prefix scan ought to be bandwidth-bound. However, this was not the case with prior

work.

In this chapter, we presented new implementations for local prefix sum that are

1.7x more computationally-efficient than previous parallelizations. Our constructions

make extensive use of the granularity coarsening idioms we developed in Chapter 2.

These design idioms additionally provide the dual benefits of software-reuse and tuning

flexibility. Furthermore, our global scan primitives are 25% more efficient with memory

bandwidth and less apt to incur processor underutilization.

The kernel fusion design idiom seeks to maximally utilize both memory and

computational resources on the GPU. Because the computational overhead of prefix sum

now resides below the memory wall, we have created an inflection point in the design

96

space for many cooperative problems where kernel fusion within prefix sum becomes

worthwhile. To illustrate the effectiveness such fusion, we have constructed high

performance implementations of segmented scan, duplicate removal, histogram, and

reduce-by-key that provide several factors of speedup over contemporary parallelizations

within Thrust [113].

97

Chapter 5

Radix Sorting

5.1 INTRODUCTION

High performance sorting is particularly desirable for GPU architectures. As a

fundamental algorithmic primitive, sorting often plays an explicit role in more

sophisticated algorithms. Algorithms that produce or transform data frequently need to

subsequently rank, organize, or partition that data in some fashion. While GPU

architectures are particularly adept at data-independent transformations, it is less obvious

that they would be equally adroit at sorting, a list-processing operation that is inherently

cooperative. Because of the large problem sizes typical of GPU applications, inefficient

sorting can be a major bottleneck of overall application performance.

In addition, sorting can play a performance-enhancing role in many

parallelizations of serial algorithms. Discretionary sorting has the potential to serve as a

“bandwidth amplifier” for problems involving pointer-chasing and table lookups.

Reorganizing either tasks or data can realize better mappings between the two that exhibit

significantly improved spatial and temporal locality. Sorting (or binning) is a common

technique for smoothing otherwise incoherent memory accesses. Similarly, local sorting

98

within distributed settings can play a crucial role in preparing data on one processor for

batched distribution to its peers.

Although parallel sorting methods are highly concurrent and have small

computational granularities12, sorting on GPUs has been perceived as challenging,

particularly in comparison with conventional multi-core CPU architecture. As a list-

processing transformation, sorting has irregular and global data-dependences. The

placement of a given input item will depend upon the value of every other input element.

As discussed in §2.6, such fine-grained global allocation dependences are representative

of the cooperative workloads that many researchers feel poorly suited for GPU

architecture. The work described within this chapter refutes this popular opinion,

providing evidence that GPUs are exceptional platforms for sorting operations.

In particular, we focus on the problem of sorting large sequences of elements,

specifically sequences comprised of hundreds-of-thousands or millions of fixed-length

numeric keys. The methods we present within this chapter address two problem variants:

(a) 32-bit integer keys paired with 32-bit satellite values; and (b) 32-bit keys only. Our

solution strategy generalizes for other problem types as well: as a C++ template

implementation, our algorithm can be parameterized using any C++ primitive type as key

types and arbitrary user-defined structures for value types.

Our work as described in this chapter makes contributions in the following areas:

Parallelization strategy. We present a GPU parallelization for radix sorting

passes that is constructed within a “multi-scan runtime” for computing multiple

concurrent prefix sums, one for each partitioning bin. The granularity of our approach is

more tunable than prior work, requiring memory traffic that is inversely proportional to

12 E.g., comparison operations for comparison-based sorting, or shift and mask operations for radix sorting.

99

the number of radix bits per digit. This provides flexibility for future improvements in

computational throughput. We also describe a novel optimization for early termination

that significantly improves performance for commonplace sorting problems having

banded key diversity.

High performance. Our tunable implementation achieves multiple factors of

speedup over prior GPU sorting implementations across all generations programmable

NVIDIA GPUs. We demonstrate sustained sorting rates in excess of 1.2 billion 32-bit

keys/sec and 342 million 64-bit keys/sec. To our knowledge, these sorting rates are the

fastest published for any fully-programmable microarchitecture. Put in context, state-of-

the-art CPU parallelizations achieve 240 million 32-bit keys/sec [98] and reconfigurable

FPGAs have demonstrated 250 million 64-bit keys/sec [73].

Impact. Our radix sorting implementation is incorporated within the Thrust

parallel template library [113]. Thrust is a high-profile, productivity-oriented library that

is bundled with the NVIDIA CUDA software development toolkit [34]. Furthermore,

tuned versions of our implementation are specifically incorporated within the AMBER 11

molecular simulation tools [22], the NVIDIA Optix ray tracing engine [88], and the

LibBSC lossless compression suite [60].

5.2 BACKGROUND

5.2.1 GPU sorting applications

Sorting is germane to many problems in computer science. As an algorithmic primitive,

sorting facilitates many problems including binary search, finding the closest pair,

determining element uniqueness, finding the k
th

 largest element, and identifying outliers

[33, 72]. The use of sorting for reorganizing sparse data structures figures prominently in

100

sparse matrix-matrix multiplication [12]. For large-scale problems on distributed

memory systems (e.g., graph algorithms for clusters and supercomputers [32]), sorting

plays an important role in improving communication efficiency by coalescing messages

between nodes. In Chapter 6, we leverage sorting for batching communication between

GPUs for multi-node graph traversal.

Recent literature has demonstrated many applications of GPU sorting. Sorting is

a procedural step during the construction of acceleration data-structures, such as octrees

[75], KD-trees [124], and bounding volume hierarchies [92]. These structures are often

used when modeling physical systems, e.g., molecular dynamics, ray tracing, collision

detection, visibility culling, photon mapping, point cloud modeling, particle-based fluid

simulation, n-body systems, etc. GPU sorting has found many applications in image

rendering, including shadow and transparency modeling [104], Reyes rendering [123],

volume rendering via ray-casting [68], particle rendering and animation [31, 71], ray

tracing [46], and texture compression [23]. GPU sorting has also been demonstrated for

parallel hashing [4], database acceleration [51, 57, 58], data mining [52], and game

engine AI [103].

5.2.2 Parallel sorting networks and the impracticality of output-oriented design

The GPU machine model is designed for output-oriented, stencil-based decompositions.

Threads are logically defined by the specific output elements they are to produce, and

kernel programs statically encode input and output locations as a function of thread rank

(independent of the computation of other threads).

However, this output-oriented focus can pose difficulties for sorting, a problem

having global input dependences. The value to be placed at a given output location is

101

dependent upon the value of every location within the input list. Without cooperation

from other threads, all n threads would need to perform their own O(n) selection

algorithm [33] to determine what value to write, resulting in quadratic overall workload.

Cooperation is a critical component of any efficient sorting parallelization.

It is possible to construct sorting from the repeated application of output-oriented

kernels, exclusively. Such solutions are called sorting networks. The threads in each

stencil kernel perform pair-wise swapping operations. Because the input and output

locations of each thread are encoded as a function of thread rank, the sequence of

comparisons and flow of data through memory are statically known in advance.

Unfortunately, known sorting network constructions are asymptotically and/or

practically inefficient. The simple pair-wise swapping example in §1.3.2, Fig. 6

implements O(n
2
) work and is isomorphic to bubble/insertion sort. Variations of

Batcher’s bitonic sorting network have size O(nlog
2
n) [10]. Although variants of the

AKS sorting network [3] have optimal size O(nlogn), they have extremely large big-O

constants that prevent their practical usage. It is an open question as to whether practical

O(nlogn) size sorting networks exist.

Instead, we advocate an input-oriented decomposition for implementing work-

optimal sorting. From the thread perspective, we want to logically associate tasks with

specific elements in the input stream. In the context of partitioning-based sorting

methods, each thread gathers its key, determines which partition that key belongs, and

then must cooperate with other threads to determine where the key should be relocated.

By shifting the focus to input items, these problems can all be reduced to the problem of

cooperative allocation.

102

5.2.3 The radix sorting method

Radix sorting is currently the fastest approach for sorting 32- and 64-bit keys on both

CPU and GPU processors [84, 98]. The method relies upon a positional representation

for keys, i.e., each key is comprised of an ordered sequence of numeral symbols (i.e.,

digits) specified from least-significant to most-significant. For a given input sequence of

keys and a set of rules specifying a total ordering of the symbolic alphabet, the radix

sorting method produces a lexicographic ordering of those keys.

The process works by iterating over digit-places within the keys from least-

significant to most-significant. For each digit-place, the method performs a stable

distribution sort of the keys based upon their digit at that digit-place in order to partition

the keys into radix r distinct buckets. Given an n-element sequence of k-bit keys, d-bit

digits, and r = 2
d
, a radix sort of these keys will require k/d passes of distribution sorting.

The asymptotic work complexity of the distribution sort is O(n). Each of the n

input items needs comparing with only a fixed number of radix digits. With a fixed

number of digit-places, the entire radix sorting process is also O(n). When a key is

relocated, its global relocation offset is computed as the number of keys with “lower”

digits at that digit place plus the number of keys having the same digit, yet occurring

earlier in the sequence.

Radix sorting has a variable granularity of computation, i.e., it can trade more

computation for less memory traffic. Increasing d (the number of bits per radix-digit)

decreases the total number of digit-place passes that need iterating over. For example, a

sort of 32-bit integers can be performed using thirty-two 1-bit distribution passes (each

partitioning into r=2 bins). By using 4-bit distributions instead (each partitioning into

r=16 bins), we can perform the same sort in only eight overall passes.

103

However, the number of bins r scales exponentially with d. This implies that

linear decreases in global memory traffic will result in super-linear increases in dynamic

instruction counts and local storage requirements.

5.2.4 Parallel radix sorting

The fundamental component of the radix sorting method is the distribution sort in which

n keys are scattered into r bins. Parallel radix sorting is comprised of k/d iterations of

parallel distribution sorting passes.

Because key distribution is typically unknown, the sizes and memory layout of

the bins for a given distribution pass must be dynamically determined. There are two

strategies for constructing bins: (1) using blocks that are allocated online and linked with

pointers; and (2) contiguous allocation in which offsets and lengths are computed a priori

using a parallel prefix scan algorithm. Most research is focused on the latter: the ability

to perform contention-based allocation is non-existent or severely expensive on many

parallel architectures (e.g., vector, array, and GPU processors), and traversing linked

structures can carry stiff performance penalties.

Fig. 43. The traditional split operation: a decoding step combined with prefix scan reveals the scatter offsets required

to enact a radix r = 2 distribution sort on the first digit-place of an input sequence.

Flag vectors

Key sequence

0 0 0 0 0 0 0 01 1 1 11 11 1

0 0 0 01 1 1 1

Scanned flag vectors
(key scatter offsets)

1 2 4 4 4 5 6 64 5 6 71 20 3

0s 1s

0s 1s

0 2 4 51 3 6 7

1 3 6 72 40 5 1 3 6 72 40 5

1 3 6 72 40 5 1 3 6 72 40 5

104

Scan-based approach. In its simplest form, a distribution sort can be

implemented using a binary split primitive [26] comprised of two prefix scans over two

n-element binary encoded flag vectors: the first initialized with 1s for keys whose digit

was 0, the second to 1s for keys whose digit was 1. The two scan operations are

dependent: the scan of the 1s vector can be seeded with the number of zeros from the 0s

scan. After the scans, the i
th

 element in the appropriate flag vector will indicate the

relocation offset for the i
th

 key. An alternative is to perform one large scan over the

concatenation of the two vectors, as shown in Fig. 43.

As described in Fig. 44, a naive GPGPU distribution sort implementation can be

constructed by simply invoking a parallel prefix scan primitive between separate

decoding and scatter kernels. The decoding kernel would be used to create a

concatenated flag vector of rn elements in global memory. After scanning, the scatter

kernel would redistribute the keys (and values) according to the scan results.

This approach suffers from an excessive memory workload that scales with 2
d
/d.

As such, the overall memory workload will be minimized when the number of radix digit

bits d = 1. This provides little flexibility for tuning the sorting granularity to minimize

(and overlap) the memory and computational workloads.

Histogram-based approach. As an alternative, practical sorting implementations

have used a histogram-based strategy [43, 121]. For typical parallel machines, the

number of parallel processors p << n. This makes it natural to distribute the input

sequence amongst processors. Using local resources, each processor can compute an r-

element histogram of digit-counts. By only sharing these histograms, the global storage

requirements are significantly reduced. A single prefix scan of these histograms provides

105

each processor with the base digit-offsets for its block of keys. These offsets can then be

applied to the local key rankings within the block to distribute the keys.

Prior GPU approaches. Current radix sort implementations for the GPU use this

approach, treating each CTA as a logical processor operating over a fixed-size block of b

keys [97, 56, 102]. The procedure of Satish et al. is representative of this approach, and

is reviewed in Fig. 44.

Because of the decision to keep b constant, the number of CTA “processors”

grows with problem size and the overall memory workload still scales exponentially with

d, although significantly reduced by common block-sizes of 128-1024 keys. This elicits

Naive GPU distribution sort

Kernel Read I/O Workload Write I/O Workload

1. Decode keys and compute flag vectors n keys nr counts

2. Flag scan: upsweep reduction nr counts (insignificant)

3. Flag scan: spine scan (insignificant) (insignificant)

4. Flag scan: downsweep scan nr counts + (insignificant) nr offsets

5. Scatter keys to appropriate bin nr offsets + n keys n keys

 Total I/O for all k/d passes: (k/d) (5n(2d) + 3n)

GPU histogram-based distribution sort [5,7]

Kernel Read I/O Workload Write I/O Workload

1. Locally sort blocks at current digit-place into digit-

segments
n keys n keys

2. Compute block histograms of digit counts n keys nr/b counts

3. Histogram scan: upsweep reduction nr/b counts (insignificant)

4. Histogram scan: spine scan (insignificant) (insignificant)

5. Histogram scan: downsweep scan nr/b counts + (insignificant) nr/b offsets

6. Scatter sorted digit-segments of keys to appropriate bin nr/b offsets + n keys n keys

 Total I/O for all k/d passes: (k/d) (5n(2d)/b + 7n)

Our GPU allocation-oriented distribution sort

Kernel Read I/O Workload Write I/O Workload

1. Allocation scan: upsweep reduction (locally decode and

reduce flag counts)
n keys (insignificant)

2. Allocation scan: spine scan of flag counts (insignificant) (insignificant)

3. Allocation scan: downsweep scan (locally decode and

scan flag counts, scatter keys)
n keys + (insignificant) n keys

 Total I/O for all k/d passes: (k/d) (3n)

Fig. 44. Procedures for distribution sorting, described as sequences of kernel launches. The I/O models of memory

workloads are specified in terms of d-bit radix digits, radix r = 2d, local block size of b keys, and an n-element input

sequence of k-bit keys.

106

a global minimum in which there exists an optimal d to produce a minimal memory

overhead for a given block size. For example, when block size b = 512 and key size k =

32, a radix digit size d = 8 provides minimal memory overhead. As a point of

comparison, their implementation imposes an explicit memory workload of 56.6 words

per key (where words and keys are 32-bits, d = 4 bits, and b = 1024 keys).

Our parallelization strategy. Briefly, our distribution strategy uses kernel fusion

to collapse the naive separate decoding and scattering kernels into the prefix scan kernels

themselves. Furthermore, we use the CTA serialization idiom outlined §3.3.1 to

construct a reduce-then-scan approach that requires three kernels, regardless of problem

size. We further describe the details of these two idioms and our implementation in §5.3.

Our strategy can operate with a radix digit size d ≤ 4 bits on current NVIDIA

GPUs before exponentially-growing demands on local storage prevent us from saturating

the device. With d = 4 and k = 32-bit keys-only sorting, our algorithm requires the

memory subsystem to explicitly process only 24 words per key, a 2.4x reduction in

memory workload.

5.2.5 GPU parallelizations of other sorting methods

Radix sorting methods make certain positional and symbolic assumptions regarding the

bitwise representations of keys. A comparison-based sorting method is required for a set

of ordering rules in which these assumptions do not hold. A variety of comparison-

based, top-down partitioning and bottom-up merging strategies have been implemented

for the GPU, including quicksort [24, 58], most-significant-digit radix sort [56], sample-

sort [39, 77], and merge sort [97]. The number of recursive iterations for these methods

107

is logarithmic in the size of the input sequence, typically with the first or last 8-10

iterations being replaced by a small local sort within each CTA.

There are several contributing factors that have historically given radix sorting

methods an advantage over their comparison-based counterparts. First, comparison-

based sorting methods must have work-complexity O(nlog2n) [72], making them less

efficient per key as problem size grows. Second, for problem sizes large enough to

saturate the device (e.g., several hundred-thousand or more keys), a radix digit size d ≥ 4

will result in fewer digit passes than recursive iterations needed by the comparison-based

methods performing binary partitioning. Third, the amount of global intermediate state

needed by these methods for a given level in the tree of computation is proportional to the

width of that level, as opposed to a small constant amount for our radix sort strategy.

Finally, parallel radix sorting methods guarantee near-perfect load-balancing amongst

GPU cores, an issue of concern for comparison-based methods involving pivot selection

5.3 OUR RADIX SORTING STRATEGY

Our radix sorting strategy strives to obtain maximal overall system utilization for a given

target architecture. Our goal is to reduce the aggregate memory workload and permit

flexible radix sorting granularity d to maximize processor utilization.

5.3.1 “Multi-scan” prefix sum as allocation runtime

We have generalized our prefix scan implementation for multi-scan, i.e., to compute

multiple, dependent scans concurrently in a single pass. This allows us to efficiently

compute the prefix sums of radix r > 1 flag vectors without imposing any significant

additional workload upon the memory subsystem. We rely on the idioms of kernel fusion

and CTA serialization to construct multi-scan.

108

Multi-scan is related to, but different from the segmented scan problem [16]. The

segmented-scan problem connotes a single vector comprised of multiple segments, each

segment an independent scan problem. For radix sorting purposes, the segments that

would correspond to bin-allocations are not actually independent: each has prefix

dependences on prior bins. Furthermore, we cannot afford to construct such a vector of r

segments in global memory. Instead, we generate and consume local portions of our

flag-vector scan problems in parallel. In addition, these scans are not completely

independent: their cumulative reductions are concatenated and scanned as well, resulting

in a total ordering of partition offsets.

Kernel fusion. Kernel fusion allows us to collapse the outer decode and scatter

kernels from the naive approach. The idea is simple: reduce aggregate memory

workload by co-locating sequential steps in the stream pipeline within a single kernel.

We implement kernel fusion by inserting our own digit-decoding and key-scattering logic

directly into the kernels for prefix scan. The flag values obtained by a thread when

decoding a given key can be passed directly via registers to upsweep or downsweep scan

logic. Similarly, the ranking results computed by downsweep scan can be locally

conveyed to scattering logic for relocating keys and values. Additionally, the keys

themselves need not be re-read from global memory for scattering; they were obtained

earlier by the downsweep decoding logic within the same kernel closure.

The overall amount of memory traffic is dramatically reduced because we remove

the need to move flags through global memory. The elimination of the corresponding

load/store instructions also increases the computational efficiency, further allowing our

algorithm to exploit those resources. Instead of simply serving as procedural subroutine,

prefix scan becomes “runtime” that drives the entire distribution sorting pass.

computation has a height of

fixed

scan

enough work to

phase of computation, we want to dispose of this work as quickly as possible.

primitives

kernels regardless of problem size: an upsweep r

scan. Instead of allocating a unique thread for every input key, the

dispatch a fixed

successive “tiles” of

registers as tiles are processed serially.

Fig.

scan. In this example with block size

requires five kernel launches: two upsweep reduction kernels

and three downsweep

T
im

e

algorithm to exploit those resources. Instead of simply serving as procedural subroutine,

prefix scan becomes “runtime” that drives the entire distribution sorting pass.

CTA

computation has a height of

fixed-size block of

scan [42, 101]

enough work to

phase of computation, we want to dispose of this work as quickly as possible.

Our distribution sorting kernels

primitives outlined in

kernels regardless of problem size: an upsweep r

scan. Instead of allocating a unique thread for every input key, the

dispatch a fixed

successive “tiles” of

registers as tiles are processed serially.

Fig. 45. A typical recursive

. In this example with block size

requires five kernel launches: two upsweep reduction kernels

and three downsweep

1

2

3

4

5

algorithm to exploit those resources. Instead of simply serving as procedural subroutine,

prefix scan becomes “runtime” that drives the entire distribution sorting pass.

 serialization

computation has a height of

size block of b elements. This is currently the prevailing strategy for GPU

[42, 101]. Unfortunately the

enough work to saturate the processor during their execution. As the least

phase of computation, we want to dispose of this work as quickly as possible.

Our distribution sorting kernels

outlined in §4.3

kernels regardless of problem size: an upsweep r

scan. Instead of allocating a unique thread for every input key, the

dispatch a fixed-size grid of

successive “tiles” of b keys eac

registers as tiles are processed serially.

A typical recursive CTA decomposition for prefix

. In this example with block size

requires five kernel launches: two upsweep reduction kernels

and three downsweep scan kernels.

algorithm to exploit those resources. Instead of simply serving as procedural subroutine,

prefix scan becomes “runtime” that drives the entire distribution sorting pass.

erialization. As illustrated

computation has a height of O(2logb

elements. This is currently the prevailing strategy for GPU

Unfortunately the

saturate the processor during their execution. As the least

phase of computation, we want to dispose of this work as quickly as possible.

Our distribution sorting kernels

4.3. As illustrated in

kernels regardless of problem size: an upsweep r

scan. Instead of allocating a unique thread for every input key, the

size grid of C CTAs

keys each. Partial reductions are accumulated in thread

registers as tiles are processed serially.

decomposition for prefix

. In this example with block size b=4 keys, the scan

requires five kernel launches: two upsweep reduction kernels

algorithm to exploit those resources. Instead of simply serving as procedural subroutine,

prefix scan becomes “runtime” that drives the entire distribution sorting pass.

As illustrated in Fig.

bn) kernel launches when each

elements. This is currently the prevailing strategy for GPU

Unfortunately the interior kernels of the “hourglass”

saturate the processor during their execution. As the least

phase of computation, we want to dispose of this work as quickly as possible.

Our distribution sorting kernels are derived from

. As illustrated in Fig.

kernels regardless of problem size: an upsweep reduction, a

scan. Instead of allocating a unique thread for every input key, the

CTAs in which threads are re

h. Partial reductions are accumulated in thread

registers as tiles are processed serially.

decomposition for prefix

=4 keys, the scan

requires five kernel launches: two upsweep reduction kernels

Fig.

scan

size. In this example, we reuse

multiple tiles of

algorithm to exploit those resources. Instead of simply serving as procedural subroutine,

prefix scan becomes “runtime” that drives the entire distribution sorting pass.

Fig. 45, a fully

) kernel launches when each

elements. This is currently the prevailing strategy for GPU

interior kernels of the “hourglass”

saturate the processor during their execution. As the least

phase of computation, we want to dispose of this work as quickly as possible.

are derived from our

Fig. 46, we compose scan using only three

eduction, a spine

scan. Instead of allocating a unique thread for every input key, the

in which threads are re

h. Partial reductions are accumulated in thread

Fig. 46. A fixed, two

scan requires only three

size. In this example, we reuse

multiple tiles of b=4 keys

algorithm to exploit those resources. Instead of simply serving as procedural subroutine,

prefix scan becomes “runtime” that drives the entire distribution sorting pass.

, a fully-recursive Brent

) kernel launches when each CTA

elements. This is currently the prevailing strategy for GPU

interior kernels of the “hourglass”

saturate the processor during their execution. As the least

phase of computation, we want to dispose of this work as quickly as possible.

our two-level reduce

, we compose scan using only three

spine scan, and a downsweep

scan. Instead of allocating a unique thread for every input key, the first and third

in which threads are re-used to process the input in

h. Partial reductions are accumulated in thread

A fixed, two-level CTA decomposition for prefix

requires only three kernel launches, regardless of input

size. In this example, we reuse four CTAs to

=4 keys.

algorithm to exploit those resources. Instead of simply serving as procedural subroutine,

prefix scan becomes “runtime” that drives the entire distribution sorting pass.

recursive Brent-Kung scan

CTA is assigned to a

elements. This is currently the prevailing strategy for GPU prefix

interior kernels of the “hourglass” do not provid

saturate the processor during their execution. As the least-efficient

phase of computation, we want to dispose of this work as quickly as possible.

reduce-then-

, we compose scan using only three

scan, and a downsweep

first and third kernels

used to process the input in

h. Partial reductions are accumulated in thread-private

decomposition for prefix

kernel launches, regardless of input

four CTAs to process

109

algorithm to exploit those resources. Instead of simply serving as procedural subroutine,

Kung scan

is assigned to a

prefix

do not provide

efficient

-scan

, we compose scan using only three

scan, and a downsweep

kernels

used to process the input in

private

decomposition for prefix

kernel launches, regardless of input

process

110

There are several important benefits to restricting the amount of parallel work.

Our approach requires only a single kernel launch to perform a small, constant O(rC)

amount of interior work. We eliminate O(n/b) global memory reads and writes at a

savings of 2-4 instructions per round-trip (offset calculations, load, store). Finally, any

static computation common to each tile of keys can be hoisted, computed once, and

reused.

Kernel stages. Our three multi-scan kernels listed in Fig. 44 operate as follows:

1) Upsweep reduction. For a multi-scan distribution sorting pass, the upsweep

reduction kernel reduces n inputs into rC partial reductions. In our

implementation, the reduction threads employ a loop-raking strategy [18] in which

each thread accumulates flags from consecutive tiles, similar to Harris et al. [90].

For each tile, a thread gathers its key, decodes the digit at the current digit-place,

and increments the appropriate flag (kept in private registers). After processing

their last tile, the threads within each CTA cooperatively reduce these private flags

into r partial reductions, which are then written out to global device memory in

preparation for the spine scan.

2) Spine scan. The single-CTA, spine scan serves to scan the partial reduction

contributions from each of the C bottom-level CTAs. Continuing our theme of

multiple, concurrent scans, we have generalized it to scan a concatenation of rC

partial reductions.

3) Downsweep scan/scatter. In the downsweep scan/scatter kernel, CTAs perform

independent scans of their tile sequence, seeded with the partial sums computed by

the spine scan. For each tile, threads re-read their keys, re-decode them into local

111

digit flags, and then scan these flags using the local multi-scan strategy described

in the next subsection. The result is a set of r prefix sums for each key that are

used to scatter the keys to their appropriate bins. This scatter logic is also

responsible for loading and similarly redistributing any paired satellite values. The

r aggregate counts for each digit are serially curried into the next b-sized tile.

As described in Fig. 44, only a constant number of memory accesses are used for the

storage of intermediate results, and there are no longer any coefficients that are

exponential in terms of the number of radix digit bits d. This implies that memory

workload will monotonically decrease with increasing d, positioning our strategy to take

advantage of any additional computational power that may allow us to increase d in the

future.

Flexible radix sort granularity. As described in Chapter 4, prefix sum is a

memory-bound operation that affords a “bubble” of idle cycles within which we can fuse

in sorting logic with little incremental overhead. Furthermore, our multi-scan approach

allows us to tune the computational granularity (i.e., number of radix digits d) to better

fill this bubble of idle cycles.

For example, Fig. 47 depicts the “bubble” of free computation below the GTX285

memory wall, i.e., the ideal 17.8 thread-cycles that can be executed per 32-bit word

copied in and out by the memory subsystem. For the same memory workload, Fig. 48

shows the bubble for a prefix scan downsweep scan kernel after accounting for data

movement and scan instructions [85].

112

As shown in Fig. 49, the ideal bubble is tripled for a downsweep scan kernel with

a memory workload sized to distribute key-value pairs. It must read a pair of two words,

write a pair of two words, and pay a partial coalescing penalty of two words. (As we

discuss in Section 4, key-scattering produces up to twice as much memory traffic due to

partial coalescing. Additionally, the bubble is even larger in practice due to the slightly

lower achievable bandwidth rates.)

Fig. 47. GTX 285 memory wall. At an ideal 354 x109

thread-instructions/s and 159 x109 bytes/s, the GTX285

can overlap 17.8 instructions with every two words of

memory traffic.

Fig. 48. Free cycles within a downsweep scan kernel that

moves two words while executing 4 data movement and 8

local scan instructions for each input element.

Fig. 49. Free cycles within a downsweep sorting scan/scatter kernel that reads two words, writes two words, and has a

write partial-coalescing penalty of two words.

GTX285 r+w

memory wall

0

5

10

15

20

25

0 16 32 48 64 80 96 112

T
h

re
a

d
-I

n
st

ru
ct

io
n

s
/

3
2

-b
it

 s
ca

n
 e

le
m

e
n

t

Problem Size (millions)

Insert free computation here

GTX285 r+w

memory wall

Downsweep

Scan Kernel

Data

Movement

Only

0

5

10

15

20

25

0 16 32 48 64 80 96 112

T
h

re
a

d
-I

n
st

ru
ct

io
n

s
/

3
2

-b
it

 s
ca

n
 e

le
m

e
n

t

Problem Size (millions)

Insert free computation here

Downsweep

Scan Kernel

GTX285

2(r+2w)

memory wall

0

10

20

30

40

50

60

0 16 32 48 64 80 96 112

T
h

re
a

d
-I

n
st

ru
ct

io
n

s
/

6
4

-b
it

 s
ca

n
 e

le
m

e
n

t

Problem Size (millions)

Insert free computation here

113

The result is a large window that not only allows us to construct distribution

sorting inside of prefix scan, but to be more flexible with the granularity of sorting

computation as well.

5.3.2 Multi-scan downsweep kernel operation

The multi-scan downsweep kernel is the most sophisticated of all three kernels. The

downsweep must efficiently perform r local prefix sums concurrently. Fig. 50 illustrates

computation from the point of a single CTA processing a particular tile of input values:

1) Digit decoding. Threads within the decoding logic collectively read b keys,

decode them according to the current digit-place, and create the private-register

equivalent of r flag vectors of b elements each.

2) Local multi-scan. The scan logic is replicated r-times, ultimately producing r

vectors of b prefix sums each: one for each of the r possible digits. It is

implemented as a flexible hierarchy of reduce-then-scan strategies composed of

three phases of upsweep/downsweep operation:

a. Thread-independent processing in registers, shown in blue. This phase

serves to transition the problem from the tile size b into a smaller version

that will fit into shared memory and back again. This provides flexibility

in terms of making maximal use of the available register file and for

facilitating different memory transaction sizes (e.g., 1/2/4-element vector

load/stores), all without impacting the size of the shared-memory

allocation.

Fig.

downward for an input block size of

are labeled in light blue, the fused stages in yello

addition task. Flag vector encoding is not shown. The blue thread

vector

b.

Fig. 50. Intra-CTA

downward for an input block size of

are labeled in light blue, the fused stages in yello

addition task. Flag vector encoding is not shown. The blue thread

vector-2 loads/stores.

 Inter-warp cooperation

a single warp independently reduce/scan though the partial reductions

placed in shared memory by the other warps. This serial raking process

CTA multi-scan operation

downward for an input block size of

are labeled in light blue, the fused stages in yello

addition task. Flag vector encoding is not shown. The blue thread

2 loads/stores.

warp cooperation

a single warp independently reduce/scan though the partial reductions

placed in shared memory by the other warps. This serial raking process

operation incorporat

downward for an input block size of b = 32 keys, a radix

are labeled in light blue, the fused stages in yellow. Circles indicate the assignment of a given thread

addition task. Flag vector encoding is not shown. The blue thread

warp cooperation, shown in orange. In this phase, the thre

a single warp independently reduce/scan though the partial reductions

placed in shared memory by the other warps. This serial raking process

incorporating fused binning and scatter logic

= 32 keys, a radix r = 4 digits, and a warp

w. Circles indicate the assignment of a given thread

addition task. Flag vector encoding is not shown. The blue thread

in orange. In this phase, the thre

a single warp independently reduce/scan though the partial reductions

placed in shared memory by the other warps. This serial raking process

fused binning and scatter logic

= 4 digits, and a warp-

w. Circles indicate the assignment of a given thread

addition task. Flag vector encoding is not shown. The blue thread-independent processing phase is shown to perform

in orange. In this phase, the thre

a single warp independently reduce/scan though the partial reductions

placed in shared memory by the other warps. This serial raking process

fused binning and scatter logic. Computation and time flow

-size w = 4 threads. The scan stages

w. Circles indicate the assignment of a given thread

independent processing phase is shown to perform

in orange. In this phase, the threads within

a single warp independently reduce/scan though the partial reductions

placed in shared memory by the other warps. This serial raking process

. Computation and time flow

= 4 threads. The scan stages

w. Circles indicate the assignment of a given thread ti to a binary

independent processing phase is shown to perform

114

ads within

a single warp independently reduce/scan though the partial reductions

placed in shared memory by the other warps. This serial raking process

. Computation and time flow

= 4 threads. The scan stages

to a binary

independent processing phase is shown to perform

115

transitions the problem size into one that can be cooperatively processed by

a single warp and back again, and is similar to the scan techniques

described by Dotsenko et al. [42]. This phase provides flexibility in terms

of facilitating shared memory allocations of different sizes, supporting

alternative SIMD warp sizes, and accommodating arbitrary numbers of

warps per CTA. For example, we double the GT200 tile size for the newer

GF100 architecture because of the increased amount of shared memory per

processor core.

c. Intra-warp cooperation, shown in red. For a given warp-size of w threads,

the intra-warp phase implements log2w steps of a Kogge-Stone scan [74] in

a synchronization-free SIMD fashion. The r running digit totals from the

previous tile are carried into this SIMD “warpscan”, incorporated into the

prefix sums of the current tile’s elements, and new running totals are

carried out for the next tile, all in local shared memory.

3) Key scattering. The scatter operation is provided with the tile of keys, their local

ranks/prefix sums, the tile’s digit totals, and the incoming running digit totals.

Although each scatter thread could use this information to distribute the same keys

that it obtained during decoding, doing so would result in poor write coherence.

Instead we implement a key exchange. We use the local ranks to scatter keys into

a pool of local shared memory, repurposing the raking storage. Then consecutive

threads can acquire consecutive keys and scatter them to global device memory

with a minimal number of memory transactions. We compute a SIMD prefix sum

116

of the local digit totals in order to determine the locations of each of the r

segments of newly-coherent keys within this pool.

Although our two-phase scatter procedure is fairly expensive in terms of dynamic

instruction overhead and arbitrary bank conflicts, it is much more efficient than the

sorting phase implemented by Satish et al. [97]. Their sorting phase performs d iterations

of binary-split, exchanging keys (and values) d times within shared memory, whereas our

approach only exchanges them once.

5.4 OPTIMIZATIONS

Our implementation incorporates three important optimizations for improving the

efficiency and utility of the radix sorting method: composite scan, early-exit, and flexible

tuning. Composite scans exploit bitwise parallelism for much more efficient

computation. Early-exit often allows our implementation to skip unnecessary distribution

passes for sorting problems having less-than-uniform key distributions. Tuning

flexibility facilitates the discovery of program specializations that fit well with the

specific target architecture and sorting problem at hand.

5.4.1 Composite scan

In order to increase the computational efficiency of our implementation, we employ a

method for encoding multiple binary-valued flag vectors into a single, composite

representation. By using the otherwise unused high-order bits of the flag words and the

bitwise parallelism of addition, our composite scan technique allows us to compute

several logical scan tasks while only incurring the cost of a single parallel scan.

For example, by breaking a tile of keys into subtiles of 256-element multi-scans,

the scan logic can encode up to four digit flags within a single 32-bit word, with one byte

117

used for each logical scan. The bit-wise parallelism of 32-bit addition allows us to

effectively process four radix digits with a single composite scan. To process the sixteen

logical arrays of partial flag sums when d = 4 bits, we therefore only need local storage

for 4 scan vectors.

5.4.2 Early exit

In many sorting scenarios, the input keys reflect a banded distribution. For example, the

upper bits are often all zero in many integer sorting problems. Similarly the sign and

exponent bits may be homogenous for floating point problems. If this is known a priori,

the sorting passes for these corresponding digit-places can be explicitly skipped.

Unfortunately this knowledge may not be available for a given sorting problem or there

may be abstraction layers that prevent application-level code from being aware that a

radix-based sorting method is being used.

To provide the benefits of fewer passes for banded keys in a completely

transparent fashion, we implement a novel, early-exit decision check at the beginning of

the downsweep kernel in each distribution sorting pass. By inspecting the partition

offsets output by the spine scan kernel, the downsweep CTAs can determine if all keys

have the same bits at the current digit place. If there are no partition offsets within the

range [1, n-1], the downsweep kernel is able to terminate early, leaving the keys in place.

Some passes cannot be short-circuited, however. When sorting signed or floating

point keys, the first and last passes must be executed in full, if only to perform the “bit-

twiddling” necessary for these types to be radix-sorted. For example, the most-

significant bits for signed integer types need to be flipped before the first pass and after

the last.

118

5.4.3 Flexible tuning

Radix sorting exhibits a fundamental tradeoff with regard to tile size b versus processor

core occupancy. Both the tile size and the number of radix digits r will determine the

local storage requirements (e.g., register and shared memory allocations) for a given

CTA. Increasing the tile size has two effects: it increases the write coherence for

scattering keys; and it comparatively lowers the relative overheads from the work-

inefficient portions of our local scan. However, too large a tile size will prevent the

processor cores from being occupied by enough CTAs to cover shared-memory latencies

when only raking warps are active.

For different data types, this performance cliff occurs at different tile sizes for

different architectures, and is dependent upon register and shared memory availability

and pipeline depths. For example, the GT200 architecture allows us to unroll two

subtiles per tile due to the amount of shared memory provisioned per core. Furthermore,

performance tuning reveals better throughput using 128-thread CTAs where each thread

processes two keys. In contrast, we can unroll four subtiles per tile on newer GF100

processors having larger cores, and better performance is achieved using 64-thread CTAs

where each thread processes four keys. For both architectures, we must halve the tile size

when sorting 64-bit keys because the storage required for scattering keys to local shared

memory is doubled. Similarly, we can double the tile size when sorting 16-bit shorts and

8-bit chars.

As described in Chapter 3, we establish rules for generating such tuning policies

for different combinations of problem type (i.e., key/value types) and processor

architecture. These tuning policies are expressed as C++ types when are then used to

parameterize our templated sorting implementation. We rely on the compiler for

119

template expansion, constant propagation, and loop unrolling in order to produce an

executable assembly that is well-tuned for the specifically targeted hardware and problem

type.

5.5 ANALYTICAL MODEL

The computational workload for distribution sorting passes can be decomposed into two

portions: work that scales directly with the size of the input (i.e., moving and decoding

keys); and work that scales proportionally with the size of the input multiplied by the

number of radix digits (i.e., the r concurrent scans). Because the computational overhead

of the downsweep scan kernel dominates that of the upsweep reduction kernel, we base

our granularity decisions upon modeling the former.

We model downsweep kernel work in terms of the following tasks: (1) data-

movement to/from global memory; (2) digit inspection and encoding of flag vectors in

shared memory; (3) shared-memory scanning; (4) decoding local rank from shared

memory; (5) and locally exchanging keys and values prior to scatter. For a given key-

value pair, each task incurs a fixed cost α in terms of thread-instructions. The flag-

encoding and scanning operations will also incur a per-pair cost of β instructions per

composite scan. We model cumulative thread-instruction count using:

��������	
��

����, �� 	= 	� ����� + ��
���	�� + ���	
 + ������	�� + �����	
�� +
�� � �
���	�� +	 ��	
!"

We can use instrumentation to determine these coefficients for a given

architecture / processor family. For example, instrsscankernel(n,r) = n (51.4 + 1.0r) for

120

sorting pairs of 32-bit keys and values on the NVIDIA GT200 architecture. The

instruction costs per pair are (not including warp-serializations):

αmem = 6.3

αencflags = 5.5

αscan = 10.7

αdecflags = 13.9

αexchange = 14.7

The instruction costs per pair per composite scan are:

βencflags = 2.6 βscan = 1.4

Minimizing this parameterized function for GT200, the radix sorting granularity

with the lowest computational overhead is d = 4 bits (r = 16 radix digits).

Parameterizations for G80, G92, and GF100 architectures yield the same granularity.

Although d=4 is minimal for the GTX285, the model predicts that the downsweep

kernel will still be compute-bound: the overhead per pair is 67.4 instructions, which

exceeds the memory wall of 52 instructions illustrated in Fig. 49. For this specific

processor, the performance will strictly be a function of compute workload. However, as

increases in computational throughput continue to outpace increases in memory

bandwidth, it is likely that the bubble of memory-boundedness will eventually provide us

with room to increase d past the minimum computational workload without penalty in

order to reduce overall passes.

5.6 EVALUATION

This section presents the performance of our allocation-oriented radix sorting strategy.

We present our own performance measurements of the implementation by Satish et al.

(via CUDPP v1.1 [35]), which is representative of the current state of the art in GPU

121

sorting. We also contrast our sorting performance with contemporary x86-based many-

core sorting results [30, 98, 99].

5.6.1 Configuration and methodology

Our primary test environment consisted of a Linux platform with an NVIDIA GTX285

GPU running the CUDA 3.2 compiler and driver framework. Our analyses are derived

from measurements taken over a suite of ~3,000 randomly-sized problem sequences (up

to 128M elements). Each sorting problem is initialized with 32-bit keys and values

sampled from a uniformly random distribution. We primarily evaluate key-value pair

sorting, but also report results for keys-only sorting. Our measurements for elapsed time,

dynamic instruction count, warp serializations, memory transactions, etc., are taken

directly from GPU hardware performance counters. Our analyses are reflective of in situ

sorting problems: they preclude the driver overhead and the overheads of staging data

Table 8. Saturated 32-bit sorting rates for input sequences larger than 16M elements

Device Keys-only Sorting Rate Key-Value Sorting Rate

(10

6
 32-bit keys/s) (10

6
 32-bit pairs/s)

Name
CUDPP

Radix

Our Radix

(speedup)

CUDPP

Radix

Our Radix

(speedup)

NVIDIA GTX 580

1182

882

NVIDIA GTX 480 349 1005 (2.9x) 257 775 (3.0x)

NVIDIA Tesla C2050 270 742 (2.7x) 200 581 (2.9x)

NVIDIA GTX 285 199 615 (2.8x) 134 490 (3.7x)

NVIDIA GTX 280 184 534 (2.6x) 117 449 (3.8x)

NVIDIA Tesla C1060 176 524 (2.7x) 111 333 (3.0x)

NVIDIA 9800 GTX+ 111 265 (2.0x) 82 189 (2.0x)

NVIDIA 8800 GT 83 171 (2.1x) 63 129 (2.1x)

NVIDIA Quadro FX5600 66 147 (2.2x) 55 110 (2.0x)

Intel 32-core Knight's Ferry MIC [9]

560

Intel quad-core i7 [7]

240

Intel Q9550 quad-core [8]

138

to/from the accelerator, allowing us to directly contrast the individual and cumulative

performance of the stream kernels involved.

5.6.2

Fig.

and the CUDPP primitive. We observe that the radix sorting performances plateau into

steady

2.8x speedups over the CUDPP implementation on the same device, our key

key

sampled problem sizes

generations of NVIDIA GPU processors.

of the “best available”

saturated sorting rates on these devices for input sequences of 16M+ keys are

Table

Quad Q9550 CPU and, perhaps more strikingly, our sorting rates for previous

Fig.

rates

to/from the accelerator, allowing us to directly contrast the individual and cumulative

performance of the stream kernels involved.

5.6.2 Overall

Fig. 51 plots the measured radix sorting rates exhibited by our

and the CUDPP primitive. We observe that the radix sorting performances plateau into

steady-state as the GPU’s resources be

2.8x speedups over the CUDPP implementation on the same device, our key

key-only implementations provide smoother, more consistent performance across the

sampled problem sizes

generations of NVIDIA GPU processors.

Recent

of the “best available”

saturated sorting rates on these devices for input sequences of 16M+ keys are

Table 8. Using

Quad Q9550 CPU and, perhaps more strikingly, our sorting rates for previous

Fig. 51. GTX285

rates.

to/from the accelerator, allowing us to directly contrast the individual and cumulative

performance of the stream kernels involved.

 sorting rates

plots the measured radix sorting rates exhibited by our

and the CUDPP primitive. We observe that the radix sorting performances plateau into

state as the GPU’s resources be

2.8x speedups over the CUDPP implementation on the same device, our key

only implementations provide smoother, more consistent performance across the

sampled problem sizes.

generations of NVIDIA GPU processors.

Recent publications

of the “best available” implementations for

saturated sorting rates on these devices for input sequences of 16M+ keys are

. Using our method, all of the NVI

Quad Q9550 CPU and, perhaps more strikingly, our sorting rates for previous

285 keys-only and k

to/from the accelerator, allowing us to directly contrast the individual and cumulative

performance of the stream kernels involved.

ates

plots the measured radix sorting rates exhibited by our

and the CUDPP primitive. We observe that the radix sorting performances plateau into

state as the GPU’s resources be

2.8x speedups over the CUDPP implementation on the same device, our key

only implementations provide smoother, more consistent performance across the

 Table 8 presents speedups over CUDPP of 2.0

generations of NVIDIA GPU processors.

publications have set a precedent of comparing the sorting performances

implementations for

saturated sorting rates on these devices for input sequences of 16M+ keys are

our method, all of the NVI

Quad Q9550 CPU and, perhaps more strikingly, our sorting rates for previous

only and key-value pair radix sorting

to/from the accelerator, allowing us to directly contrast the individual and cumulative

performance of the stream kernels involved.

plots the measured radix sorting rates exhibited by our

and the CUDPP primitive. We observe that the radix sorting performances plateau into

state as the GPU’s resources become saturated. In addition to exhibiting 3.7x and

2.8x speedups over the CUDPP implementation on the same device, our key

only implementations provide smoother, more consistent performance across the

presents speedups over CUDPP of 2.0

generations of NVIDIA GPU processors.

have set a precedent of comparing the sorting performances

implementations for GPU and CPU

saturated sorting rates on these devices for input sequences of 16M+ keys are

our method, all of the NVIDIA GPUs outperform the Intel Xeon Core2

Quad Q9550 CPU and, perhaps more strikingly, our sorting rates for previous

value pair radix sorting

to/from the accelerator, allowing us to directly contrast the individual and cumulative

plots the measured radix sorting rates exhibited by our

and the CUDPP primitive. We observe that the radix sorting performances plateau into

come saturated. In addition to exhibiting 3.7x and

2.8x speedups over the CUDPP implementation on the same device, our key

only implementations provide smoother, more consistent performance across the

presents speedups over CUDPP of 2.0

have set a precedent of comparing the sorting performances

GPU and CPU architecture

saturated sorting rates on these devices for input sequences of 16M+ keys are

DIA GPUs outperform the Intel Xeon Core2

Quad Q9550 CPU and, perhaps more strikingly, our sorting rates for previous

Fig. 52. GTX285 s

various radix bits

to/from the accelerator, allowing us to directly contrast the individual and cumulative

plots the measured radix sorting rates exhibited by our d = 4 bits implementation

and the CUDPP primitive. We observe that the radix sorting performances plateau into

come saturated. In addition to exhibiting 3.7x and

2.8x speedups over the CUDPP implementation on the same device, our key

only implementations provide smoother, more consistent performance across the

presents speedups over CUDPP of 2.0

have set a precedent of comparing the sorting performances

architecture [30, 98, 99]

saturated sorting rates on these devices for input sequences of 16M+ keys are

DIA GPUs outperform the Intel Xeon Core2

Quad Q9550 CPU and, perhaps more strikingly, our sorting rates for previous

GTX285 saturated sorting rates

various radix bits d (32-bit key

to/from the accelerator, allowing us to directly contrast the individual and cumulative

= 4 bits implementation

and the CUDPP primitive. We observe that the radix sorting performances plateau into

come saturated. In addition to exhibiting 3.7x and

2.8x speedups over the CUDPP implementation on the same device, our key-value and

only implementations provide smoother, more consistent performance across the

presents speedups over CUDPP of 2.0-3.8x for all

have set a precedent of comparing the sorting performances

[30, 98, 99]. The

saturated sorting rates on these devices for input sequences of 16M+ keys are denoted

DIA GPUs outperform the Intel Xeon Core2

Quad Q9550 CPU and, perhaps more strikingly, our sorting rates for previous-generation

aturated sorting rates for

bit key-value pairs

122

to/from the accelerator, allowing us to directly contrast the individual and cumulative

= 4 bits implementation

and the CUDPP primitive. We observe that the radix sorting performances plateau into

come saturated. In addition to exhibiting 3.7x and

value and

only implementations provide smoother, more consistent performance across the

3.8x for all

have set a precedent of comparing the sorting performances

. The

denoted in

DIA GPUs outperform the Intel Xeon Core2

generation

for

pairs)

GT200 GPUs exhibit performance on par with or better than

Knights Ferry

thus decreasing the number of distribution sorting passes) for 1

that throughput improves as

impair performance, both related to the exponential growth of the

need scanning. The first is that the cumulative computational workload is no longer

decreasing with reduced passes. As predicted by the model, the two bottom

are compute

workload will only result in progressively larger slowdowns. The second issue is that

the increased local storage requirements (i.e., registers and shared

processor

5.6.3

Fig.

the CUDPP implementati

thread

GT200 GPUs exhibit performance on par with or better than

Knights Ferry

Fig. 52

thus decreasing the number of distribution sorting passes) for 1

that throughput improves as

impair performance, both related to the exponential growth of the

need scanning. The first is that the cumulative computational workload is no longer

decreasing with reduced passes. As predicted by the model, the two bottom

are compute-

workload will only result in progressively larger slowdowns. The second issue is that

the increased local storage requirements (i.e., registers and shared

processor saturation: the occupancy per GPU core is reduced from 640 to 256 threads.

5.6.3 Resource utilization

Fig. 53 show

the CUDPP implementati

thread-cycles/s and 136

(a) Average utilized computational throughput

GT200 GPUs exhibit performance on par with or better than

Knights Ferry.

52 illustrates the effects of

thus decreasing the number of distribution sorting passes) for 1

that throughput improves as

impair performance, both related to the exponential growth of the

need scanning. The first is that the cumulative computational workload is no longer

decreasing with reduced passes. As predicted by the model, the two bottom

-bound under this load. Continuing to increase the overall computational

workload will only result in progressively larger slowdowns. The second issue is that

the increased local storage requirements (i.e., registers and shared

saturation: the occupancy per GPU core is reduced from 640 to 256 threads.

Resource utilization

shows the computational and

the CUDPP implementati

cycles/s and 136-

Average utilized computational throughput

Fig. 53.

GT200 GPUs exhibit performance on par with or better than

illustrates the effects of

thus decreasing the number of distribution sorting passes) for 1

that throughput improves as d increases for

impair performance, both related to the exponential growth of the

need scanning. The first is that the cumulative computational workload is no longer

decreasing with reduced passes. As predicted by the model, the two bottom

bound under this load. Continuing to increase the overall computational

workload will only result in progressively larger slowdowns. The second issue is that

the increased local storage requirements (i.e., registers and shared

saturation: the occupancy per GPU core is reduced from 640 to 256 threads.

the computational and

the CUDPP implementation. The

-149x10
9
 bytes/s, respectively. Our 3

Average utilized computational throughput

. Resource utilization for 32

GT200 GPUs exhibit performance on par with or better than

illustrates the effects of increasing

thus decreasing the number of distribution sorting passes) for 1

increases for d < 5. When

impair performance, both related to the exponential growth of the

need scanning. The first is that the cumulative computational workload is no longer

decreasing with reduced passes. As predicted by the model, the two bottom

bound under this load. Continuing to increase the overall computational

workload will only result in progressively larger slowdowns. The second issue is that

the increased local storage requirements (i.e., registers and shared

saturation: the occupancy per GPU core is reduced from 640 to 256 threads.

the computational and memory throughputs realized by our variants and

on. The GTX285 provides realistic maximums of 354x10

bytes/s, respectively. Our 3

Resource utilization for 32-bit key

GT200 GPUs exhibit performance on par with or better than

increasing the number of radix digit bits

thus decreasing the number of distribution sorting passes) for 1

< 5. When d

impair performance, both related to the exponential growth of the

need scanning. The first is that the cumulative computational workload is no longer

decreasing with reduced passes. As predicted by the model, the two bottom

bound under this load. Continuing to increase the overall computational

workload will only result in progressively larger slowdowns. The second issue is that

the increased local storage requirements (i.e., registers and shared

saturation: the occupancy per GPU core is reduced from 640 to 256 threads.

throughputs realized by our variants and

285 provides realistic maximums of 354x10

bytes/s, respectively. Our 3

(b) Average utilized memory bandwidth

bit key-value sorting

GT200 GPUs exhibit performance on par with or better than the unreleased Intel 32

the number of radix digit bits

thus decreasing the number of distribution sorting passes) for 1 ≤ d ≤ 5 bits. We observe

d ≥ 5, two issues conspi

impair performance, both related to the exponential growth of the r = 2
d

need scanning. The first is that the cumulative computational workload is no longer

decreasing with reduced passes. As predicted by the model, the two bottom

bound under this load. Continuing to increase the overall computational

workload will only result in progressively larger slowdowns. The second issue is that

the increased local storage requirements (i.e., registers and shared memory) prevent

saturation: the occupancy per GPU core is reduced from 640 to 256 threads.

throughputs realized by our variants and

285 provides realistic maximums of 354x10

bytes/s, respectively. Our 3-bit and 4

Average utilized memory bandwidth

value sorting on GTX285.

unreleased Intel 32

the number of radix digit bits d

≤ 5 bits. We observe

 5, two issues conspi

d
 radix digits that

need scanning. The first is that the cumulative computational workload is no longer

decreasing with reduced passes. As predicted by the model, the two bottom-level kernels

bound under this load. Continuing to increase the overall computational

workload will only result in progressively larger slowdowns. The second issue is that

memory) prevent

saturation: the occupancy per GPU core is reduced from 640 to 256 threads.

throughputs realized by our variants and

285 provides realistic maximums of 354x10

bit and 4-bit variants

Average utilized memory bandwidth

123

unreleased Intel 32-core

d (and

 5 bits. We observe

 5, two issues conspire to

radix digits that

need scanning. The first is that the cumulative computational workload is no longer

level kernels

bound under this load. Continuing to increase the overall computational

workload will only result in progressively larger slowdowns. The second issue is that

memory) prevent

saturation: the occupancy per GPU core is reduced from 640 to 256 threads.

throughputs realized by our variants and

285 provides realistic maximums of 354x10
9

bit variants

achieve more than 94% of this computational throughput. The 1

implementations have a mixture

in lower overall averages for both workloads. The 5

under

of the available computa

5.6.4

Our five variants in

digit size: workload decreases with the number of passes until the cost of scanning radix

digits beco

cycles consumed by scalar instructions as well as the number of stall cycles incurred by

the warp

values i

implementation may seem substantial, yet efficiency is 2.7x that of the CUDPP

implementation.

invocations that comprise a distribution sorting pass. For

workload deltas between scan kernels double as

achieve more than 94% of this computational throughput. The 1

implementations have a mixture

in lower overall averages for both workloads. The 5

under-occupied

of the available computa

5.6.4 Computational workloads

Our five variants in

digit size: workload decreases with the number of passes until the cost of scanning radix

digits becomes dominant at

cycles consumed by scalar instructions as well as the number of stall cycles incurred by

the warp-serializations that primarily result from the random exchanges of keys and

values in shared memory. The 723 thread

implementation may seem substantial, yet efficiency is 2.7x that of the CUDPP

implementation.

Fig.

invocations that comprise a distribution sorting pass. For

workload deltas between scan kernels double as

(a) Aggregate computational overhead

achieve more than 94% of this computational throughput. The 1

implementations have a mixture

in lower overall averages for both workloads. The 5

occupied processor

of the available computational throughput.

Computational workloads

Our five variants in Fig.

digit size: workload decreases with the number of passes until the cost of scanning radix

mes dominant at

cycles consumed by scalar instructions as well as the number of stall cycles incurred by

serializations that primarily result from the random exchanges of keys and

n shared memory. The 723 thread

implementation may seem substantial, yet efficiency is 2.7x that of the CUDPP

implementation.

Fig. 54b presents the computational overheads of the indi

invocations that comprise a distribution sorting pass. For

workload deltas between scan kernels double as

Aggregate computational overhead

Fig. 54. Computational workload for 32

achieve more than 94% of this computational throughput. The 1

implementations have a mixture of compute

in lower overall averages for both workloads. The 5

processor cores: its kernels are compute

tional throughput.

Computational workloads

Fig. 54a corroborate our model of computational overhead versus

digit size: workload decreases with the number of passes until the cost of scanning radix

mes dominant at d = 5. This overhead is inclusive of the number of thread

cycles consumed by scalar instructions as well as the number of stall cycles incurred by

serializations that primarily result from the random exchanges of keys and

n shared memory. The 723 thread

implementation may seem substantial, yet efficiency is 2.7x that of the CUDPP

presents the computational overheads of the indi

invocations that comprise a distribution sorting pass. For

workload deltas between scan kernels double as

Aggregate computational overhead

Computational workload for 32

achieve more than 94% of this computational throughput. The 1

of compute-bound and memory

in lower overall averages for both workloads. The 5

cores: its kernels are compute

tional throughput.

corroborate our model of computational overhead versus

digit size: workload decreases with the number of passes until the cost of scanning radix

= 5. This overhead is inclusive of the number of thread

cycles consumed by scalar instructions as well as the number of stall cycles incurred by

serializations that primarily result from the random exchanges of keys and

n shared memory. The 723 thread-cycles executed per input pair by our 4

implementation may seem substantial, yet efficiency is 2.7x that of the CUDPP

presents the computational overheads of the indi

invocations that comprise a distribution sorting pass. For

workload deltas between scan kernels double as

(b) Computational overhead per distribution sorting pass

Computational workload for 32-bi

achieve more than 94% of this computational throughput. The 1

bound and memory

in lower overall averages for both workloads. The 5-bit variant illustrates the effects of

cores: its kernels are compute-bound, yet it only utilizes 68%

corroborate our model of computational overhead versus

digit size: workload decreases with the number of passes until the cost of scanning radix

= 5. This overhead is inclusive of the number of thread

cycles consumed by scalar instructions as well as the number of stall cycles incurred by

serializations that primarily result from the random exchanges of keys and

cycles executed per input pair by our 4

implementation may seem substantial, yet efficiency is 2.7x that of the CUDPP

presents the computational overheads of the indi

invocations that comprise a distribution sorting pass. For

workload deltas between scan kernels double as d is incremented, scaling with

Computational overhead per distribution sorting pass

bit key-value sorting

achieve more than 94% of this computational throughput. The 1-bit, 2-

bound and memory-bound kernels, resulting

bit variant illustrates the effects of

bound, yet it only utilizes 68%

corroborate our model of computational overhead versus

digit size: workload decreases with the number of passes until the cost of scanning radix

= 5. This overhead is inclusive of the number of thread

cycles consumed by scalar instructions as well as the number of stall cycles incurred by

serializations that primarily result from the random exchanges of keys and

cycles executed per input pair by our 4

implementation may seem substantial, yet efficiency is 2.7x that of the CUDPP

presents the computational overheads of the indi

invocations that comprise a distribution sorting pass. For d > 2, we observe that the

is incremented, scaling with

Computational overhead per distribution sorting pass

value sorting on GTX285.

-bit, and CUDPP

bound kernels, resulting

bit variant illustrates the effects of

bound, yet it only utilizes 68%

corroborate our model of computational overhead versus

digit size: workload decreases with the number of passes until the cost of scanning radix

= 5. This overhead is inclusive of the number of thread

cycles consumed by scalar instructions as well as the number of stall cycles incurred by

serializations that primarily result from the random exchanges of keys and

cycles executed per input pair by our 4

implementation may seem substantial, yet efficiency is 2.7x that of the CUDPP

presents the computational overheads of the individual kernel

> 2, we observe that the

is incremented, scaling with

Computational overhead per distribution sorting pass

on GTX285.

124

bit, and CUDPP

bound kernels, resulting

bit variant illustrates the effects of

bound, yet it only utilizes 68%

corroborate our model of computational overhead versus

digit size: workload decreases with the number of passes until the cost of scanning radix

= 5. This overhead is inclusive of the number of thread-

cycles consumed by scalar instructions as well as the number of stall cycles incurred by

serializations that primarily result from the random exchanges of keys and

cycles executed per input pair by our 4-bit

implementation may seem substantial, yet efficiency is 2.7x that of the CUDPP

vidual kernel

> 2, we observe that the

is incremented, scaling with r as

expected and validating our model of instruction overhead. Our 1

do not follow this parameterized model: the optimizing compiler produces different code

for them because flag vector encoding requires only one composite scan.

5.6.5

The overall memory workloads for these implementations are sh

confirm that our memory overhead monotonically decreases with increasing

predicted by our

CUDPP implementation

broken down by kernel and

two 32

threads within the same half

memory bandwidth is used when this occurs: the memory subsystem rounds up to a full

sized transaction (e.

actual data.

r, starting at 70% overhead when

expected and validating our model of instruction overhead. Our 1

do not follow this parameterized model: the optimizing compiler produces different code

for them because flag vector encoding requires only one composite scan.

5.6.5 Memory workloads

The overall memory workloads for these implementations are sh

confirm that our memory overhead monotonically decreases with increasing

predicted by our

CUDPP implementation

Fig. 55

broken down by kernel and

two 32-bit words per p

threads within the same half

memory bandwidth is used when this occurs: the memory subsystem rounds up to a full

sized transaction (e.

actual data.

On the GT200 architecture, this extra traffic scales with the number of partitions

, starting at 70% overhead when

(a) Aggregate computational overhead

expected and validating our model of instruction overhead. Our 1

do not follow this parameterized model: the optimizing compiler produces different code

for them because flag vector encoding requires only one composite scan.

Memory workloads

The overall memory workloads for these implementations are sh

confirm that our memory overhead monotonically decreases with increasing

predicted by our memory traffic model (

CUDPP implementation is 1.6x that of our 4

55b illustrates the memory overheads for a single distribution sorting pass,

broken down by kernel and

bit words per pair, we observe that the hardware issues separate transactions when

threads within the same half

memory bandwidth is used when this occurs: the memory subsystem rounds up to a full

sized transaction (e.g., 32B / 64B / 128B), even though only a portion of it may contain

On the GT200 architecture, this extra traffic scales with the number of partitions

, starting at 70% overhead when

Aggregate computational overhead

Fig. 55.

expected and validating our model of instruction overhead. Our 1

do not follow this parameterized model: the optimizing compiler produces different code

for them because flag vector encoding requires only one composite scan.

The overall memory workloads for these implementations are sh

confirm that our memory overhead monotonically decreases with increasing

memory traffic model (

is 1.6x that of our 4

illustrates the memory overheads for a single distribution sorting pass,

broken down by kernel and granularity

air, we observe that the hardware issues separate transactions when

threads within the same half-warp scatter keys to different memory segments. Extra

memory bandwidth is used when this occurs: the memory subsystem rounds up to a full

g., 32B / 64B / 128B), even though only a portion of it may contain

On the GT200 architecture, this extra traffic scales with the number of partitions

, starting at 70% overhead when r = 2. For

Aggregate computational overhead

. Memory workload for 32

expected and validating our model of instruction overhead. Our 1

do not follow this parameterized model: the optimizing compiler produces different code

for them because flag vector encoding requires only one composite scan.

The overall memory workloads for these implementations are sh

confirm that our memory overhead monotonically decreases with increasing

memory traffic model (Fig. 44

is 1.6x that of our 4-bit variant.

illustrates the memory overheads for a single distribution sorting pass,

granularity. Although our scatter instructions logically write

air, we observe that the hardware issues separate transactions when

warp scatter keys to different memory segments. Extra

memory bandwidth is used when this occurs: the memory subsystem rounds up to a full

g., 32B / 64B / 128B), even though only a portion of it may contain

On the GT200 architecture, this extra traffic scales with the number of partitions

= 2. For r = 16, this overhead exceeds our explicit

(b) Computational overhead per distribution sorting pass

Memory workload for 32-bit key

expected and validating our model of instruction overhead. Our 1

do not follow this parameterized model: the optimizing compiler produces different code

for them because flag vector encoding requires only one composite scan.

The overall memory workloads for these implementations are sh

confirm that our memory overhead monotonically decreases with increasing

44), the memory workload of the

bit variant.

illustrates the memory overheads for a single distribution sorting pass,

. Although our scatter instructions logically write

air, we observe that the hardware issues separate transactions when

warp scatter keys to different memory segments. Extra

memory bandwidth is used when this occurs: the memory subsystem rounds up to a full

g., 32B / 64B / 128B), even though only a portion of it may contain

On the GT200 architecture, this extra traffic scales with the number of partitions

= 16, this overhead exceeds our explicit

Computational overhead per distribution sorting pass

bit key-value sorting

expected and validating our model of instruction overhead. Our 1-bit an

do not follow this parameterized model: the optimizing compiler produces different code

for them because flag vector encoding requires only one composite scan.

The overall memory workloads for these implementations are shown in

confirm that our memory overhead monotonically decreases with increasing

, the memory workload of the

illustrates the memory overheads for a single distribution sorting pass,

. Although our scatter instructions logically write

air, we observe that the hardware issues separate transactions when

warp scatter keys to different memory segments. Extra

memory bandwidth is used when this occurs: the memory subsystem rounds up to a full

g., 32B / 64B / 128B), even though only a portion of it may contain

On the GT200 architecture, this extra traffic scales with the number of partitions

= 16, this overhead exceeds our explicit

Computational overhead per distribution sorting pass

value sorting on GTX285.

bit and 2-bit variants

do not follow this parameterized model: the optimizing compiler produces different code

for them because flag vector encoding requires only one composite scan.

own in Fig. 55a. We

confirm that our memory overhead monotonically decreases with increasing d. As

, the memory workload of the

illustrates the memory overheads for a single distribution sorting pass,

. Although our scatter instructions logically write

air, we observe that the hardware issues separate transactions when

warp scatter keys to different memory segments. Extra

memory bandwidth is used when this occurs: the memory subsystem rounds up to a full

g., 32B / 64B / 128B), even though only a portion of it may contain

On the GT200 architecture, this extra traffic scales with the number of partitions

= 16, this overhead exceeds our explicit

Computational overhead per distribution sorting pass

125

bit variants

do not follow this parameterized model: the optimizing compiler produces different code

. We

. As

 4-bit

illustrates the memory overheads for a single distribution sorting pass,

. Although our scatter instructions logically write

air, we observe that the hardware issues separate transactions when

warp scatter keys to different memory segments. Extra

memory bandwidth is used when this occurs: the memory subsystem rounds up to a full-

g., 32B / 64B / 128B), even though only a portion of it may contain

On the GT200 architecture, this extra traffic scales with the number of partitions

= 16, this overhead exceeds our explicit

memo

a 22% cumulative increase.

being memory

workload ratios for each of the stream kernels relative to the

see that for

The CUDPP imp

compute

5.6.6

The distribution of key

traditional expe

will yield worst

scatter transactions. As the bits become less uniform and certain digits become more

like

decreases. The increased efficiency typically results in

improvement

variance

Fig.

memory wall for the

compute

memory traffic model (

a 22% cumulative increase.

GPU processors are less efficient when consecutive kernels oscillate between

being memory

workload ratios for each of the stream kernels relative to the

see that for d

The CUDPP imp

compute-bound kernels, resulting in an overall underutilization of hardware

5.6.6 Key diversity

The distribution of key

traditional expe

will yield worst

scatter transactions. As the bits become less uniform and certain digits become more

likely than others, the expected number of memory segments touched per SIMD

decreases. The increased efficiency typically results in

improvement

variance: decreased entropy and key banding.

Fig. 56. Memory vs. compute workload ratios for individual

memory wall for the

compute-bound.

ry traffic model (Fig.

a 22% cumulative increase.

GPU processors are less efficient when consecutive kernels oscillate between

being memory-bound and being compute

workload ratios for each of the stream kernels relative to the

d > 2, our distribution sorting streams only contain compute

The CUDPP implementation contains a mixture of memory

bound kernels, resulting in an overall underutilization of hardware

Key diversity

The distribution of key-bits can have an impact on the overall sorting performance. The

traditional expectation for radix sorting is that a perfectly uniform distribution of key bits

will yield worst-case performance because it produces the highest number of fragmented

scatter transactions. As the bits become less uniform and certain digits become more

ly than others, the expected number of memory segments touched per SIMD

decreases. The increased efficiency typically results in

improvement. We evaluate two classes of key distributions having less

: decreased entropy and key banding.

Memory vs. compute workload ratios for individual

memory wall for the GTX285 (i.e., 0.45 bytes/cycle), illustrating the degree to which kernels are memory

Fig. 44) by 28%, whereas the CUDPP implementation incurs only

a 22% cumulative increase.

GPU processors are less efficient when consecutive kernels oscillate between

bound and being compute

workload ratios for each of the stream kernels relative to the

> 2, our distribution sorting streams only contain compute

lementation contains a mixture of memory

bound kernels, resulting in an overall underutilization of hardware

bits can have an impact on the overall sorting performance. The

ctation for radix sorting is that a perfectly uniform distribution of key bits

case performance because it produces the highest number of fragmented

scatter transactions. As the bits become less uniform and certain digits become more

ly than others, the expected number of memory segments touched per SIMD

decreases. The increased efficiency typically results in

We evaluate two classes of key distributions having less

: decreased entropy and key banding.

Memory vs. compute workload ratios for individual

285 (i.e., 0.45 bytes/cycle), illustrating the degree to which kernels are memory

by 28%, whereas the CUDPP implementation incurs only

GPU processors are less efficient when consecutive kernels oscillate between

bound and being compute-bound.

workload ratios for each of the stream kernels relative to the

> 2, our distribution sorting streams only contain compute

lementation contains a mixture of memory

bound kernels, resulting in an overall underutilization of hardware

bits can have an impact on the overall sorting performance. The

ctation for radix sorting is that a perfectly uniform distribution of key bits

case performance because it produces the highest number of fragmented

scatter transactions. As the bits become less uniform and certain digits become more

ly than others, the expected number of memory segments touched per SIMD

decreases. The increased efficiency typically results in

We evaluate two classes of key distributions having less

: decreased entropy and key banding.

Memory vs. compute workload ratios for individual sorting

285 (i.e., 0.45 bytes/cycle), illustrating the degree to which kernels are memory

by 28%, whereas the CUDPP implementation incurs only

GPU processors are less efficient when consecutive kernels oscillate between

bound. Fig. 56

workload ratios for each of the stream kernels relative to the

> 2, our distribution sorting streams only contain compute

lementation contains a mixture of memory

bound kernels, resulting in an overall underutilization of hardware

bits can have an impact on the overall sorting performance. The

ctation for radix sorting is that a perfectly uniform distribution of key bits

case performance because it produces the highest number of fragmented

scatter transactions. As the bits become less uniform and certain digits become more

ly than others, the expected number of memory segments touched per SIMD

decreases. The increased efficiency typically results in a corresponding

We evaluate two classes of key distributions having less

sorting kernels. The two

285 (i.e., 0.45 bytes/cycle), illustrating the degree to which kernels are memory

by 28%, whereas the CUDPP implementation incurs only

GPU processors are less efficient when consecutive kernels oscillate between

 illustrates the corresponding

workload ratios for each of the stream kernels relative to the GTX285 memory wall. We

> 2, our distribution sorting streams only contain compute

lementation contains a mixture of memory-bound and extremely

bound kernels, resulting in an overall underutilization of hardware

bits can have an impact on the overall sorting performance. The

ctation for radix sorting is that a perfectly uniform distribution of key bits

case performance because it produces the highest number of fragmented

scatter transactions. As the bits become less uniform and certain digits become more

ly than others, the expected number of memory segments touched per SIMD

a corresponding

We evaluate two classes of key distributions having less

. The two-tone backdrop demarcates the

285 (i.e., 0.45 bytes/cycle), illustrating the degree to which kernels are memory

by 28%, whereas the CUDPP implementation incurs only

GPU processors are less efficient when consecutive kernels oscillate between

illustrates the corresponding

285 memory wall. We

> 2, our distribution sorting streams only contain compute-bound kernels.

bound and extremely

bound kernels, resulting in an overall underutilization of hardware

bits can have an impact on the overall sorting performance. The

ctation for radix sorting is that a perfectly uniform distribution of key bits

case performance because it produces the highest number of fragmented

scatter transactions. As the bits become less uniform and certain digits become more

ly than others, the expected number of memory segments touched per SIMD-

a corresponding performance

We evaluate two classes of key distributions having less-than-uniform

tone backdrop demarcates the

285 (i.e., 0.45 bytes/cycle), illustrating the degree to which kernels are memory-bound or

126

by 28%, whereas the CUDPP implementation incurs only

GPU processors are less efficient when consecutive kernels oscillate between

illustrates the corresponding

285 memory wall. We

bound kernels.

bound and extremely

bits can have an impact on the overall sorting performance. The

ctation for radix sorting is that a perfectly uniform distribution of key bits

case performance because it produces the highest number of fragmented

scatter transactions. As the bits become less uniform and certain digits become more

-write

performance

uniform

tone backdrop demarcates the

bound or

keys is a

keys that trend towards having more 0s than 1s bits b

together uniformly

decreases.

key

improves as keys become less random.

range of improvement of up to 11% for keys

is activated at zero

memory workload. These kernels are compute

from the elimination of warp

during key exchange.

key diversity. In these scenarios, keys are differentiated only by narrow bands of key

Fig.

bit keys

Decreased entropy

keys is a common technique for reducing key variance

keys that trend towards having more 0s than 1s bits b

together uniformly

decreases. An infinite number of bitwise

key-distribution of all 0s.

improves as keys become less random.

range of improvement of up to 11% for keys

is activated at zero

Interestingly enough, our performance improvement is not a result of lower

memory workload. These kernels are compute

from the elimination of warp

during key exchange.

Key banding

key diversity. In these scenarios, keys are differentiated only by narrow bands of key

Fig. 57. Sorting performance with varying key entropy

bit keys-only, GTX285)

Decreased entropy

common technique for reducing key variance

keys that trend towards having more 0s than 1s bits b

together uniformly-random bits.

An infinite number of bitwise

distribution of all 0s.

improves as keys become less random.

range of improvement of up to 11% for keys

is activated at zero-effect

Interestingly enough, our performance improvement is not a result of lower

memory workload. These kernels are compute

from the elimination of warp

during key exchange.

Key banding. Banding

key diversity. In these scenarios, keys are differentiated only by narrow bands of key

Sorting performance with varying key entropy

285).

Decreased entropy. The reduction of bitwise entropy within randomly selected

common technique for reducing key variance

keys that trend towards having more 0s than 1s bits b

random bits. For each bitwise

An infinite number of bitwise

distribution of all 0s. Fig. 57

improves as keys become less random.

range of improvement of up to 11% for keys

effective bits.

Interestingly enough, our performance improvement is not a result of lower

memory workload. These kernels are compute

from the elimination of warp-serialization hazards that stem from bank conflicts incurr

Banding (or “clumping”)

key diversity. In these scenarios, keys are differentiated only by narrow bands of key

Sorting performance with varying key entropy

The reduction of bitwise entropy within randomly selected

common technique for reducing key variance

keys that trend towards having more 0s than 1s bits b

For each bitwise

An infinite number of bitwise-AND iterations results in a completely unif

57 confirms that our implementation’s performance

improves as keys become less random. Our evaluation of entropy reduction reveals a

range of improvement of up to 11% for keys-only sorting, and the early

Interestingly enough, our performance improvement is not a result of lower

memory workload. These kernels are compute

serialization hazards that stem from bank conflicts incurr

(or “clumping”) is perhaps a more likely form of reduced

key diversity. In these scenarios, keys are differentiated only by narrow bands of key

Sorting performance with varying key entropy (32- Fig.

banded ranges

The reduction of bitwise entropy within randomly selected

common technique for reducing key variance [112]

keys that trend towards having more 0s than 1s bits by repeatedly bitwise

For each bitwise-AND, the number of 1s bits per key

AND iterations results in a completely unif

confirms that our implementation’s performance

Our evaluation of entropy reduction reveals a

only sorting, and the early

Interestingly enough, our performance improvement is not a result of lower

memory workload. These kernels are compute-bound; the speedup is instead gained

serialization hazards that stem from bank conflicts incurr

is perhaps a more likely form of reduced

key diversity. In these scenarios, keys are differentiated only by narrow bands of key

Fig. 58. Sorting performance for key distributions with

banded ranges (32-bit keys

The reduction of bitwise entropy within randomly selected

[112]. The idea is to generate

y repeatedly bitwise

AND, the number of 1s bits per key

AND iterations results in a completely unif

confirms that our implementation’s performance

Our evaluation of entropy reduction reveals a

only sorting, and the early-

Interestingly enough, our performance improvement is not a result of lower

bound; the speedup is instead gained

serialization hazards that stem from bank conflicts incurr

is perhaps a more likely form of reduced

key diversity. In these scenarios, keys are differentiated only by narrow bands of key

Sorting performance for key distributions with

bit keys-only, GTX

The reduction of bitwise entropy within randomly selected

The idea is to generate

y repeatedly bitwise-ANDing

AND, the number of 1s bits per key

AND iterations results in a completely unif

confirms that our implementation’s performance

Our evaluation of entropy reduction reveals a

-exit optimization

Interestingly enough, our performance improvement is not a result of lower

bound; the speedup is instead gained

serialization hazards that stem from bank conflicts incurr

is perhaps a more likely form of reduced

key diversity. In these scenarios, keys are differentiated only by narrow bands of key

Sorting performance for key distributions with

GTX285)..

127

The reduction of bitwise entropy within randomly selected

The idea is to generate

ANDing

AND, the number of 1s bits per key

AND iterations results in a completely uniform

confirms that our implementation’s performance

Our evaluation of entropy reduction reveals a

exit optimization

Interestingly enough, our performance improvement is not a result of lower

bound; the speedup is instead gained

serialization hazards that stem from bank conflicts incurred

is perhaps a more likely form of reduced

key diversity. In these scenarios, keys are differentiated only by narrow bands of key

Sorting performance for key distributions with

128

bits. Fig. 46 illustrates the effectiveness of our early-exit optimization. Without

specifying any explicit information to the sorting implementation, we evaluate sorting

performance on key distributions whose keys differ only by variously-sized “banded” bit

fields.

For GTX285 keys-only sorting, we observe that the cost of a distribution pass is

reduced by 83% when short-circuited. Depending on the number of passes that exit

early, sorting rates can be improved by up to 5.8x for 32-bit keys. As an example,

consider an array of 32-bit integers containing the same nominal information as a

similarly-sized array of 8-bit characters. Our implementation will discover this banding

information transparently and sort these 32-bit keys at a rate of 1.6 billion keys/s on the

GTX285, a speedup of 2.6x.

5.7 CHAPTER SUMMARY

We have presented efficient radix-sorting strategies for ordering large sequences of fixed-

length keys (and values) for GPU architecture. Our performance results demonstrate

multiple factors of speedup over existing GPU implementations, and we believe our

implementations to be the fastest published for any fully-programmable

microarchitecture.

These results motivate a style of flexible algorithm design for GPU stream

architectures that can maximally exploit the memory and computational resources, yet

easily be adapted for a diversity of underlying hardware configurations. Our allocation-

oriented framework provides us substantial flexibility with respect to radix sorting

granularity. Our approach is well positioned to take advantage of increasing

computational throughputs that outpace improvements in memory bandwidth.

129

Chapter 6

Sparse Graph Traversal

6.1 INTRODUCTION

Algorithms for analyzing sparse relationships represented as graphs provide crucial tools

in many computational fields ranging from genomics to electronic design automation to

social network analysis. In this chapter, we explore the parallelization of one

fundamental graph algorithm on GPUs: breadth-first search (BFS). BFS is a common

building block for more sophisticated graph algorithms, yet is simple enough that we can

analyze its behavior in depth. It is also used as a core computational kernel in a number

of benchmark suites, including Parboil [93], Rodinia [27], and the emerging Graph500

supercomputer benchmark [111].

BFS is representative of a class of algorithms for which it has been hard to obtain

significantly better performance from parallelization. When parallelized, the cooperative

and dynamic nature of the problem introduces concerns of contention, load imbalance,

and underutilization on multithreaded architectures [2, 78, 118]. Both the wide SMT and

SIMD parallelism of GPUs can be particularly performance-sensitive to these issues.

130

Prior work has advocated two key architectural features for facilitating parallel

graph algorithms: deep multithreading and fine-grained synchronization [2, 7, 8]. As a

mechanism for overlapping computation with memory latency, multithreading is

especially valuable for sparse graph workloads. Optimizing memory usage is non-trivial

because memory access patterns are determined by the arbitrary structure of the input

graphs. Because high memory latencies are often unavoidable, it is often more

advantageous to hide such latency with multithreading than attempting to minimize it

using the cache hierarchy.

The second feature is fine-grained synchronization, specifically atomic read-

modify-write operations. Such algorithms have incorporated atomic mechanisms for

coordinating the dynamic placement of data into shared data structures and for arbitrating

contended status updates. On paper, modern GPU architectures provide both features.

However, the performance overhead from atomic serialization is often unacceptably high.

As we illustrated in Chapter 1.3.1, the incorporation of fine-grained atomic operations

can reduce overall throughput by two or three orders of magnitude.

Continuing our dissertation theme, we argue that that prefix sum is a more

suitable mechanism for dynamic data placement within shared structures. Such structures

are necessary for work-efficient graph traversal. Furthermore, efficient prefix sum

enables optimizations that reorganize sparse and uneven workloads into dense and

uniform ones in all phases of graph traversal.

Our work as described in this chapter makes contributions in the following areas:

Parallelization strategy. We present a GPU BFS parallelization that performs an

asymptotically optimal linear amount of work. It is the first to incorporate fine-grained

131

parallel adjacency list expansion. We also introduce local duplicate detection techniques

for avoiding race conditions that create redundant work. We demonstrate that our

approach delivers high performance on a broad spectrum of structurally diverse graphs.

To our knowledge, we also describe the first design for multi-GPU graph traversal.

Empirical performance characterization. We present detailed analyses that

isolate and analyze the expansion and contraction aspects of BFS throughout the traversal

process. We reveal that serial and warp-centric expansion techniques described by prior

work significantly underutilize the GPU for important graph genres. We also show that

the fusion of neighbor expansion and inspection within the same kernel often yields

worse performance than performing them separately.

High performance. We demonstrate that our methods deliver excellent

performance on a diverse body of real-world graphs. Our implementation achieves

traversal rates in excess of 3.3 billion and 8.3 billion traversed edges per second (TE/s)

for single and quad-GPU configurations, respectively. To put these numbers in context,

recent state-of-the-art parallel implementations achieve 0.7 billion and 1.3 billion TE/s

for similar datasets on single and quad-socket multicore processors [2].

6.2 BACKGROUND

We consider graphs of the form G = (V, E) with a set V of n vertices and a set E of m

directed edges. Given a source vertex vs, the goal of BFS is to traverse the vertices of G

in breadth-first order starting at vs. Each newly-discovered vertex vi will be labeled by

(a) its distance di from vs and/or (b) the predecessor vertex pi immediately preceding it on

the shortest path to vs.

132

Fundamental uses of BFS include identifying all of the connected components

within a graph; finding the diameter of tree; and testing a graph for bipartiteness [33].

More sophisticated problems incorporating BFS include identifying the reachable set of

heap items during garbage collection [29]; belief propagation in statistical inference [50],

finding community structure in networks [87], and computing the maximum-

flow/minimum-cut for a given graph [66].

6.2.1 Sparse graph representation

For simplicity, we identify graph vertices using integer indices, i.e., v0 .. vn-1. The pair

(vi, vj) indicates a directed edge in the graph from vi → vj, and the adjacency list Ai = {vj |

(vi, vj) ∈ E} is the set of neighboring vertices adjacent from vertex vi. We treat

undirected graphs as symmetric directed graphs containing both (vi, vj) and (vj, vi) for

each undirected edge. In this paper, all graph sizes and traversal rates are measured in

terms of directed edge counts.

A = #1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1

$
C = [0,1,1,2,0,2,3,1,3]

R = [0,2,4,7,9]

Fig. 59. Example CSR representation: column-indices

array C and row-offsets array R comprise the adjacency

matrix A.

Listing 5. The simple sequential breadth-first search

algorithm for marking vertex distances from the source

s. Alternatively, a shortest-paths search tree can be

constructed by marking i as j’s predecessor in line 11.

Input: Vertex set V, row-offsets array R, column-indices

array C, source vertex s

Output: Array dist[0..n-1] with dist[v] holding the distance

from s to v

Functions: Enqueue(val) inserts val at the end of the queue

instance. Dequeue() returns the front element of the queue

instance.

1 Q := {}

2 for i in V:

3 dist[i] := ∞

4 dist[s] := 0

5 Q.Enqueue(s)

6 while (Q != {}) :

7 i = Q.Dequeue()

8 for offset in R[i] .. R[i+1]-1 :

9 j := C[offset]

10 if (dist[j] == ∞)

11 dist[j] := dist[i] + 1;

12 Q.Enqueue(j)

133

We represent the graph using an adjacency matrix A, whose rows are the

adjacency lists Ai. The number of edges within sparse graphs is typically only a constant

factor larger than n. We use the well-known compressed sparse row (CSR) sparse matrix

format to store the graph in memory consisting of two arrays. As illustrated in Fig. 59,

the column-indices array C is formed from the set of the adjacency lists concatenated into

a single array of m integers. The row-offsets R array contains n + 1 integers, and entry

R[i] is the index in C of the adjacency list Ai.

We store graphs in the order they are defined. We do not perform any offline

preprocessing in order to improve locality of reference, improve load balance, or

eliminate sparse memory references. Such strategies might include sorting neighbors

within their adjacency lists; sorting vertices into a space-filling curve and remapping their

corresponding vertex identifiers; splitting up vertices having large adjacency lists;

encoding adjacency row offset and length information into vertex identifiers; removing

duplicate edges, singleton vertices, and self-loops; etc.

6.2.2 Sequential BFS

Listing 5 describes the standard sequential BFS method for circulating the vertices of the

input graph through a FIFO queue that is initialized with vs [33]. As vertices are

dequeued, their neighbors are examined. Unvisited neighbors are labeled with their

distance and/or predecessor and are enqueued for later processing. This algorithm

performs linear O(m+n) work since each vertex is labeled exactly once and each edge is

traversed exactly once.

134

6.2.3 Parallel BFS

The FIFO ordering of the sequential algorithm forces it to label vertices in increasing

order of depth. Each depth level is fully explored before the next. Most parallel BFS

algorithms are level-synchronous, i.e., each level may be processed in parallel as long as

the sequential ordering of levels is preserved. An implicit race condition can exist where

multiple tasks may concurrently discover a vertex vj. This is generally considered benign

since all such contending tasks would apply the same dj and give a valid value of pj.

Structurally different methods may be more suitable for graphs with very large

diameters, e.g., algorithms based on the method of Ullman and Yannakakis [114]. Such

alternatives are beyond the scope of this paper.

Listing 6. A simple quadratic-work, vertex-oriented BFS

parallelization

Input: Vertex set V, row-offsets array R, column-indices array

C, source vertex s

Output: Array dist[0..n-1] with dist[v] holding the distance

from s to v

1 parallel for (i in V) :

2 dist[i] := ∞

3 dist[s] := 0

4 iteration := 0

5 do :

6 done := true

7 parallel for (i in V) :

8 if (dist[i] == iteration)

9 done := false

10 for (offset in R[i] .. R[i+1]-1) :

11 j := C[offset]

12 dist[j] = iteration + 1

13 iteration++

14 while (!done

Listing 7. A linear-work BFS parallelization

constructed using a global vertex-frontier queue.

Input: Vertex set V, row-offsets array R, column-indices

array C, source vertex s, queues

Output: Array dist[0..n-1] with dist[v] holding the distance

from s to v

Functions: LockedEnqueue(val) safely inserts val at the end

of the queue instance

1 parallel for (i in V) :

2 dist[i] := ∞

3 dist[s] := 0

4 iteration := 0

5 inQ := {}

6 inQ.LockedEnqueue(s)

7 while (inQ != {}) :

8 outQ := {}

9 parallel for (i in inQ) :

10 for (offset in R[i] .. R[i+1]-1) :

11 j := C[offset]

12 if (dist[j] == ∞)

13 dist[j] = iteration + 1

14 outQ.LockedEnqueue(j)

15 iteration++

16 inQ := outQ

135

As illustrated in Fig. 60, each iteration of a level-synchronous method identifies

both an edge and vertex frontier. The edge-frontier is the set of all edges to be traversed

during that iteration or, equivalently, the set of all Ai where vi was marked in the previous

iteration. The vertex-frontier is the unique subset of such neighbors that are unmarked

and which will be labeled and expanded for the next iteration. Each iteration logically

expands vertices into an edge-frontier and then contracts them to a vertex-frontier.

Quadratic-work parallelizations. The simplest parallel BFS algorithms inspect

every edge or, at a minimum, every vertex during every iteration. These methods

perform a quadratic amount of work. A vertex vj is marked when a task discovers an

edge vi → vj where vi has been marked and vj has not. As Listing 6 illustrates, vertex-

oriented variants must subsequently expand and mark the neighbors of vj. Because the

process may require n BFS iterations in the worst case, the overall work complexity is

O(n
2
+m).

Quadratic parallelization strategies have been used by almost all prior GPU

implementations. The static assignment of tasks to vertices (or edges) trivially maps to

the data-parallel GPU machine model. Each thread’s computation is completely

independent from that of other threads. Harish et al. [55] and Hussein et al. [66] describe

vertex-oriented versions of this method. Deng et al. present an edge-oriented

implementation [40].

C:
1,3 0,2,4 4 5,7 8 7 6,8

0 1 2 3 4 5 6 7 8 9 10 11

Traversal from source vertex v0

BFS Iteration Vertex frontier Edge frontier

1 {0} {1,3}

2 {1,3} {0,2,4,4,6}

3 {2,4,6} {5,5,7,7}

4 {5,7} {6,8,8}

5 {8} {}

R:
0 2 5 5 6 8 9 10 12 12

0 1 2 3 4 5 6 7 8 9

Fig. 60. Example sparse graph, corresponding CSR representation, and frontier evolution for a BFS beginning at

source vertex v0.

6 7

3 4

8

5

0 1 2

136

Hong et al. [63] describe a vectorized version of the vertex-oriented method that

is similar to the CSR sparse matrix-vector (SpMV) multiplication approach by Bell and

Garland [11]. Warps rather than individual threads are assigned to vertices. During

neighbor expansion, the SIMD lanes of an entire warp are used to strip-mine13 the

corresponding adjacency list.

These quadratic methods are isomorphic to iterative SpMV in the algebraic semi-

ring where the usual (+, ×) operations are replaced with (min, +), and thus can also be

realized using generic implementations of SpMV [48].

Linear-work parallelizations. A work-efficient parallel BFS algorithm should

perform O(n+m) work. To achieve this, each iteration should examine only the edges and

vertices in that iteration’s logical edge and vertex-frontiers, respectively.

Frontiers may be maintained in-core or out-of-core. An in-core frontier is

processed online and is never wholly realized. On the other hand, a frontier that is

managed out-of-core is fully produced in off-chip DRAM (global memory) for

consumption by the next BFS iteration after a global synchronization step.

Implementations typically prefer to manage the vertex-frontier out-of-core. Less

global data movement is needed because the average vertex-frontier is smaller by a factor

of %̅ (average out-degree). As described in Listing 7, each BFS iteration maps tasks to

unexplored vertices in the input vertex-frontier queue. Their neighbors are inspected and

the unvisited ones are placed into the output vertex-frontier queue for the next iteration.

13 Strip mining entails the sequential processing of parallel batches, where the batch size is typically the number of

hardware SIMD vector lanes.

137

Research has traditionally focused on two aspects of this scheme: (1) improving

hardware utilization via intelligent task scheduling; and (2) designing shared data

structures that incur minimal overhead from insertion and removal operations.

The typical approach for improving utilization is to reduce the task granularity to

a homogenous size and then evenly distribute these smaller tasks among threads. This is

done by expanding and inspecting neighbors in parallel. Logically, the sequential-for

loop in line 10 of Listing 7 is replaced with a parallel-for loop. The implementation can

either: (a) spawn all edge-inspection tasks before processing any, wholly realizing the

edge-frontier out-of-core; or (b) carefully throttle the parallel expansion and processing

of adjacency lists, producing and consuming these tasks in-core.

In recent BFS research, Leiserson and Schardl [78] designed an implementation

for multi-socket CPU systems that incorporates a novel multi-set data structure for

tracking the vertex-frontier. They implement concurrent neighbor inspection, using the

Cilk++ runtime to manage the edge-processing tasks in-core.

For the Cray MTA-2, Bader and Madduri [7] describe an implementation using

the hardware’s full-empty bits for efficient queuing into an out-of-core vertex frontier.

They also perform adjacency-list expansion in parallel, relying on the parallelizing

compiler and fine-grained thread-scheduling hardware to manage edge-processing tasks

in-core.

Luo et al. [79] present an implementation for GPUs that relies upon a hierarchical

scheme for producing an out-of-core vertex-frontier. To our knowledge, theirs is the only

prior attempt at designing a work-efficient BFS algorithm for GPUs. Their GPU kernels

logically correspond to lines 10-13 of Listing 7. Threads perform serial adjacency list

138

expansion and use an upward propagation tree of child-queue structures in an effort to

mitigate the contention overhead on any given atomically-incremented queue pointer.

Distributed parallelizations. It is often desirable to partition the graph structure

amongst multiple processors, particularly for datasets too large to fit within the physical

memory of a single machine. Even for shared-memory SMP platforms, recent research

has shown it to be advantageous to partition the graph amongst the different CPU

sockets; a given socket will have higher throughput to the specific memory managed by

its local DDR channels [2].

Listing 8. A linear-work, vertex-oriented BFS parallelization for a graph that has been

partitioned across multiple processors. The scheme uses a set of distributed edge-frontier

queues, one per processor.

Input: Vertex set V, row-offsets array R, column-indices array C, source vertex s, queues

Output: Array dist[0..n-1] with dist[v] holding the distance from s to v

Functions: LockedEnqueue(val) safely inserts val at the end of the queue instance

1 parallel for i in V :

2 distproc[i] := ∞

3 iteration := 0

4 parallel for (proc in 0 .. processors-1) :

5 inQproc := {}

6 outQproc := {}

7 if (proc == Owner(s))

8 inQproc.LockedEnqueue(s)

9 distproc[s] := 0

10 do :

11 done := true;

12 parallel for (proc in 0 .. processors-1) :

13 parallel for (i in inQproc) :

14 if (distproc[i] == ∞)

15 done := false

16 distproc[i] := iteration

17 for (offset in R[i] .. R[i+1]-1) :

18 j := C[offset]

19 dest := owner(j)

20 outQdest.LockedEnqueue(j)

21 parallel for (proc in 0 .. processors-1) :

22 inQproc := outQproc

23 iteration++

24 while (!done)

139

The typical partitioning approach is to assign each processing element a disjoint

subset of V and the corresponding adjacency lists in E. For a given vertex vi, the

inspection and marking of vi as well as the expansion of vi’s adjacency list must occur on

the processor that owns vi. Distributed, out-of-core edge queues are used for

communicating neighbors to remote processors. Listing 8 describes the general method.

Incoming neighbors that are unvisited have their labels marked and their adjacency lists

expanded. As adjacency lists are expanded, neighbors are enqueued to the processor that

owns them. The synchronization between BFS levels occurs after the expansion phase.

It is important to note that distributed BFS implementations that construct

predecessor trees will impose twice the queuing I/O as those that construct depth-

rankings. These variants must forward the full edge pairing (vi, vj) to the remote

processor so that it might properly label vj’s predecessor as vi.

Yoo et al. [120] present a variation for BlueGene/L that implements a two-

dimensional partitioning strategy for reducing the number of remote peers each processor

must communicate with. Xia and Prasanna [118] propose a variant for multi-socket

nodes that provisions more out-of-core edge-frontier queues than active threads, reducing

the contention at any given queue and flexibly lowering barrier overhead.

Agarwal et al. [2] describe a two-phase implementation for multi-socket systems

that implements both out-of-core vertex and edge-frontier queues for each socket. As a

hybrid of Listing 7 and Listing 8, only remote edges are queued out-of-core. Edges that

are local are inspected and filtered in-core. After a global synchronization, a second

phase is performed to filter edges from remote sockets. Their implementation uses a

140

single, global, atomically-updated bitmask to reduce the overhead of inspecting a given

vertex’s visitation status.

Scarpazza et al. [100] describe a similar hybrid variation for the Cell BE

processor architecture. Instead of separate contraction phase per iteration, processor

cores perform edge expansion, exchange, and contraction in batches. DMA engines are

used instead of threads to perform parallel adjacency list expansion. Their

implementation requires an offline preprocessing step that sorts and encodes adjacency

lists into segments packaged by processor core.

Our parallelization strategy. In comparison, our BFS strategy expands adjacent

neighbors in parallel; implements out-of-core edge and vertex-frontiers; uses local prefix-

sum in place of local atomic operations for determining enqueue offsets; and uses a best-

effort bitmask for efficient neighbor filtering. We further describe the details in Section

6.5.

6.3 BENCHMARK SUITE

6.3.1 Graph Datasets

Our benchmark suite is composed of the thirteen graphs listed in Table 1. We generate

the square and cubic Poisson lattice graph datasets ourselves. The random.2Mv.128Me

and rmat.2Mv.128Me14 datasets are constructed using GTgraph [53]. The wikipedia-

20070206 dataset is from the University of Florida Sparse Matrix Collection [115]. The

remaining datasets are from the 10
th

 DIMACS Implementation Challenge [1].

One of our goals is to demonstrate good performance for large-diameter graphs.

The largest components within these datasets have diameters spreading five orders of

14 RMAT graphs are synthetic graph constructions having power-law degree distributions and “small-world”

connectivity [25].

magnitude. Graph d

number of BFS iterations for a randomly

6.3.2

Although our sparsity plots reveal a diversity of locality, they provide little intuition as to

how traversal will unfold.

magnitude. Graph d

number of BFS iterations for a randomly

6.3.2 Logical Frontier Plots

Although our sparsity plots reveal a diversity of locality, they provide little intuition as to

ow traversal will unfold.

europe.osm

grid5pt.5000

hugebubbles

grid7pt.300

nlpkkt160

audikw1

cage15

kkt_power

coPapersCiteseer

wikipedia

kron_g500

random.2Mv.128Me

rmat.2Mv.128Me

magnitude. Graph diameter is directly proportional to average search depth, the expected

number of BFS iterations for a randomly

Logical Frontier Plots

Although our sparsity plots reveal a diversity of locality, they provide little intuition as to

ow traversal will unfold.

Name

europe.osm

grid5pt.5000

hugebubbles-00020

grid7pt.300

nlpkkt160

audikw1

kkt_power

coPapersCiteseer

wikipedia-20070206

kron_g500-logn20

random.2Mv.128Me

Mv.128Me

iameter is directly proportional to average search depth, the expected

number of BFS iterations for a randomly

Logical Frontier Plots

Although our sparsity plots reveal a diversity of locality, they provide little intuition as to

ow traversal will unfold. Fig. 61

Table 9

Sparsity

Plot

European road network

5-point Poisson stencil

(2D grid lattice)

Adaptive numerical

simulation mesh

7-point Poisson stencil

(3D grid lattice)

3D PD

optimization

Automotive finite

element analysis

Electrophoresis transition

probabilities

Nonlinear optimization

(KKT)

Citation network

Links between Wikipedia

pages

Graph500 RMAT

(A=0.57,

G(n

RMAT (

C=0.15)

iameter is directly proportional to average search depth, the expected

number of BFS iterations for a randomly-chosen source vertex.

Although our sparsity plots reveal a diversity of locality, they provide little intuition as to

 presents sample

9. Suite of benchmark graphs

Description

European road network

point Poisson stencil

(2D grid lattice)

Adaptive numerical

simulation mesh

point Poisson stencil

(3D grid lattice)

3D PDE-constrained

optimization

Automotive finite

element analysis

Electrophoresis transition

probabilities

Nonlinear optimization

(KKT)

Citation network

Links between Wikipedia

pages

Graph500 RMAT

=0.57, B=0.19, C=0.19)

n, M) uniform random

RMAT (A=0.45, B=0.15,

=0.15)

iameter is directly proportional to average search depth, the expected

chosen source vertex.

Although our sparsity plots reveal a diversity of locality, they provide little intuition as to

presents sample frontier plots

Suite of benchmark graphs

n (106) m

European road network 50.9 108.1

point Poisson stencil
25.0 125.0

21.2 63.6

point Poisson stencil
27.0 188.5

constrained
8.3 221.2

0.9 76.7

Electrophoresis transition
5.2 94.0

Nonlinear optimization
2.1 13.0

0.4 32.1

Links between Wikipedia
3.6 45.0

=0.19)
1.0 100.7

) uniform random 2.0 128.0

=0.15,
2.0 128.0

iameter is directly proportional to average search depth, the expected

chosen source vertex.

Although our sparsity plots reveal a diversity of locality, they provide little intuition as to

frontier plots of logical edge and

 (106) d

108.1 2.1

125.0 5.0

63.6 3.0

188.5 7.0

221.2 26.5

76.7 81.3

94.0 18.2

13.0 6.3

32.1 73.9

45.0 12.6

100.7 96.0

128.0 64.0

128.0 64.0

iameter is directly proportional to average search depth, the expected

Although our sparsity plots reveal a diversity of locality, they provide little intuition as to

of logical edge and

Avg. Search

Depth

19314

7500

6151

679

142

62

37

37

26

20

6

6

6

141

iameter is directly proportional to average search depth, the expected

Although our sparsity plots reveal a diversity of locality, they provide little intuition as to

of logical edge and

vertex

expansion and contraction, both within and between iter

neighbors expanded and vertices labeled per iteration are constant properties of the given

dataset and starting vertex.

bulk of the work for

The hardware can easily be saturated during these iterations. We observe that real

datasets often have long sections of light work that incur heavy global synchronization

overhead.

observe that a simple duplicate

from edge

V
e

rt
ic

e
s

(m
il

li
o

n
s)

V
e

rt
ic

e
s

(m
il

li
o

n
s)

vertex-frontier sizes as functions of BFS iteration. Such plots help visualize workload

expansion and contraction, both within and between iter

neighbors expanded and vertices labeled per iteration are constant properties of the given

dataset and starting vertex.

Frontier plots reveal the concurrency exposed by each iteration. For example, the

bulk of the work for

The hardware can easily be saturated during these iterations. We observe that real

datasets often have long sections of light work that incur heavy global synchronization

overhead.

Finally,

observe that a simple duplicate

from edge-frontier down to vertex

(a) wikipedia

(d) nlpkkt60

Fig.

0

5

10

15

20

25

0 2 4 6

V
e

rt
ic

e
s

(m
il

li
o

n
s)

BFS Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 20 40 60

V
e

rt
ic

e
s

(m
il

li
o

n
s)

Edge-frontier

Unique neighbors

Vertex-frontier

frontier sizes as functions of BFS iteration. Such plots help visualize workload

expansion and contraction, both within and between iter

neighbors expanded and vertices labeled per iteration are constant properties of the given

dataset and starting vertex.

Frontier plots reveal the concurrency exposed by each iteration. For example, the

bulk of the work for the

The hardware can easily be saturated during these iterations. We observe that real

datasets often have long sections of light work that incur heavy global synchronization

Finally, Fig. 61 also plots the duplicate

observe that a simple duplicate

frontier down to vertex

wikipedia-20070206

nlpkkt60

Fig. 61. Sample frontier plots of logical v

8 10 12 14 16

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

60 80 100 120 140

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

frontier sizes as functions of BFS iteration. Such plots help visualize workload

expansion and contraction, both within and between iter

neighbors expanded and vertices labeled per iteration are constant properties of the given

dataset and starting vertex.

Frontier plots reveal the concurrency exposed by each iteration. For example, the

the wikipedia-20070206

The hardware can easily be saturated during these iterations. We observe that real

datasets often have long sections of light work that incur heavy global synchronization

also plots the duplicate

observe that a simple duplicate-removal pass can perform much of the contraction work

frontier down to vertex

Sample frontier plots of logical v

16 18

Edge-frontier

Unique neighbors

Vertex-frontier

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0

V
e

rt
ic

e
s

(m
il

li
o

n
s)

140 160
0

20

40

60

80

100

120

140

0

V
e

rt
ic

e
s

(m
il

li
o

n
s)

frontier sizes as functions of BFS iteration. Such plots help visualize workload

expansion and contraction, both within and between iter

neighbors expanded and vertices labeled per iteration are constant properties of the given

Frontier plots reveal the concurrency exposed by each iteration. For example, the

20070206 dataset is performed in only 1

The hardware can easily be saturated during these iterations. We observe that real

datasets often have long sections of light work that incur heavy global synchronization

also plots the duplicate

removal pass can perform much of the contraction work

frontier down to vertex-frontier. This has importan

(b) europe.osm

(e) rmat.2Mv.128Me

Sample frontier plots of logical vertex and edge

4000 8000

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

1 2

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

frontier sizes as functions of BFS iteration. Such plots help visualize workload

expansion and contraction, both within and between iterations. The ideal numbers of

neighbors expanded and vertices labeled per iteration are constant properties of the given

Frontier plots reveal the concurrency exposed by each iteration. For example, the

dataset is performed in only 1

The hardware can easily be saturated during these iterations. We observe that real

datasets often have long sections of light work that incur heavy global synchronization

also plots the duplicate-free subset of the edge

removal pass can perform much of the contraction work

frontier. This has importan

europe.osm

rmat.2Mv.128Me

ertex and edge-frontier sizes

12000 16000

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

V
e

rt
ic

e
s

(m
il

li
o

n
s)

3 4

BFS Iteration

frontier sizes as functions of BFS iteration. Such plots help visualize workload

ations. The ideal numbers of

neighbors expanded and vertices labeled per iteration are constant properties of the given

Frontier plots reveal the concurrency exposed by each iteration. For example, the

dataset is performed in only 1

The hardware can easily be saturated during these iterations. We observe that real

datasets often have long sections of light work that incur heavy global synchronization

free subset of the edge

removal pass can perform much of the contraction work

frontier. This has important implications for

(c) grid7pt.300

(f)

frontier sizes during graph traversal.

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300

V
e

rt
ic

e
s

(m
il

li
o

n
s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 5 10 15

V
e

rt
ic

e
s

(m
il

li
o

n
s)

frontier sizes as functions of BFS iteration. Such plots help visualize workload

ations. The ideal numbers of

neighbors expanded and vertices labeled per iteration are constant properties of the given

Frontier plots reveal the concurrency exposed by each iteration. For example, the

dataset is performed in only 1-2 iterations.

The hardware can easily be saturated during these iterations. We observe that real-world

datasets often have long sections of light work that incur heavy global synchronization

free subset of the edge-frontier. We

removal pass can perform much of the contraction work

t implications for

grid7pt.300

) audikw1

during graph traversal.

300 400 500 600 700 800

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

20 25 30 35 40 45

BFS Iteration

Edge-frontier

Unique neighbors

Vertex-frontier

142

frontier sizes as functions of BFS iteration. Such plots help visualize workload

ations. The ideal numbers of

neighbors expanded and vertices labeled per iteration are constant properties of the given

Frontier plots reveal the concurrency exposed by each iteration. For example, the

2 iterations.

world

datasets often have long sections of light work that incur heavy global synchronization

frontier. We

removal pass can perform much of the contraction work

t implications for

800

Edge-frontier

Unique neighbors

Vertex-frontier

50

Edge-frontier

Unique neighbors

Vertex-frontier

143

distributed BFS. The amount of network traffic can be significantly reduced by first

removing duplicates from the expansion of remote neighbors.

We note the direct application of this technique does not scale linearly with

processors. As p increases, the number of available duplicates in a given partition

correspondingly decreases. In the extreme where p = m, each processor owns only one

edge and there are no duplicates to be locally culled. For large p, such decoupled

duplicate-removal techniques should be pushed into the hierarchical interconnect. Yoo et

al. demonstrate a variant of this idea for BlueGene/L using their MPI set-union collective

[120].

6.4 MICRO-BENCHMARK ANALYSES

A linear BFS workload is composed of two components: O(n) work related to vertex-

frontier processing, and O(m) for edge-frontier processing. Because the edge-frontier is

dominant, we focus our attention on the two fundamental aspects of its operation:

neighbor-gathering and status-lookup. Although their functions are trivial, the GPU

machine model provides interesting challenges for these workloads. We investigate these

two activities in the following analyses using NVIDIA Tesla C2050 GPUs.

6.4.1 Isolated Neighbor Gathering

This analysis investigates serial and parallel strategies for simply gathering neighbors

from adjacency lists. The enlistment of threads for parallel gathering is a form task

scheduling. We evaluate a spectrum of scheduling granularity from individual tasks

(higher scheduling overhead) to blocks of tasks (higher underutilization from partial-

filling). We show the serial-expansion and warp-centric techniques described by prior

work underutilize the GPU for entire genres of sparse graph datasets.

144

For a given BFS iteration, our test kernels simply read an array of preprocessed

row-ranges that reference the adjacency lists to be expanded and then load the

corresponding neighbors into local registers. (For full BFS, we do not perform any

preprocessing.)

Listing 9. GPU pseudo-code for warp-based, strip-mined

neighbor-gathering

Input: Vertex-frontier Qvfront, column-indices array C, and the offset

cta_offset for the current tile within Qvfront

Functions: WarpAny(predi) returns true if any predi is set for any

thread ti within the warp.

1 GatherWarp(cta_offset, Qvfront, C) {

2 volatile shared comm[WARPS][3];

3 {r, r_end} =

4 Qvfront[cta_offset + thread_id];

5 while (WarpAny(r_end – r)) {

6

7 // vie for control of warp

8 if (r_end – r)

9 comm[warp_id][0] = lane_id;

10

11 // winner describes adjlist

12 if (comm[warp_id][0] == lane_id) {

13 comm[warp_id][1] = r;

14 comm[warp_id][2] = r_end;

15 r = r_end;

16 }

17

18 // strip-mine winner’s adjlist

19 r_gather = comm[warp_id][1] + lane_id;

20 r_gather_end = comm[warp_id][2];

21 while (r_gather < r_gather_end) {

22 volatile neighbor = C[r_gather];

23 r_gather += WARP_SIZE;

24 }

25 }

26 }

Listing 10. GPU pseudo-code for fine-grained, scan-based

neighbor-gathering

Input: Vertex-frontier Qvfront, column-indices array C, and the offset

cta_offset for the current tile within Qvfront

Functions: CtaPrefixSum(vali) performs a CTA-wide prefix sum

where each thread ti is returned the pair {∑ ()*+,-.+/0 , ∑ ()*+123_2567389-.+/0 }. CtaBarrier() performs a barrier across all

threads within the CTA.

1 GatherScan(cta_offset, Qvfront, C) {

2 shared comm[CTA_THREADS];

3 {r, r_end} =

4 Qvfront[cta_offset + thread_id];

5 // reserve gather offsets

6 {rsv_rank, total} =

7 CtaPrefixSum(r_end – r);

8 // process fine-grained batches of

9 // adjlists

10 cta_progress = 0;

11 while ((remain =

12 total - cta_progress) > 0)

13 {

14 // share batch of gather offsets

15 while((rsv_rank < cta_progress +

16 CTA_THREADS) && (r < r_end))

17 {

18 comm[rsv_rank–cta_progress] = r;

19 rsv_rank++;

20 r++;

21 }

22 CtaBarrier();

23 // gather batch of adjlist(s)

24 if (thread_id <

25 Min(remain, CTA_THREADS)

26 {

27 volatile neighbor =

28 C[comm[thread_id]];

29 }

30 cta_progress += CTA_THREADS;

31 CtaBarrier();

32 }

33 }

then serially acquires the corresponding neighbors from the column

62

same warp (and CTA).

gathering

its warp by writing its thread

warp. Only one write will succeed, thus determining which is allowed to subsequently

enlist the warp as a whole to read its corresponding neighbors. This process repeats for

every warp until its threads ha

can suffer underutilization within the warp as well as load

using CTA

prefix sum to perfectly pack segments of gather offsets for the neighbors within their

adjacency lists into a single buffer that is shared by

full, the entire CTA can then gather the referenced neighbors from the column

array

from

Serial

then serially acquires the corresponding neighbors from the column

62a). This approach can suffer significant load imbalance between threads within the

same warp (and CTA).

Coarse

gathering (Fig.

its warp by writing its thread

warp. Only one write will succeed, thus determining which is allowed to subsequently

enlist the warp as a whole to read its corresponding neighbors. This process repeats for

every warp until its threads ha

can suffer underutilization within the warp as well as load

Fine-grained, s

using CTA-wide parallel prefix sum

prefix sum to perfectly pack segments of gather offsets for the neighbors within their

adjacency lists into a single buffer that is shared by

full, the entire CTA can then gather the referenced neighbors from the column

array C. Perfect packing ensures that no SIMD lanes are unutilized during global reads

from C. This process repeats until all threa

Serial-gathering.

then serially acquires the corresponding neighbors from the column

This approach can suffer significant load imbalance between threads within the

same warp (and CTA).

Coarse-grained, w

Fig. 62b). As described in

its warp by writing its thread

warp. Only one write will succeed, thus determining which is allowed to subsequently

enlist the warp as a whole to read its corresponding neighbors. This process repeats for

every warp until its threads ha

can suffer underutilization within the warp as well as load

grained, scan

wide parallel prefix sum

prefix sum to perfectly pack segments of gather offsets for the neighbors within their

adjacency lists into a single buffer that is shared by

full, the entire CTA can then gather the referenced neighbors from the column

. Perfect packing ensures that no SIMD lanes are unutilized during global reads

. This process repeats until all threa

(a) serial

Fig. 62. Alternative neighb

 Each thread obtains its preprocessed row

then serially acquires the corresponding neighbors from the column

This approach can suffer significant load imbalance between threads within the

, warp-based gathering

. As described in

its warp by writing its thread-identifier

warp. Only one write will succeed, thus determining which is allowed to subsequently

enlist the warp as a whole to read its corresponding neighbors. This process repeats for

every warp until its threads have all had their adjacent neighbors gathered.

can suffer underutilization within the warp as well as load

can-based gathering

wide parallel prefix sum

prefix sum to perfectly pack segments of gather offsets for the neighbors within their

adjacency lists into a single buffer that is shared by

full, the entire CTA can then gather the referenced neighbors from the column

. Perfect packing ensures that no SIMD lanes are unutilized during global reads

. This process repeats until all threa

Alternative neighb

Each thread obtains its preprocessed row

then serially acquires the corresponding neighbors from the column

This approach can suffer significant load imbalance between threads within the

based gathering. Threads enlist the entire warp to assist in

. As described in Listing 9, each thread attempts to vie for control of

identifier into a single word shared by all threads of that

warp. Only one write will succeed, thus determining which is allowed to subsequently

enlist the warp as a whole to read its corresponding neighbors. This process repeats for

ve all had their adjacent neighbors gathered.

can suffer underutilization within the warp as well as load

gathering. Listing

wide parallel prefix sum (Fig. 62c). Threads use the reservation from the

prefix sum to perfectly pack segments of gather offsets for the neighbors within their

adjacency lists into a single buffer that is shared by

full, the entire CTA can then gather the referenced neighbors from the column

. Perfect packing ensures that no SIMD lanes are unutilized during global reads

. This process repeats until all threads have had their adjacent neighbors gathered.

(b) coarse, warp

Alternative neighbor-gathering strategies

Each thread obtains its preprocessed row

then serially acquires the corresponding neighbors from the column

This approach can suffer significant load imbalance between threads within the

. Threads enlist the entire warp to assist in

, each thread attempts to vie for control of

into a single word shared by all threads of that

warp. Only one write will succeed, thus determining which is allowed to subsequently

enlist the warp as a whole to read its corresponding neighbors. This process repeats for

ve all had their adjacent neighbors gathered.

can suffer underutilization within the warp as well as load-imbalance between warps.

Listing 10 illustrates fine

. Threads use the reservation from the

prefix sum to perfectly pack segments of gather offsets for the neighbors within their

adjacency lists into a single buffer that is shared by the entire CTA. When this buffer is

full, the entire CTA can then gather the referenced neighbors from the column

. Perfect packing ensures that no SIMD lanes are unutilized during global reads

ds have had their adjacent neighbors gathered.

(b) coarse, warp-based

gathering strategies (for four adjacency lists)

Each thread obtains its preprocessed row-range bounds

then serially acquires the corresponding neighbors from the column-indices array

This approach can suffer significant load imbalance between threads within the

. Threads enlist the entire warp to assist in

, each thread attempts to vie for control of

into a single word shared by all threads of that

warp. Only one write will succeed, thus determining which is allowed to subsequently

enlist the warp as a whole to read its corresponding neighbors. This process repeats for

ve all had their adjacent neighbors gathered.

imbalance between warps.

illustrates fine-grained gatheri

. Threads use the reservation from the

prefix sum to perfectly pack segments of gather offsets for the neighbors within their

the entire CTA. When this buffer is

full, the entire CTA can then gather the referenced neighbors from the column

. Perfect packing ensures that no SIMD lanes are unutilized during global reads

ds have had their adjacent neighbors gathered.

(c) fine-grained, scan

(for four adjacency lists)

range bounds

indices array C

This approach can suffer significant load imbalance between threads within the

. Threads enlist the entire warp to assist in

, each thread attempts to vie for control of

into a single word shared by all threads of that

warp. Only one write will succeed, thus determining which is allowed to subsequently

enlist the warp as a whole to read its corresponding neighbors. This process repeats for

ve all had their adjacent neighbors gathered. This approach

imbalance between warps.

grained gatheri

. Threads use the reservation from the

prefix sum to perfectly pack segments of gather offsets for the neighbors within their

the entire CTA. When this buffer is

full, the entire CTA can then gather the referenced neighbors from the column-indices

. Perfect packing ensures that no SIMD lanes are unutilized during global reads

ds have had their adjacent neighbors gathered.

grained, scan-based

(for four adjacency lists)

145

range bounds and

 (Fig.

This approach can suffer significant load imbalance between threads within the

. Threads enlist the entire warp to assist in

, each thread attempts to vie for control of

into a single word shared by all threads of that

warp. Only one write will succeed, thus determining which is allowed to subsequently

enlist the warp as a whole to read its corresponding neighbors. This process repeats for

This approach

imbalance between warps.

grained gathering

. Threads use the reservation from the

prefix sum to perfectly pack segments of gather offsets for the neighbors within their

the entire CTA. When this buffer is

indices

. Perfect packing ensures that no SIMD lanes are unutilized during global reads

ds have had their adjacent neighbors gathered.

based

146

Compared to the two previous strategies, the entire CTA participates in every

read. Any workload imbalance between threads is not magnified by expensive global

memory accesses to C. Instead, workload imbalance can occur in the form of

underutilized cycles during offset-sharing. The worst case entails a single thread having

more neighbors than the gather buffer can accommodate, resulting in the idling of all

other threads while it alone shares gather offsets.

Scan+warp+CTA gathering. We can mitigate this imbalance by supplementing

fine-grained scan-based expansion with coarser CTA-based and warp-based expansion.

We first apply a CTA-wide version of warp-based gathering. This allows threads with

very large adjacency lists to vie for control of the entire CTA, the winner broadcasting its

row-range to all threads. Any large adjacency lists are strip-mined using the width of the

entire CTA. Then we apply warp-based gathering to acquire portions of adjacency lists

greater than or equal to the warp width. Finally we perform scan-based gathering to

acquire the remaining “loose ends”.

This hybrid strategy limits all forms of load imbalance from adjacency list

expansion. Fine-grained scan-based distribution limits imbalance from SIMD lane

underutilization. Warp enlistment limits offset-sharing imbalance between threads. CTA

enlistment limits imbalance between warps. And finally, any imbalance between CTAs

can be limited by oversubscribing GPU cores with an abundance of CTAs and/or

implementing coarse-grained tile-stealing mechanisms for CTAs to dequeue tiles15 at their

own rate.

15 We term tile to describe a block of input data that a CTA is designed to process to completion before terminating or

obtaining more work.

147

Analysis. We performed 100 randomly-sourced traversals of each dataset,

evaluating these kernels on the logical vertex-frontier for every iteration. Fig. 63a plots

the average edge-processing throughputs for each strategy in log-scale. The datasets are

ordered from left-to-right by decreasing average search depth.

The serial approach performs poorly for the majority of datasets. Fig. 63b reveals

it suffers from dramatic over-fetch. It plots bytes moved through DRAM per edge. The

(a) Average gather rate (log)

(b) Average DRAM overhead

(c) Average computational intensity (log)

Fig. 63. Neighbor-gathering behavior. Harmonic means are normalized with respect to serial-gathering.

0.0

1.0

2.0

3.0

4.0

0.125

0.5

2

8

32

n
o

rm
a

li
ze

d

1
0

9
e

d
g

e
s

/
se

c
(l

o
g

)

Serial Warp Scan Scan+Warp+CTA

0.0

0.5

1.0

1.5

0

50

100

150

n
o

rm
a

li
ze

d

D
R

A
M

 b
y

te
s

/
e

d
g

e

Serial Warp Scan Scan+Warp+CTA

1

4

16

64

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
/

b
y

te

(l
o

g
)

Serial Warp Scan Scan+Warp+CTA

148

arbitrary references from each thread within the warp result in terrible coalescing for

SIMD load instructions.

The warp-based approach performs poorly for the graphs on the left-hand side

having %̅ ≤ 10. Fig. 63c reveals that it is computationally inefficient for these datasets. It

plots a log scale of computational intensity, the ratio of thread-instructions versus bytes

moved through DRAM. The average adjacency lists for these graphs are much smaller

than the number of threads per warp. As a result, a significant number of SIMD lanes go

unused during any given cycle.

Fig. 63c also reveals that that scan-based gathering can suffer from extreme

workload imbalance when only one thread is active within the entire CTA. This

phenomenon is reflected in the datasets on the right-hand size having skewed degree

distributions. The load imbalance from expanding large adjacency lists leads to increased

instruction counts and corresponding performance degradation.

Combining the benefits of bulk-enlistment with fine-grained utilization, the

hybrid scan+warp+cta demonstrates good gathering rates across the board.

6.4.2 Isolated Status-lookup

Status-lookup is the other half to neighbor-gathering; it entails determining which

neighbors within the edge-frontier have already been visited. This section describes our

analyses of status-lookup workloads, both in isolation and when coupled with neighbor-

gathering within the same kernel. Although performing them separately requires more

explicit memory traffic, we reveal that coupling the two within the same kernel

invocation can cause TLB issues resulting in markedly worse performance.

149

Our strategy for status-lookup incorporates a bitmask to reduce the size of status

data from a 32-bit label to a single bit per vertex. CPU parallelizations have used

atomically-updated bitmask structures to reduce memory traffic via improved cache

coverage [2, 100]. Because we avoid atomic operations, our bitmask is only a

conservative approximation of visitation status. Bits for visited vertices may appear

unset or may be “clobbered” due to false-sharing within a single byte. If a status bit is

unset, we must then perform a second read to check the corresponding label to ensure the

vertex is safe for marking. This scheme relies upon capacity and conflict misses to

update stale bitmask data within the read-only texture caches.

Similar to the neighbor-gathering analysis, we isolate the status-lookup workload

using a test-kernel that consumes the logical edge-frontier at each BFS iteration. Despite

having much smaller and more transient last-level caches, Fig. 64 confirms the technique

(a) Average lookup rate

(b) Average DRAM overhead

Fig. 64. Status-lookup behavior. Harmonic means are normalized with respect to simple label-lookup.

0.9

1.0

1.1

1.2

1.3

0

5

10

15

n
o

rm
a

li
ze

d

1
0

9
 e

d
g

e
s

/
se

c

Label Lookup Bitmask+Label Lookup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

10

20

30

40

n
o

rm
a

li
ze

d

b
y

te
s

/
e

d
g

e

Label Lookup Bitmask+Label Lookup

150

can reduce global DRAM overhead and accelerate status-lookup for GPU architectures as

well. The exceptions are the datasets on the left having a hundred or more BFS

iterations. The bitmask is less effective for these datasets because texture caches are

flushed between kernel invocations. Without coverage, the inspection often requires a

second label lookup which further adds delay to latency-bound BFS iterations. As a

result, we skip bitmask lookup for fleeting iterations having edge-frontiers smaller than

the number of resident threads.

Fig. 65 compares the throughputs of lookup versus gathering workloads. We

observe that status-lookup is generally the more expensive of the two. This is

particularly true for the datasets on the right-hand side having high average vertex out-

degree. The ability for neighbor-gathering to coalesce accesses to adjacency lists

increases with %̅, whereas accesses for status-lookup have arbitrary locality.

6.4.3 Coupling of Gathering and Lookup

A complete BFS implementation might choose to fuse these workloads within the same

kernel in order to process one of the frontiers online and in-core. We evaluate this fusion

with a derivation of our scan+warp+cta gathering kernel that immediately inspects every

gathered neighbor using our bitmap-assisted lookup strategy. The coupled kernel

Fig. 65. Comparison of lookup vs. gathering.

1.0

1.1

1.2

1.3

1.4

1.5

0

5

10

15

20

n
o

rm
a

li
ze

d

1
0

9
e

d
g

e
s

/
se

c

Bitmask+Label Lookup Scan+Warp+CTA Gather

151

requires O(m) less overall data movement than the other two put together (which

effectively read all edges twice).

Fig. 66 compares this fused kernel with the aggregate throughput of the isolated

gathering and lookup workloads performed separately. Despite the additional data

movement, the separate kernels outperform the fused kernel for the saturating

benchmarks (right two-thirds of the chart). However, the extra data movement of

separate kernels results in net slowdown for the latency-bound datasets having limited

bulk concurrency (left-hand side).

The fused kernel likely suffers from TLB misses experienced by the neighbor-

gathering workload. The column-indices arrays occupy substantial portions of GPU

physical memory. Sparse gathers from them are apt to cause TLB misses. The fusion of

these two workloads inherits the worst aspects of both: TLB turnover during uncoalesced

status lookups.

The implication is that fused approaches are preferable for fleeting BFS iterations

having edge-frontiers smaller than the number of resident threads. For graphs with

abundant concurrency, however, the fusion of neighbor expansion and inspection yields

works performance than performing them separately.

Fig. 66. Comparison of isolated vs. fused lookup and gathering.

0.0

0.5

1.0

1.5

0

2

4

6

8

n
o

rm
a

li
ze

d

1
0

9
e

d
g

e
s

/
se

c

Isolated Gather+Lookup Fused Gather+Lookup

6.4.4

Duplicate vertex identifiers within the edge

incident to the same vertex. This can pose a problem for implementations that allow the

benign race condition. Adjacency lists will be expanded multiple times whe

threads concurrently discover

updates to visitation status, we show the SIMD nature of the GPU machine model can

introduce a significant amount of redundant

for redundant work, but concluded its manifestation to be negligible

discovery on CPU platforms is rare due to a combination of relatively low parallelism (~8

hardware threads) and coherent L1 caches that provide only a small window of

opportunity around status

within the same warp are simultaneously inspecting same vertex identifier, the SIMD

nature of the warp

adjacency list for this vertex will be expanded for every thread.

traverse a small single

expansion (e.g.,

6.4.4 Concurrent Discovery

Duplicate vertex identifiers within the edge

incident to the same vertex. This can pose a problem for implementations that allow the

benign race condition. Adjacency lists will be expanded multiple times whe

threads concurrently discover

updates to visitation status, we show the SIMD nature of the GPU machine model can

introduce a significant amount of redundant

Effect on overall workload.

for redundant work, but concluded its manifestation to be negligible

discovery on CPU platforms is rare due to a combination of relatively low parallelism (~8

hardware threads) and coherent L1 caches that provide only a small window of

opportunity around status

The GPU machine model, however, is much more vulnerable. If multiple threads

within the same warp are simultaneously inspecting same vertex identifier, the SIMD

nature of the warp

adjacency list for this vertex will be expanded for every thread.

Fig. 67

traverse a small single

expansion (e.g.,

Fig.

Concurrent Discovery

Duplicate vertex identifiers within the edge

incident to the same vertex. This can pose a problem for implementations that allow the

benign race condition. Adjacency lists will be expanded multiple times whe

threads concurrently discover

updates to visitation status, we show the SIMD nature of the GPU machine model can

introduce a significant amount of redundant

Effect on overall workload.

for redundant work, but concluded its manifestation to be negligible

discovery on CPU platforms is rare due to a combination of relatively low parallelism (~8

hardware threads) and coherent L1 caches that provide only a small window of

opportunity around status

The GPU machine model, however, is much more vulnerable. If multiple threads

within the same warp are simultaneously inspecting same vertex identifier, the SIMD

nature of the warp-read ensures that all will obtain the same status value.

adjacency list for this vertex will be expanded for every thread.

67 demonstrates an acute case of concurrent discovery. In this example, we

traverse a small single

expansion (e.g., Listing 10

Fig. 67. Example of redundant adjacency list expansion due to concurrent discovery

Concurrent Discovery

Duplicate vertex identifiers within the edge

incident to the same vertex. This can pose a problem for implementations that allow the

benign race condition. Adjacency lists will be expanded multiple times whe

threads concurrently discover the same vertices via these duplicates.

updates to visitation status, we show the SIMD nature of the GPU machine model can

introduce a significant amount of redundant

Effect on overall workload.

for redundant work, but concluded its manifestation to be negligible

discovery on CPU platforms is rare due to a combination of relatively low parallelism (~8

hardware threads) and coherent L1 caches that provide only a small window of

opportunity around status-inspections that are immediately followed by st

The GPU machine model, however, is much more vulnerable. If multiple threads

within the same warp are simultaneously inspecting same vertex identifier, the SIMD

read ensures that all will obtain the same status value.

adjacency list for this vertex will be expanded for every thread.

demonstrates an acute case of concurrent discovery. In this example, we

traverse a small single-source, single

10). For each BFS iteration, the cooperative behavior ensures

Example of redundant adjacency list expansion due to concurrent discovery

Duplicate vertex identifiers within the edge-frontier are representative of different edges

incident to the same vertex. This can pose a problem for implementations that allow the

benign race condition. Adjacency lists will be expanded multiple times whe

the same vertices via these duplicates.

updates to visitation status, we show the SIMD nature of the GPU machine model can

introduce a significant amount of redundant work

 Prior CPU parallelizations have noted the potential

for redundant work, but concluded its manifestation to be negligible

discovery on CPU platforms is rare due to a combination of relatively low parallelism (~8

hardware threads) and coherent L1 caches that provide only a small window of

inspections that are immediately followed by st

The GPU machine model, however, is much more vulnerable. If multiple threads

within the same warp are simultaneously inspecting same vertex identifier, the SIMD

read ensures that all will obtain the same status value.

adjacency list for this vertex will be expanded for every thread.

demonstrates an acute case of concurrent discovery. In this example, we

source, single-sink lattice using fin

). For each BFS iteration, the cooperative behavior ensures

Example of redundant adjacency list expansion due to concurrent discovery

frontier are representative of different edges

incident to the same vertex. This can pose a problem for implementations that allow the

benign race condition. Adjacency lists will be expanded multiple times whe

the same vertices via these duplicates.

updates to visitation status, we show the SIMD nature of the GPU machine model can

work.

Prior CPU parallelizations have noted the potential

for redundant work, but concluded its manifestation to be negligible

discovery on CPU platforms is rare due to a combination of relatively low parallelism (~8

hardware threads) and coherent L1 caches that provide only a small window of

inspections that are immediately followed by st

The GPU machine model, however, is much more vulnerable. If multiple threads

within the same warp are simultaneously inspecting same vertex identifier, the SIMD

read ensures that all will obtain the same status value.

adjacency list for this vertex will be expanded for every thread.

demonstrates an acute case of concurrent discovery. In this example, we

sink lattice using fin

). For each BFS iteration, the cooperative behavior ensures

Example of redundant adjacency list expansion due to concurrent discovery

frontier are representative of different edges

incident to the same vertex. This can pose a problem for implementations that allow the

benign race condition. Adjacency lists will be expanded multiple times whe

the same vertices via these duplicates.

updates to visitation status, we show the SIMD nature of the GPU machine model can

Prior CPU parallelizations have noted the potential

for redundant work, but concluded its manifestation to be negligible [78

discovery on CPU platforms is rare due to a combination of relatively low parallelism (~8

hardware threads) and coherent L1 caches that provide only a small window of

inspections that are immediately followed by st

The GPU machine model, however, is much more vulnerable. If multiple threads

within the same warp are simultaneously inspecting same vertex identifier, the SIMD

read ensures that all will obtain the same status value.

adjacency list for this vertex will be expanded for every thread.

demonstrates an acute case of concurrent discovery. In this example, we

sink lattice using fine-grained cooperative

). For each BFS iteration, the cooperative behavior ensures

BFS

Iteration

1

2

3

4

Example of redundant adjacency list expansion due to concurrent discovery

frontier are representative of different edges

incident to the same vertex. This can pose a problem for implementations that allow the

benign race condition. Adjacency lists will be expanded multiple times when multiple

the same vertices via these duplicates. Without atomic

updates to visitation status, we show the SIMD nature of the GPU machine model can

Prior CPU parallelizations have noted the potential

[78]. Concurrent

discovery on CPU platforms is rare due to a combination of relatively low parallelism (~8

hardware threads) and coherent L1 caches that provide only a small window of

inspections that are immediately followed by status updates.

The GPU machine model, however, is much more vulnerable. If multiple threads

within the same warp are simultaneously inspecting same vertex identifier, the SIMD

read ensures that all will obtain the same status value. If unvisited, the

demonstrates an acute case of concurrent discovery. In this example, we

grained cooperative

). For each BFS iteration, the cooperative behavior ensures

Actual

Vertex-

frontier

Actual

Edge

frontier

0

1,3 2,4,4,6

2,4,4,6 5,5,7,5,7,7

5,5,7,5,7,7 8,8,8,8,8,8,8

Example of redundant adjacency list expansion due to concurrent discovery

152

frontier are representative of different edges

incident to the same vertex. This can pose a problem for implementations that allow the

n multiple

Without atomic

updates to visitation status, we show the SIMD nature of the GPU machine model can

Prior CPU parallelizations have noted the potential

. Concurrent

discovery on CPU platforms is rare due to a combination of relatively low parallelism (~8

hardware threads) and coherent L1 caches that provide only a small window of

atus updates.

The GPU machine model, however, is much more vulnerable. If multiple threads

within the same warp are simultaneously inspecting same vertex identifier, the SIMD

If unvisited, the

demonstrates an acute case of concurrent discovery. In this example, we

grained cooperative

). For each BFS iteration, the cooperative behavior ensures

Actual

Edge-

frontier

1,3

2,4,4,6

5,5,7,5,7,7

,8,8,8,8,8,8

that all neighbors are gathered before any are inspected. No duplicates are culled from

the edge frontier because SIMD

actual edge and vertex

is cause for concern: the excess work grows geometrically, only slowing when the

frontier exceeds the width of t

simplified version of the

expansion and contrac

For several sample traversals,

actual numbers of vertex identifiers expanded and contracted for each B

alongside the corresponding logical frontiers. The deltas between these pairs reflect the

generation of unnecessary work.

en

expansion factors measured for our

extra measures to mitigate concurrent discovery. The problem i

descriptive datasets. These datasets exhibit nearby duplicates within the edge

Fig.

frontier sizes.

V
e

rt
ic

e
s

(m
il

li
o

n
s)

that all neighbors are gathered before any are inspected. No duplicates are culled from

the edge frontier because SIMD

actual edge and vertex

is cause for concern: the excess work grows geometrically, only slowing when the

frontier exceeds the width of t

We measure the effects of redundant expansion upon overall workload using a

simplified version of the

expansion and contrac

For several sample traversals,

actual numbers of vertex identifiers expanded and contracted for each B

alongside the corresponding logical frontiers. The deltas between these pairs reflect the

generation of unnecessary work.

We define the

enqueued versus the number of edges logically traversed.

expansion factors measured for our

extra measures to mitigate concurrent discovery. The problem i

descriptive datasets. These datasets exhibit nearby duplicates within the edge

(a) grid7pt.300

Fig. 68. Actual expanded and contracted queue

frontier sizes.

0.0

0.5

1.0

1.5

2.0

0 100 200 300

V
e

rt
ic

e
s

(m
il

li
o

n
s)

that all neighbors are gathered before any are inspected. No duplicates are culled from

the edge frontier because SIMD

actual edge and vertex-frontiers diverge from ideal because no contraction occurs. This

is cause for concern: the excess work grows geometrically, only slowing when the

frontier exceeds the width of t

We measure the effects of redundant expansion upon overall workload using a

simplified version of the

expansion and contraction kernels make no special effort to curtail concurrent discovery.

For several sample traversals,

actual numbers of vertex identifiers expanded and contracted for each B

alongside the corresponding logical frontiers. The deltas between these pairs reflect the

generation of unnecessary work.

We define the redundant

queued versus the number of edges logically traversed.

expansion factors measured for our

extra measures to mitigate concurrent discovery. The problem i

descriptive datasets. These datasets exhibit nearby duplicates within the edge

grid7pt.300

expanded and contracted queue

300 400 500 600 700

BFS Iteraiton

Edge Frontier

Vertex Frontier

Expanded

Contracted

that all neighbors are gathered before any are inspected. No duplicates are culled from

the edge frontier because SIMD lookups reveal every neighbor as being unvisited. The

frontiers diverge from ideal because no contraction occurs. This

is cause for concern: the excess work grows geometrically, only slowing when the

frontier exceeds the width of the machine or the graph ceases to expand.

We measure the effects of redundant expansion upon overall workload using a

simplified version of the two-phase BFS implementation described in Section

tion kernels make no special effort to curtail concurrent discovery.

For several sample traversals, Fig. 68

actual numbers of vertex identifiers expanded and contracted for each B

alongside the corresponding logical frontiers. The deltas between these pairs reflect the

generation of unnecessary work.

redundant expansion

queued versus the number of edges logically traversed.

expansion factors measured for our

extra measures to mitigate concurrent discovery. The problem i

descriptive datasets. These datasets exhibit nearby duplicates within the edge

expanded and contracted queue sizes without local duplicate culling

800

Edge Frontier

Vertex Frontier

Expanded

Contracted

0

1

2

3

4

5

6

7

8

9

10

0

V
e

rt
ic

e
s

(m
il

li
o

n
s)

that all neighbors are gathered before any are inspected. No duplicates are culled from

lookups reveal every neighbor as being unvisited. The

frontiers diverge from ideal because no contraction occurs. This

is cause for concern: the excess work grows geometrically, only slowing when the

he machine or the graph ceases to expand.

We measure the effects of redundant expansion upon overall workload using a

BFS implementation described in Section

tion kernels make no special effort to curtail concurrent discovery.

68 illustrates compounded redundancy by plotting the

actual numbers of vertex identifiers expanded and contracted for each B

alongside the corresponding logical frontiers. The deltas between these pairs reflect the

expansion factor

queued versus the number of edges logically traversed.

expansion factors measured for our two-phase

extra measures to mitigate concurrent discovery. The problem i

descriptive datasets. These datasets exhibit nearby duplicates within the edge

(b) nlpkkt160

sizes without local duplicate culling

20 40 60 80

BFS Iteration

Edge Frontier

Vertex Frontier

Expanded

Contracted

that all neighbors are gathered before any are inspected. No duplicates are culled from

lookups reveal every neighbor as being unvisited. The

frontiers diverge from ideal because no contraction occurs. This

is cause for concern: the excess work grows geometrically, only slowing when the

he machine or the graph ceases to expand.

We measure the effects of redundant expansion upon overall workload using a

BFS implementation described in Section

tion kernels make no special effort to curtail concurrent discovery.

illustrates compounded redundancy by plotting the

actual numbers of vertex identifiers expanded and contracted for each B

alongside the corresponding logical frontiers. The deltas between these pairs reflect the

factor as the ratio of neighbors actually

queued versus the number of edges logically traversed.

 implementation, both with and without

extra measures to mitigate concurrent discovery. The problem i

descriptive datasets. These datasets exhibit nearby duplicates within the edge

nlpkkt160

sizes without local duplicate culling

100 120 140 160

BFS Iteration

Edge Frontier

Vertex Frontier

Contracted

V
e

rt
ic

e
s

(m
il

li
o

n
s)

that all neighbors are gathered before any are inspected. No duplicates are culled from

lookups reveal every neighbor as being unvisited. The

frontiers diverge from ideal because no contraction occurs. This

is cause for concern: the excess work grows geometrically, only slowing when the

he machine or the graph ceases to expand.

We measure the effects of redundant expansion upon overall workload using a

BFS implementation described in Section

tion kernels make no special effort to curtail concurrent discovery.

illustrates compounded redundancy by plotting the

actual numbers of vertex identifiers expanded and contracted for each B

alongside the corresponding logical frontiers. The deltas between these pairs reflect the

as the ratio of neighbors actually

queued versus the number of edges logically traversed. Fig. 69 plots the redundant

implementation, both with and without

extra measures to mitigate concurrent discovery. The problem is severe for spatially

descriptive datasets. These datasets exhibit nearby duplicates within the edge

(c) coPapersCiteseer

sizes without local duplicate culling, superimposed over logical

0

5

10

15

20

0 4 8

V
e

rt
ic

e
s

(m
il

li
o

n
s)

that all neighbors are gathered before any are inspected. No duplicates are culled from

lookups reveal every neighbor as being unvisited. The

frontiers diverge from ideal because no contraction occurs. This

is cause for concern: the excess work grows geometrically, only slowing when the

We measure the effects of redundant expansion upon overall workload using a

BFS implementation described in Section 6.5. These

tion kernels make no special effort to curtail concurrent discovery.

illustrates compounded redundancy by plotting the

actual numbers of vertex identifiers expanded and contracted for each BFS iteration

alongside the corresponding logical frontiers. The deltas between these pairs reflect the

as the ratio of neighbors actually

plots the redundant

implementation, both with and without

s severe for spatially

descriptive datasets. These datasets exhibit nearby duplicates within the edge-frontier

coPapersCiteseer

, superimposed over logical

8 12 16 20

BFS Iteration

Edge Frontier

Vertex Frontier

Expanded

Contracted

153

that all neighbors are gathered before any are inspected. No duplicates are culled from

lookups reveal every neighbor as being unvisited. The

frontiers diverge from ideal because no contraction occurs. This

is cause for concern: the excess work grows geometrically, only slowing when the

We measure the effects of redundant expansion upon overall workload using a

. These

tion kernels make no special effort to curtail concurrent discovery.

illustrates compounded redundancy by plotting the

FS iteration

alongside the corresponding logical frontiers. The deltas between these pairs reflect the

as the ratio of neighbors actually

plots the redundant

implementation, both with and without

s severe for spatially-

frontier

24

Edge Frontier

Vertex Frontier

Expanded

Contracted

154

due to their high frequency of convergent exploration. For example, simple two-phase

traversal incurs 4.2x redundant expansion for the 2D lattice grid5pt.5000 dataset. Even

worse, the implementation altogether fails to traverse the kron_g500-logn20 dataset

which encodes sorted adjacency lists. The improved locality enables the redundant

expansion of ultra-popular vertices, ultimately exhausting physical memory when filling

the edge queue.

This issue of redundant expansion appears to be unique to GPU BFS

implementations having two properties: (1) a work-efficient traversal algorithm; and (2)

concurrent adjacency list expansion. Quadratic implementations do not suffer redundant

work because vertices are never expanded by more than one thread. In our evaluation of

linear-work serial-expansion, we observed negligible concurrent SIMD discovery during

serial inspection due to the independent nature of thread activity.

In general, the issue of concurrent discovery is a result of false-negatives during

status-lookup, i.e., failure to detect previously-visited and duplicate vertex identifiers

within the edge-frontier. Atomic read-modify-write updates to visitation status yield zero

false-negatives. As alternatives, we introduce two localized mechanisms for reducing

false-negatives: (1) warp culling and (2) history culling.

Fig. 69 Redundant work expansion incurred by variants of our two-phase BFS implementation. Unlabeled columns

are < 1.05x.

1.1x

4.2x

2.4x 2.6x

1.7x

1.2x 1.1x
1.4x

1.1x
n/a

1.3x

1

10

R
e

d
u

n
d

a
n

t
e

x
p

a
n

si
o

n
 f

a
ct

o
r

(l
o

g
)

Simple Local duplicate culling

155

Warp culling. Listing 11 describes this heuristic for preventing concurrent SIMD

discovery by detecting the presence of duplicates within the warp’s immediate working

set. Using shared-memory per warp, each thread hashes in the neighbor it is currently

inspecting. If a collision occurs and a different value is extracted, nothing can be

determined regarding duplicate status. Otherwise threads then write their thread-

identifier into the same hash location. Only one write will succeed. Threads that

subsequently retrieve a different thread-identifier can safely classify their neighbors as

duplicates to be culled.

History culling. This heuristic complements the instantaneous coverage of warp

culling by maintaining a cache of recently-inspected vertex identifiers in local shared

memory. If a given thread observes its neighbor to have been previously recorded, it can

classify that neighbor as safe for culling.

Listing 11. GPU pseudo-code for a localized, warp-based

duplicate-detection heuristic.

Input: Vertex identifier neighbor

Output: True if neighbor is a conclusive duplicate within the

warp’s working set.

1 WarpCull(neighbor) {

2 volatile shared scratch[WARPS][128];

3 hash = neighbor & 127;

4 scratch[warp_id][hash] = neighbor;

5 retrieved = scratch[warp_id][hash];

6 if (retrieved == neighbor) {

7 // vie to be the “unique” item

8 scratch[warp_id][hash] = thread_id;

9 if (scratch[warp_id][hash] !=

10 thread_id)

11 {

12 // someone else is unique

13 return true;

14 }

15 }

16 return false;

17 }

156

Analysis. We augment our isolated lookup tests to evaluate these heuristics.

Kernels simply read vertex identifiers from the edge-frontier and determine which should

not be allowed into the vertex-frontier. For each dataset, we record the average

percentage of false negatives with respect to m – n, the ideal number of culled vertex

identifiers.

Fig. 70 illustrates the progressive application of lookup mechanisms. The

bitmask heuristic alone incurs an average false-negative rate of 6.4% across our

benchmark suite. The addition of label-lookup (which makes status-lookup safe)

improves this to 4.0%. Without further measure, the compounding nature of redundant

expansion allows even small percentages to accrue sizeable amounts of extra work. For

example, a false-negative rate of 3.5% for traversing kkt_power results in a 40%

redundant expansion overhead.

The addition of warp-based culling induces a tenfold reduction in false-negatives

for spatially descriptive graphs (left-hand side). The history-based culling heuristic

further reduces culling inefficiency by a factor of five for the remainder of high-risk

datasets (middle-third). The application of both heuristics allows us to reduce the overall

redundant expansion factor to less than 1.05x for every graph in our benchmark suite.

Fig. 70 Percentages of false-negatives incurred by status-lookup strategies.

0.0001

0.01

1

100

%
 o

f
fa

ls
e

-n
e

g
a

ti
v

e
s

Bitmask Bitmask+Label Bitmask+Label+WarpCull Bitmask+Label+WarpCull+HistoryCull

157

6.5 SINGLE-GPU PARALLELIZATIONS

A complete solution must couple expansion and contraction activities. In this section, we

evaluate the design space of coupling alternatives:

1) Expand-contract. A single kernel consumes the current vertex-frontier and

produces the vertex-frontier for the next BFS iteration.

2) Contract-expand. The converse. A single kernel contracts the current edge-

frontier, expanding unvisited vertices into the edge-frontier for the next iteration.

3) Two-phase. A given BFS iteration is processed by two kernels that separately

implement out-of-core expansion and contraction.

4) Hybrid. This implementation invokes the contract-expand kernel for small,

fleeting BFS iterations, otherwise the two-phase kernels.

We describe and evaluate BFS kernels for each strategy. We show the hybrid

approach to be on-par-with or better-than the other three for every dataset in our

benchmark suite.

6.5.1 Expand-contract (out-of-core vertex queue)

Our expand-contract kernel is loosely based upon the fused gather-lookup benchmark

kernel from Section 6.4.3. It consumes the vertex queue for the current BFS iteration and

produces the vertex queue for the next. It performs parallel expansion and filtering of

adjacency lists online and in-core using local scratch memory.

A CTA performs the following steps when processing a tile of input from the

incoming vertex-frontier queue:

1) Threads perform local warp-culling and history-culling to determine if their

dequeued vertex is a duplicate.

158

2) If still valid, the corresponding row-range is loaded from the row-offsets array R.

3) Threads perform coarse-grained, CTA-based neighbor-gathering. Large adjacency

lists are cooperatively strip-mined from the column-indices array C at the full

width of the CTA. These strips of neighbors are filtered in-core and the unvisited

vertices are enqueued into the output queue as described below.

4) Threads perform fine-grained, scan-based neighbor-gathering. These batches of

neighbors are filtered and enqueued into the output queue as described below.

For each strip or batch of gathered neighbors:

i. Threads perform status-lookup to invalidate the vast majority of previously-visited

and duplicate neighbors.

ii. Threads with a valid neighbor ni update the corresponding label.

iii. Threads then perform a CTA-wide prefix sum where each contributes a 1 if ni is

valid, 0 otherwise. This provides each thread with the scatter offset for ni and the

total count of all valid neighbors.

iv. Thread0 obtains the base enqueue offset for valid neighbors by performing an

atomic-add operation on a global queue counter using the total valid count. The

returned value is shared to all other threads in the CTA.

v. Finally, all valid ni are written to the global output queue. The enqueue index for

ni is the sum of the base enqueue offset and the scatter offset.

This kernel requires 2n global storage for input and output vertex queues. The roles of

these two arrays are reversed for alternating BFS iterations. A traversal will generate

5n+2m explicit data movement through global memory. All m edges will be streamed

into registers once. All n vertices will be streamed twice: out into global frontier queues

159

and subsequently back in. The bitmask bits will be inspected m times and updated n

times along with the labels. Each of the n row-offsets is loaded twice.

CTAs perform two or more local prefix-sums per tile. One is used for allocating

room for gather offsets during scan-based gathering. We also need prefix sums to

compute global enqueue offsets for every strip or batch of gathered neighbors. Although

GPU cores can efficiently overlap concurrent prefix sums from different CTAs, the

turnaround time for each can be relatively long. This can hurt performance for fleeting,

latency-bound BFS iterations.

6.5.2 Contract-expand (out-of-core edge queue)

Our contract-expand kernel filters previously-visited and duplicate neighbors from the

current edge queue. The adjacency lists of the surviving vertices are then expanded and

copied out into the edge queue for the next iteration.

A CTA performs the following steps when processing a tile of input from the

incoming edge-frontier queue:

1) Threads progressively test their neighbor vertex identifier ni for validity using (i)

status-lookup; (ii) warp-based duplicate culling; and (iii) history-based duplicate

culling.

2) Threads update labels for valid ni and obtain the corresponding row-ranges from R.

3) Threads then perform two concurrent CTA-wide prefix sums: the first for

computing enqueue offsets for coarse-grained warp and CTA neighbor-gathering,

the second for fine-grained scan-based gathering. |Ai| is contributed to the first

prefix sum if greater than WARP_SIZE, otherwise to the second.

160

4) Thread0 obtains a base enqueue offset for valid neighbors within the entire tile by

performing an atomic-add operation on a global queue counter using the combined

totals of the two prefix sums. The returned value is shared to all other threads in

the CTA.

5) Threads then perform coarse-grained CTA and warp-based gathering. When a

thread commandeers its CTA or warp, it also communicates the base scatter offset

for ni to its peers. After gathering neighbors from C, enlisted threads enqueue

them to the global output queue. The enqueue index for each thread is the sum of

the base enqueue offset, the shared scatter offset, and thread-rank.

6) Finally, threads perform fine-grained scan-based gathering. This procedure is a

variant of Listing 10 with the prefix sum being hoisted out and performed earlier

in Step 4. After gathering packed neighbors from C, threads enqueue them to the

global output. The enqueue index is the sum of the base enqueue offset, the

coarse-grained total, the CTA progress, and thread-rank.

This kernel requires 2m global storage for input and output edge queues. Variants

that label predecessors, however, require an additional pair of “parent” queues to track

both origin and destination identifiers within the edge-frontier. A traversal will generate

3n+4m explicit global data movement. All m edges will be streamed through global

memory three times: into registers from C, out to the edge queue, and back in again the

next iteration. The bitmask, label, and row-offset traffic remain the same as for expand-

contract.

Despite a much larger queuing workload, the contract-expand strategy is often

better suited for processing small, fleeting BFS iterations. It incurs lower latency because

161

CTAs only perform local two prefix sums per block. We overlap these prefix-sums to

further reduce latency. By operating on the larger edge-frontier, the contract-expand

kernel also enjoys better bulk concurrency in which fewer resident CTAs sit idle.

6.5.3 Two-phase (out-of-core vertex and edge queues)

Our two-phase implementation isolates the expansion and contraction workloads into

separate kernels. Our micro-benchmark analyses suggest this design for better overall

bulk throughput. The expansion kernel employs the scan+warp+cta gathering strategy

to obtain the neighbors of vertices from the input vertex queue. As with the contract-

expand implementation above, it performs two overlapped local prefix-sums to compute

scatter offsets for the expanded neighbors into the global edge queue.

The contraction kernel begins with the edge queue as input. Threads filter

previously-visited and duplicate neighbors. The remaining valid neighbors are placed

into the outgoing vertex queue using another local prefix sum to compute global enqueue

offsets.

These kernels require n+m global storage for vertex and edge queues. A two-

phase traversal generates 5n+4m explicit global data movement. The memory workload

builds upon that of contract-expand, but additionally streams n vertices into and out of

the global vertex queue.

6.5.4 Hybrid

Our hybrid implementation combines the relative strengths of the contract-expand and

two-phase approaches: low-latency turnaround for small frontiers and high-efficiency

throughput for large frontiers. If the edge queue for a given BFS iteration contains more

vertex identifiers than resident threads, we invoke the two-phase implementation for that

162

iteration. Otherwise we invoke the contract-expand implementation. The hybrid

approach inherits the 2m global storage requirement from the former and the 5n+4m

explicit global data movement from the latter.

6.5.5 Evaluation

Our performance analyses are constructed from 100 randomly-sourced traversals of each

dataset. Fig. 71 plots average traversal throughput. As anticipated, the contract-expand

approach excels at traversing the latency-bound datasets on the left and the two-phase

(a) Average traversal throughput

(b) Average DRAM workload

(c) Average computational workload

Fig. 71 BFS traversal performance and workloads. Harmonic means are normalized with respect to the expand-

contract implementation.

0.0

0.5

1.0

1.5

0.0

1.0

2.0

3.0

4.0

n
o

rm
a

li
ze

d

1
0

9
e

d
g

e
s

/
se

c

Expand-Contract Contract-Expand 2-Phase Hybrid

0.0

0.5

1.0

1.5

2.0

0

50

100

150

n
o

rm
a

li
ze

d

B
y

te
s

/
e

d
g

e

Expand-Contract Contract-Expand 2-Phase Hybrid

0.0

0.5

1.0

1.5

2.0

0

200

400

600

800

1000

n
o

rm
a

li
ze

d

T
h

re
a

d
-i

n
st

rs
 /

 e
d

g
e Expand-Contract Contract-Expand 2-Phase Hybrid

163

implementation efficiently leverages the bulk-concurrency exposed by the datasets on the

right. Although the expand-contract approach is serviceable, the hybrid approach meets

or exceeds its performance for every dataset.

The importance of work compaction. With in-core edge-frontier processing, the

expand-contract implementation is designed for one-third as much global queue traffic.

The actual DRAM savings are substantially less. We only see a 50% reduction in

measured DRAM workload for datasets with large %̅. Furthermore, the workload

differences are effectively lost in excess over-fetch traffic for the graphs having small %̅:

their small adjacency lists only occupy a small proportion of the memory transactions

used to retrieve them.

The contract-expand implementation performs poorly for graphs having large %̅.

This behavior is related to a lack of explicit workload compaction before neighbor

gathering. Fig. 72 illustrates this using a sample traversal of wikipedia-20070206. We

observe a correlation between large contraction workloads during iterations 4-6 and

significantly elevated dynamic thread-instruction counts. This is indicative of SIMD

(a) traversal throughput (b) Dynamic instruction workload during BFS

iterations having large cull-sets

Fig. 72. Sample wikipedia-20070206 traversal behavior. Plots are superimposed over the shape of the logical edge and

vertex-frontiers.

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1
0

9
e

d
g

e
s

/
se

c

BFS Iteration

Edge Frontier

Vertex Frontier

Two-phase

Contract-Expand

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
h

re
a

d
-i

n
st

ru
ct

io
n

s
/

e
d

g
e

BFS Iteration

Edge Frontier

Vertex Frontier

Two-phase

Contract-Expand

164

underutilization. The majority of active threads have their neighbors invalidated by

status-lookup and local duplicate removal. Cooperative neighbor-gathering becomes

much less efficient as a result.

Distance vs. predecessor labeling. Table 10 presents hybrid traversal

performance for distance and predecessor labeling variants. The performance difference

between variants is largely dependent upon %̅. Smaller %̅ incurs larger DRAM over-fetch

which reduces the relative significance of added parent queue traffic. For example, the

performance impact of exchanging parent vertices is negligible for europe.osm, yet is as

high as 19% for rmat.2Mv.128Me.

Comparison of our hybrid strategy with prior work. It is challenging to contrast

traversal performance for CPU and GPU architectures. The construction of high

performance CPU parallelizations is outside the scope of this work, and published studies

of CPU traversal have not reported performance results for all of the datasets in our

benchmark corpus.

Graph Dataset

Sequential

CPU
†

State-of-the-art parallel

CPU

NVIDIA Tesla C2050 (hybrid strategy)

Distance Labeling Predecessor Labeling

10
9
 TE/s

10
9

TE/s

Speedup vs.

sequential CPU

10
9

TE/s

Speedup vs.

sequential CPU

10
9

TE/s

Speedup vs.

sequential CPU

europe.osm 0.029 0.31 11x 0.31 11x

grid5pt.5000 0.081 0.60 7.3x 0.57 7.0x

hugebubbles-00020 0.029 0.43 15x 0.42 15x

grid7pt.300 0.038 0.12
††

 3.0x 1.1 28x 0.97 26x

nlpkkt160 0.26 0.47
††

 1.8x 2.5 9.6x 2.1 8.3x

audikw1 0.65 3.0 4.6x 2.5 4.0x

cage15 0.13 0.23
††

 1.8x 2.2 18x 1.9 15x

kkt_power 0.047 0.11
††

 2.2x 1.1 23x 1.0 21x

coPapersCiteseer 0.50 3.0 5.9x 2.5 5.0x

wikipedia-20070206 0.065 0.19
††

 2.7 x 1.6 25x 1.4 22x

kron_g500-logn20 0.24 3.1 13x 2.5 11x

random.2Mv.128Me 0.10 0.50
†††

 5.0 x 3.0 29x 2.4 23x

rmat.2Mv.128Me 0.15 0.70
†††

 4.6 x 3.3 22x 2.6 18x

Table 10. Single-socket performance comparison.

GPU speedup is in regard to sequential CPU performance. †3.4GHz Core i7 2600K. †† 2.5 GHz Core i7 4-core,

distance-labeling [78]. ††† 2.7 GHz Xeon X5570 8-core, predecessor labeling [2].

unable to achieve linear performance scaling with r

Hedging in favor of CPU performance,

an implementation of

parallelization with perfect linear scaling per core.

speedup versus our sequential CPU implementation on a state

Core i7 2600K (Sandybridge) as being competitive with

traversal

traversal rates would outperform the CPU for all benchmark datasets. In addition, the

majority of our graph traversal rates exceed 12x speedup, the perfect scaling of three such

CPUs. At the extreme, our average

sequential CPU version by 25x,

16

1
0

9
e

d
g

e
s

/
se

c

However, we make the observation that parallel CPU implementations have been

unable to achieve linear performance scaling with r

Hedging in favor of CPU performance,

an implementation of

parallelization with perfect linear scaling per core.

speedup versus our sequential CPU implementation on a state

Core i7 2600K (Sandybridge) as being competitive with

traversal16.

If we were to assume

traversal rates would outperform the CPU for all benchmark datasets. In addition, the

majority of our graph traversal rates exceed 12x speedup, the perfect scaling of three such

CPUs. At the extreme, our average

sequential CPU version by 25x,

 Our sequential implementation exceeds the single

al. [2] despite having fewer memory channels

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1

1
0

9
e

d
g

e
s

/
se

c

However, we make the observation that parallel CPU implementations have been

unable to achieve linear performance scaling with r

Hedging in favor of CPU performance,

an implementation of the sequential method

parallelization with perfect linear scaling per core.

speedup versus our sequential CPU implementation on a state

Core i7 2600K (Sandybridge) as being competitive with

If we were to assume

traversal rates would outperform the CPU for all benchmark datasets. In addition, the

majority of our graph traversal rates exceed 12x speedup, the perfect scaling of three such

CPUs. At the extreme, our average

sequential CPU version by 25x,

Our sequential implementation exceeds the single

despite having fewer memory channels

(a) Uniform random

2 4

|V| (millions)

However, we make the observation that parallel CPU implementations have been

unable to achieve linear performance scaling with r

Hedging in favor of CPU performance,

the sequential method

parallelization with perfect linear scaling per core.

speedup versus our sequential CPU implementation on a state

Core i7 2600K (Sandybridge) as being competitive with

If we were to assume 4x scaling across all four 2

traversal rates would outperform the CPU for all benchmark datasets. In addition, the

majority of our graph traversal rates exceed 12x speedup, the perfect scaling of three such

CPUs. At the extreme, our average

sequential CPU version by 25x, i.e., eight CPU

Our sequential implementation exceeds the single

despite having fewer memory channels

Uniform random

Fig. 73. NVIDIA C2050

4 8 16

|V| (millions)

However, we make the observation that parallel CPU implementations have been

unable to achieve linear performance scaling with r

Hedging in favor of CPU performance, we compare our GPU traversal performance with

the sequential method

parallelization with perfect linear scaling per core.

speedup versus our sequential CPU implementation on a state

Core i7 2600K (Sandybridge) as being competitive with

4x scaling across all four 2

traversal rates would outperform the CPU for all benchmark datasets. In addition, the

majority of our graph traversal rates exceed 12x speedup, the perfect scaling of three such

CPUs. At the extreme, our average wikipedia-200702

eight CPU-equivalents.

Our sequential implementation exceeds the single-threaded results reported by Leiserson et al.

NVIDIA C2050 traversal throughput.

16 32

d = 256

d = 128

d = 64

d = 32

d = 16

d = 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1
0

9
e

d
g

e
s

/
se

c

However, we make the observation that parallel CPU implementations have been

unable to achieve linear performance scaling with respect to processor cores

compare our GPU traversal performance with

 and then assume a hypothetical CPU

parallelization with perfect linear scaling per core. As such

speedup versus our sequential CPU implementation on a state

Core i7 2600K (Sandybridge) as being competitive with

4x scaling across all four 2600K CPU cores, our C2050

traversal rates would outperform the CPU for all benchmark datasets. In addition, the

majority of our graph traversal rates exceed 12x speedup, the perfect scaling of three such

20070206 traversal rates outperform the

equivalents.

ded results reported by Leiserson et al.

(b) RMAT (A

traversal throughput.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1

However, we make the observation that parallel CPU implementations have been

espect to processor cores

compare our GPU traversal performance with

and then assume a hypothetical CPU

uch, we consider a 4

speedup versus our sequential CPU implementation on a state-of-the-

Core i7 2600K (Sandybridge) as being competitive with contemporary

600K CPU cores, our C2050

traversal rates would outperform the CPU for all benchmark datasets. In addition, the

majority of our graph traversal rates exceed 12x speedup, the perfect scaling of three such

traversal rates outperform the

equivalents.

ded results reported by Leiserson et al.

A=0.45, B=0.15, C

traversal throughput.

2 4

|V| (millions)

However, we make the observation that parallel CPU implementations have been

espect to processor cores [2, 78]

compare our GPU traversal performance with

and then assume a hypothetical CPU

we consider a 4-8x GPU

-art 3.4GHz Intel

contemporary parallel CPU

600K CPU cores, our C2050

traversal rates would outperform the CPU for all benchmark datasets. In addition, the

majority of our graph traversal rates exceed 12x speedup, the perfect scaling of three such

traversal rates outperform the

ded results reported by Leiserson et al. [78] and Agarwal et

C=0.15, D=0.25)

8 16

|V| (millions)

d = 256

d = 128

d = 64

d = 32

d = 16

d = 8

165

However, we make the observation that parallel CPU implementations have been

[2, 78].

compare our GPU traversal performance with

and then assume a hypothetical CPU

8x GPU

art 3.4GHz Intel

parallel CPU

600K CPU cores, our C2050

traversal rates would outperform the CPU for all benchmark datasets. In addition, the

majority of our graph traversal rates exceed 12x speedup, the perfect scaling of three such

traversal rates outperform the

and Agarwal et

32

d = 256

d = 128

d = 64

d = 32

d = 16

d = 8

166

We also note that our methods perform well for large and small-diameter graphs

alike. Comparing with sequential CPU traversals of europe.osm and kron_g500-logn20,

our hybrid strategy provides an order-of-magnitude speedup for both.

In comparing with state-of-the-art GPU implementations, we evaluated the

quadratic implementation provided by Hong et al. [63] on our benchmark datasets. Their

work-inefficient, quadric method suffers from high overhead and was not competitive on

even the lowest diameter graphs in our experimental corpus. At best, their

implementation achieved an average 2.1x slowdown for kron_g500-logn20. At worst, a

2,300x slowdown for europe.osm. For wikipedia-20070206, a 4.1x slowdown.

We use a previous-generation NVIDIA GTX280 to compare our implementation

with the results reported by Luo et al. for their linear parallelization [79]. We achieve

4.1x and 1.7x harmonic mean speedups for the referenced 6-pt grid lattices and DIMACS

road network datasets, respectively.

Uniform-random and RMAT-scaling. Fig. 73 further presents C2050 traversal

performance for synthetic uniform-random and RMAT datasets having up to 256 million

edges. Each plotted rate is averaged from 100 randomly-sourced traversals.

Our maximum traversal rates of 3.5B and 3.6B TE/s occur with %̅ = 256 for

uniform-random and RMAT datasets having 256M edges, respectively. The minimum

rates plotted are 710M and 982M TE/s for uniform-random and RMAT datasets having %̅

= 8 and 256M edges. Performance incurs a drop-off at n=8 million vertices when the

bitmask exceeds the 768KB L2 cache size.

167

6.6 MULTI-GPU PARALLELIZATION

Communication between GPUs is simplified by a unified virtual address space in which

pointers can transparently reference data residing within remote GPUs. PCI-express 2.0

provides each GPU with an external bidirectional bandwidth of 6.6 GB/s. Under the

assumption that GPUs send and receive equal amounts of traffic, the rate at which each

GPU can be fed with remote work is conservatively bound by 825x10
6
 neighbors / sec,

where neighbors are 4-byte identifiers. This rate is halved for predecessor-labeling

variants.

6.6.1 Design

We implement a simple partitioning of the graph into equally-sized, disjoint subsets of V.

For a system of p GPUs, we initialize each processor pi with an (m/p)-element Ci and

(n/p)-element Ri and Labelsi arrays. Because the system is small, we can provision each

GPU with its own full-sized n-bit best-effort bitmask.

We stripe ownership of V across the domain of vertex identifiers. Striping

provides good probability of an even distribution of adjacency list sizes across GPUs.

This is particularly useful for graph datasets having concentrations of popular vertices.

For example, RMAT datasets encode the most popular vertices with the largest adjacency

lists near the beginning of R and C. Alternatives that divide such data into contiguous

slabs can be detrimental for small systems: (a) an equal share of vertices would

overburden first GPU with an abundance of edges; or (b) an equal share of edges leaves

the first GPU underutilized because it owns fewer vertices, most of which are apt to be

filtered remotely. However, this method of partitioning progressively loses any inherent

locality as the number of GPUs increases.

168

Graph traversal proceeds in level-synchronous fashion. The host program

orchestrates BFS iterations as follows:

1) Invoke the expansion kernel on each GPUi, transforming the vertex queue Qvertexi

into an edge queue Qedgei.

2) Invoke a fused filter+partition operation for each GPUi that sorts neighbors within

Qedgei by ownership into p bins. Vertex identifiers undergo opportunistic local

duplicate culling and bitmask filtering during the partitioning process. This

partitioning implementation is analogous to the three-kernel radix-sorting pass

described in Chapter 5.

3) Barrier across all GPUs. The sorting must be completed on all GPUs before any

can access their bins on remote peers. The host program uses this opportunity to

terminate traversal if all bins are empty on all GPUs.

4) Invoke p-1 contraction kernels on each GPUi to stream and filter the incoming

neighbors from its peers. Kernel invocation simply uses remote pointers that

reference the appropriate peer bins. This assembles each vertex queue Qvertexi for

the next BFS iteration.

The implementation requires (2m+n)/p storage for queue arrays per GPU: two edge

queues for pre and post-sorted neighbors and a third vertex queue to avoid another global

synchronization after Step 4.

6.6.2 Evaluation

Fig. 74 presents traversal throughput as we scale up the number of GPUs. We experience

net slowdown for datasets on the left having average search depth > 100. The cost of

global synchronization between BFS iterations is much higher across multiple GPUs.

169

We do yield notable speedups for the three rightmost datasets. These graphs have

small diameters and require little global synchronization. The large average out-degrees

enable plenty of opportunistic duplicate filtering during partitioning passes. This allows

us to circumvent the PCI-e cap of 825x10
6
 edges/sec per GPU. With four GPUs, we

demonstrate traversal rates of 7.4 and 8.3 billion edges/sec for the uniform-random and

RMAT datasets respectively.

As expected, this strong-scaling is not linear. For example, we observe 1.5x,

2.1x, and 2.5x speedups when traversing rmat.2Mv.128Me using two, three, and four

GPUs, respectively. Adding more GPUs reduces the percentage of duplicates per

processor and increases overall PCI-e traffic.

 Fig. 75 further illustrates the impact of opportunistic duplicate culling for

uniform random graphs up to 500M edges and varying out out-degree %̅. Increasing %̅

yields significantly better performance. Other than a slight performance drop at n=8

million vertices when the bitmask exceeds the L2 cache size, graph size has little impact

upon traversal throughput.

Fig. 74. Average multi-GPU traversal rates. Harmonic means are normalized with respect to the single GPU

configuration.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

2

4

6

8

10

n
o

rm
a

li
ze

d

1
0

9
e

d
g

e
s

/
se

c

C2050 x1 C2050 x2 C2050 x3 C2050 x4

node machine. The work by Agarwal et al. is representative of the state

parallelizations, demonstrating up to 1.3 billion edges/sec for both uniform

RMAT datasets using fou

note that the host memory on such systems can further accommodate datasets having tens

of billions of edges.

6.7

This

can achieve very high levels of performance on a broad range of graphs. We have

presented a parallelization of BFS tailored to the GPU’s requirement for large amounts of

fine

work. While quadratic

regimes

lowest diameter graphs in our experimenta

Fig.

processors. Dashed lines indicate predecessor labeling variants.

To our knowledge, these are

node machine. The work by Agarwal et al. is representative of the state

parallelizations, demonstrating up to 1.3 billion edges/sec for both uniform

RMAT datasets using fou

note that the host memory on such systems can further accommodate datasets having tens

of billions of edges.

6.7 CHAPTER SUMMARY

This chapter

can achieve very high levels of performance on a broad range of graphs. We have

presented a parallelization of BFS tailored to the GPU’s requirement for large amounts of

fine-grained, bulk

Furthermore, our implementation

work. While quadratic

regimes [63, 64]

lowest diameter graphs in our experimenta

Fig. 75. Multi-GPU se

processors. Dashed lines indicate predecessor labeling variants.

To our knowledge, these are

node machine. The work by Agarwal et al. is representative of the state

parallelizations, demonstrating up to 1.3 billion edges/sec for both uniform

RMAT datasets using fou

note that the host memory on such systems can further accommodate datasets having tens

of billions of edges.

CHAPTER SUMMARY

 has demonstrated that GPUs are well

can achieve very high levels of performance on a broad range of graphs. We have

presented a parallelization of BFS tailored to the GPU’s requirement for large amounts of

grained, bulk-synchronous parallelism.

Furthermore, our implementation

work. While quadratic

[63, 64], they suffer from high overhead and did not prove effective on even the

lowest diameter graphs in our experimenta

GPU sensitivity to graph size

processors. Dashed lines indicate predecessor labeling variants.

1
0

9
e

d
g

e
s

/
se

c

To our knowledge, these are

node machine. The work by Agarwal et al. is representative of the state

parallelizations, demonstrating up to 1.3 billion edges/sec for both uniform

RMAT datasets using four 8-core Intel Nehalem

note that the host memory on such systems can further accommodate datasets having tens

CHAPTER SUMMARY

has demonstrated that GPUs are well

can achieve very high levels of performance on a broad range of graphs. We have

presented a parallelization of BFS tailored to the GPU’s requirement for large amounts of

synchronous parallelism.

Furthermore, our implementation

work. While quadratic-work methods might be acceptable in certain very narrow

, they suffer from high overhead and did not prove effective on even the

lowest diameter graphs in our experimenta

nsitivity to graph size and average out

processors. Dashed lines indicate predecessor labeling variants.

0

1

2

3

4

5

6

7

8

9

2

1
0

e
d

g
e

s
/

se
c

 the fastest traversal rates demonstrated by a single

node machine. The work by Agarwal et al. is representative of the state

parallelizations, demonstrating up to 1.3 billion edges/sec for both uniform

core Intel Nehalem

note that the host memory on such systems can further accommodate datasets having tens

has demonstrated that GPUs are well

can achieve very high levels of performance on a broad range of graphs. We have

presented a parallelization of BFS tailored to the GPU’s requirement for large amounts of

synchronous parallelism.

Furthermore, our implementation performs an asymptotically optimal amount of

work methods might be acceptable in certain very narrow

, they suffer from high overhead and did not prove effective on even the

lowest diameter graphs in our experimental corpus. Our linear

and average out-degree

processors. Dashed lines indicate predecessor labeling variants.

4

|V| (millions)

the fastest traversal rates demonstrated by a single

node machine. The work by Agarwal et al. is representative of the state

parallelizations, demonstrating up to 1.3 billion edges/sec for both uniform

core Intel Nehalem-based XEON CPUs

note that the host memory on such systems can further accommodate datasets having tens

has demonstrated that GPUs are well-suited for sparse graph trave

can achieve very high levels of performance on a broad range of graphs. We have

presented a parallelization of BFS tailored to the GPU’s requirement for large amounts of

performs an asymptotically optimal amount of

work methods might be acceptable in certain very narrow

, they suffer from high overhead and did not prove effective on even the

l corpus. Our linear

degree �: for uniform random graphs

8

|V| (millions)

the fastest traversal rates demonstrated by a single

node machine. The work by Agarwal et al. is representative of the state

parallelizations, demonstrating up to 1.3 billion edges/sec for both uniform

based XEON CPUs [2]

note that the host memory on such systems can further accommodate datasets having tens

suited for sparse graph trave

can achieve very high levels of performance on a broad range of graphs. We have

presented a parallelization of BFS tailored to the GPU’s requirement for large amounts of

performs an asymptotically optimal amount of

work methods might be acceptable in certain very narrow

, they suffer from high overhead and did not prove effective on even the

l corpus. Our linear-work method compares

for uniform random graphs

16

d = 64

d = 32

d = 16

d = 8

the fastest traversal rates demonstrated by a single

 of the art in CPU

parallelizations, demonstrating up to 1.3 billion edges/sec for both uniform-random and

[2]. However, we

note that the host memory on such systems can further accommodate datasets having tens

suited for sparse graph traversal and

can achieve very high levels of performance on a broad range of graphs. We have

presented a parallelization of BFS tailored to the GPU’s requirement for large amounts of

performs an asymptotically optimal amount of

work methods might be acceptable in certain very narrow

, they suffer from high overhead and did not prove effective on even the

work method compares

for uniform random graphs using four C2050

170

the fastest traversal rates demonstrated by a single-

art in CPU

random and

. However, we

note that the host memory on such systems can further accommodate datasets having tens

rsal and

can achieve very high levels of performance on a broad range of graphs. We have

presented a parallelization of BFS tailored to the GPU’s requirement for large amounts of

performs an asymptotically optimal amount of

work methods might be acceptable in certain very narrow

, they suffer from high overhead and did not prove effective on even the

work method compares

using four C2050

171

very favorably to state-of-the-art multicore implementations across our entire range of

benchmarks, which spans five orders of magnitude in graph diameter.

Beyond graph search, this chapter distills several general themes for

implementing sparse and dynamic problems for the GPU machine model:

• In contrast to coarse-grained parallelism common on multicore processors, GPU

kernels cannot afford to have individual threads streaming through unrelated sections

of data. Groups of GPU threads should cooperatively assist each other for data

movement tasks.

• Fusing heterogeneous tasks does not always produce the best results. Global

redistribution and compaction of fine-grained tasks can significantly improve

performance when the alternative would allow significant load imbalance or

underutilization.

• The relative memory traffic from global task redistribution can be less costly than

anticipated. The data movement from reorganization may be insignificant in

comparison to the actual over-fetch traffic from existing sparse memory accesses.

• It is useful to provide separate implementations for saturating versus fleeting

workloads. Hybrid approaches can leverage a shorter code-path for retiring

underutilized phases as quickly as possible.

172

Chapter 7

Conclusion

7.1 SUMMARY

This dissertation has addressed many of the challenges inherent to the construction of

cooperative parallelizations for GPU architecture. Despite contemporary opinion to the

contrary, we have shown GPU architecture to be exceptionally well-suited for

computations having fine-grained, dynamic allocation dependences between concurrent

tasks. Our primary examples are parallel sorting and graph traversal, two archetypal

applications for this problem genre. Our implementations for both of these problems

achieve the fastest published performance on any fully-programmable microarchitecture.

The ability to cooperatively reserve space within shared data structures is a

fundamental aspect of parallel computing. Although atomic operations are presently the

conventional tool for implementing concurrent data placement, our analyses show they

are incongruous with the bulk-synchronous and SIMD nature of the GPU machine model.

We demonstrate prefix sum as a superior alternative for implementing cooperative

allocation among many parallel threads.

173

The development of efficient parallelizations for prefix sum was critical to this

research. Our efficiency stems from flexible granularity coarsening, the ability to

provide proper balance between serial and parallel phases of computation for the target

architecture. By reducing the computational overhead of local prefix sum by several

factors, we created an inflection point in the design space for many cooperative problems

where it now becomes feasible to:

• Benefit from kernel fusion, i.e., the colocation of application-specific logic within

prefix sum kernels with significantly reduced (or negligible) overhead

• Perform fine-grained workload redistribution

To demonstrate the viability and generality of our designs, we constructed cooperative

GPU implementations for a variety of parallel list-processing primitives, evaluating their

performance across a wide spectrum of problem sizes, types, and target architectures.

However, it became clear that “concrete” implementations are simply not

performance-portable, particularly if we want to reuse intra-CTA subroutines for

common tasks. Out of necessity, we developed a higher-level programming abstraction

for policy-based tuning where the programmer expresses the “general shape” of their

solution, leaving many of the performance sensitive details unbound. We found the C++

type system to be useful as a mechanism for specializing code generation via template

metaprogramming, particularly as our tuning decisions affect data structure and layout

within shared memory. Our autotuning results demonstrate the ability to consistently

discover good specializations for the specific problem instance at hand.

174

7.2 LIMITATIONS AND FUTURE WORK

7.2.1 The CTA serialization idiom

CTA serialization has several drawbacks. The increased granularity of computation can

lead to load imbalance within and among GPU cores. If the scheduling hardware within

each core is unfair, warps within one CTA may repeatedly be given preference over those

of another when either have ready candidates. The result is a long tail of processor

underutilization after the preferred CTAs have completed and only disfavored CTAs have

work remaining. We can curtail this effect to some degree by slightly oversubscribing

each core with a constant amount of additional CTAs.

Register pressure can also become an issue for kernels having more complicated

tile-processing logic. This is caused by increased register live ranges, a side effect of

hoisting local variables from the tile processing loop. The combination of excessive

register pressure and aggressive common subexpression elimination (CSE) can lead to

expensive spills to off-chip memory.

As a compiler optimization, CSE is particularly advantageous for traditional CPU

architecture where registers can be spilled to and recovered from nearby, high speed L1

cache. However, it is often more advantageous for GPU threads to simply recompute a

result than to let it spill. An interesting area of research for future investigation would be

the tighter integration of CSE with register allocation, perhaps along with analytical cost

models and program analysis of how many active threads will be affected.

As another avenue of future work, CTA serialization is sufficiently simple to be

automated by the compiler as an optimization step. The compiler simply needs to wrap

the data-parallel kernel code within a while-loop, sequentially virtualizing the concurrent

CTAs expressed by the programmer.

175

7.2.2 Static metaprogramming

The static metaprogramming techniques we describe in this dissertation are useful for

achieving good performance on an abstract machine model where the overheads of

runtime decision-making are substantially magnified by parallelism. However,

metaprogramming under the current model of compilation has two drawbacks. Both are

related to the fact that this extra programmer-supplied detail (e.g., the relationships

between unrolling steps, tile sizes, and GPU architectures) is lost after the high-level

source is compiled down into an intermediate representation.

First, library developers of GPU primitives cannot possibly hope to distribute

code in the form of precompiled binaries. The number of specializations that would arise

from simply compiling the cross-product of numeric data types across today’s existing

architectures would result in untenable library bloating. As an example of binary

distribution bloat, the CUDPP library redistributable is 294MB [35].

Instead, library providers must distribute high-level sources that can be #included,

similar to the C++ standard template library. This may place an unwanted burden on

library authors who may not want to share the details of their high-level source code, or

on developers who may not want to contend with lengthier compile times.

Second, the metaprogramming approach is subject to performance regression by

omission. Although code specialization by data type can be driven by well-defined sets

of traits (e.g., representation size, signed/unsigned, etc.), specialization by architecture-

version requires the compiler to be aware of all potential target processor configurations

at compile-time. New architectures are currently released around every 18 months.

A better solution might entail a mechanism for the programming model to retain

metaprogramming directives within the intermediate representation, allowing just-in-time

176

compilation by the loader/driver to specialize and unroll executable code for the specific

target processor it has been deployed with.

7.2.3 Sorting

This dissertation presents very efficient radix sorting. However, comparison-based

methods are required for sorting problems where a lexicographic ordering of keys does

not exist. They are also more desirable when the key data type is sufficiently long and/or

the input size of the sorting problem is relatively small.

A prospective avenue of future research would be to investigate the design of

comparison-based, top-down partitioning strategies, e.g., multi-pivot quicksort. Our

concurrent allocation strategies based upon parallel prefix sum should be directly

applicable to the problem of constructing and tracking the dynamic, recursive partitioning

of sorting inputs.

7.2.4 Graph traversal

Our multi-GPU implementation of sparse BFS leverages duplicate removal to

significantly cut down the number of vertex-identifiers transmitted between GPUs. An

interesting extension of this technique would be to push such duplicate removal into the

hierarchical interconnect of large scale systems (such as those evaluated by the Graph500

benchmark [111]). Using a randomized overlay network having log2p expected

communication hops, one can imagine the entire system collectively acting as a

progressive filter for eliminating the vast majority of edges before they ever arrive at their

authoritative ownership nodes.

177

REFERENCES

[1] 10th DIMACS Implementation Challenge:

http://www.cc.gatech.edu/dimacs10/index.shtml. Accessed: 2011-07-11.

[2] Agarwal, V. et al. 2010. Scalable Graph Exploration on Multicore Processors. 2010

ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis (New Orleans, LA, USA, Nov. 2010), 1-11.

[3] Ajtai, M. et al. 1983. An 0(n log n) sorting network. Proceedings of the fifteenth

annual ACM symposium on Theory of computing (New York, NY, USA, 1983), 1–

9.

[4] Alcantara, D.A. et al. 2009. Real-time parallel hashing on the GPU. ACM

SIGGRAPH Asia 2009 papers (New York, NY, USA, 2009), 154:1–154:9.

[5] Ansel, J. et al. 2009. PetaBricks: a language and compiler for algorithmic choice.

Proceedings of the 2009 ACM SIGPLAN conference on Programming language

design and implementation (New York, NY, USA, 2009), 38–49.

[6] BackForty Computing: Fast and efficient software primitives for GPU computing:

http://code.google.com/p/back40computing/. Accessed: 2011-08-25.

[7] Bader, D.A. and Madduri, K. Designing Multithreaded Algorithms for Breadth-First

Search and st-connectivity on the Cray MTA-2. 2006 International Conference on

Parallel Processing (ICPP’06) (Columbus, OH, USA), 523-530.

[8] Bader, D.A. et al. On the Architectural Requirements for Efficient Execution of

Graph Algorithms. 2005 International Conference on Parallel Processing

(ICPP’05) (Oslo, Norway), 547-556.

[9] Bakhoda, A. et al. 2009. Analyzing CUDA workloads using a detailed GPU

simulator. (Apr. 2009), 163-174.

[10] Batcher, K.E. 1968. Sorting networks and their applications. Proceedings of the

April 30–May 2, 1968, spring joint computer conference (New York, NY, USA,

1968), 307–314.

[11] Bell, N. and Garland, M. 2009. Implementing sparse matrix-vector multiplication on

throughput-oriented processors. Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis (New York, NY, USA,

2009), 18:1–18:11.

[12] Bell, N. et al. 2011. Exposing Fine-Grained Parallelism in Algebraic Multigrid

Methods. Technical Report #NVR-2011-002. NVIDIA Corporation.

178

[13] Bergman, K. et al. 2008. ExaScale Computing Study: Technology Challenges in

Achieving Exascale Systems Peter Kogge, Editor & Study Lead.

[14] Bienia, C. et al. 2008. The PARSEC benchmark suite: characterization and

architectural implications. Proceedings of the 17th international conference on

Parallel architectures and compilation techniques (New York, NY, USA, 2008),

72–81.

[15] Billeter, M. et al. 2009. Efficient stream compaction on wide SIMD many-core

architectures. Proceedings of the Conference on High Performance Graphics 2009

(New York, NY, USA, 2009), 159–166.

[16] Blelloch, G.E. 1990. Prefix Sums and Their Applications. Synthesis of Parallel

Algorithms.

[17] Blelloch, G.E. 1989. Scans as primitive parallel operations. IEEE Transactions on

Computers. 38, 11 (Nov. 1989), 1526-1538.

[18] Blelloch, G.E. et al. Solving linear recurrences with loop raking. 416-424.

[19] Borodin, A. 1977. On Relating Time and Space to Size and Depth. SIAM Journal on

Computing. 6, 4 (1977), 733-744.

[20] Brent, R.P. and Kung, H.T. 1982. A Regular Layout for Parallel Adders.

Computers, IEEE Transactions on. C-31, 3 (Mar. 1982), 260 -264.

[21] Buck, I. et al. 2004. Brook for GPUs: stream computing on graphics hardware. ACM

Trans. Graph. 23, 3 (Aug. 2004), 777–786.

[22] Case, D.A. et al. 2010. Amber 11. University of California.

[23] Castaño, I. 2007. High Quality DXT Compression using CUDA. NVIDIA.

[24] Cederman, D. and Tsigas, P. 2010. GPU-Quicksort: A practical Quicksort algorithm

for graphics processors. J. Exp. Algorithmics. 14, (Jan. 2010), 4:1.4–4:1.24.

[25] Chakrabarti, D. et al. 2004. R-MAT: A Recursive Model for Graph Mining. SIAM

International Conference on Data Mining (2004).

[26] Chatterjee, S. et al. 1990. Scan primitives for vector computers. Proceedings of the

1990 ACM/IEEE conference on Supercomputing (Los Alamitos, CA, USA, 1990),

666–675.

[27] Che, S. et al. 2009. Rodinia: A benchmark suite for heterogeneous computing. 2009

IEEE International Symposium on Workload Characterization (IISWC) (Austin,

TX, USA, Oct. 2009), 44-54.

179

[28] Che, S. et al. 2010. A characterization of the Rodinia benchmark suite with

comparison to contemporary CMP workloads. (Dec. 2010), 1-11.

[29] Cheney, C.J. 1970. A nonrecursive list compacting algorithm. Commun. ACM. 13,

(Nov. 1970), 677–678.

[30] Chhugani, J. et al. 2008. Efficient implementation of sorting on multi-core SIMD

CPU architecture. Proc. VLDB Endow. 1, (Aug. 2008), 1313–1324.

[31] Cohen, J.M. et al. 2010. Interactive fluid-particle simulation using translating

Eulerian grids. Proceedings of the 2010 ACM SIGGRAPH symposium on Interactive

3D Graphics and Games (New York, NY, USA, 2010), 15–22.

[32] Cong, G. et al. 2010. Fast PGAS Implementation of Distributed Graph Algorithms.

2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis (New Orleans, LA, USA, Nov. 2010), 1-11.

[33] Cormen, T.H. et al. 2001. Introduction to Algorithms. MIT Press.

[34] CUDA: http://www.nvidia.com/object/cuda_home_new.html. Accessed: 2011-08-

25.

[35] cudpp - CUDA Data Parallel Primitives Library - Google Project Hosting:

http://code.google.com/p/cudpp/. Accessed: 2011-07-12.

[36] Dagum, L. and Menon, R. 1998. OpenMP: an industry standard API for shared-

memory programming. IEEE Computational Science and Engineering. 5, (Mar.

1998), 46-55.

[37] Daniel Horn 2005. Stream reduction operations for GPGPU applications. GPU

Gems 2 : Programming Techniques for High-Performance Graphics and General-

purpose Computation. Addison-Wesley. 573-589.

[38] Dean, J. and Ghemawat, S. 2008. MapReduce: simplified data processing on large

clusters. Commun. ACM. 51, 1 (Jan. 2008), 107–113.

[39] Dehne, F. and Zaboli, H. 2010. Deterministic Sample Sort For GPUs. CoRR.

abs/1002.4464, (2010).

[40] Deng, Y. (Steve) et al. 2009. Taming irregular EDA applications on GPUs.

Proceedings of the 2009 International Conference on Computer-Aided Design (New

York, NY, USA, 2009), 539–546.

[41] Devore, J. 1999. Applied statistics for engineers and scientists. Duxbury Press.

[42] Dotsenko, Y. et al. 2008. Fast scan algorithms on graphics processors. Proceedings

of the 22nd annual international conference on Supercomputing (New York, NY,

USA, 2008), 205–213.

180

[43] Dusseau, A.C. et al. 1996. Fast parallel sorting under LogP: experience with the

CM-5. Parallel and Distributed Systems, IEEE Transactions on. 7, 8 (Aug. 1996),

791 -805.

[44] Dwork, C. et al. 1997. Contention in shared memory algorithms. J. ACM. 44, 6

(Nov. 1997), 779–805.

[45] Fortune, S. and Wyllie, J. 1978. Parallelism in random access machines.

Proceedings of the tenth annual ACM symposium on Theory of computing (New

York, NY, USA, 1978), 114–118.

[46] Garanzha, K. and Loop, C. 2010. Fast Ray Sorting and Breadth-First Packet

Traversal for GPU Ray Tracing. Computer Graphics Forum. 29, 2 (Jun. 2010), 289-

298.

[47] Garlan, D. et al. 1995. Architectural mismatch: why reuse is so hard. IEEE

Software. 12, 6 (Nov. 1995), 17-26.

[48] Garland, M. 2008. Sparse matrix computations on manycore GPU’s. Proceedings of

the 45th annual Design Automation Conference (New York, NY, USA, 2008), 2–6.

[49] Goldschlager, L.M. 1982. A universal interconnection pattern for parallel

computers. J. ACM. 29, 4 (Oct. 1982), 1073–1086.

[50] Gonzalez, J. et al. 2009. Residual Splash for Optimally Parallelizing Belief

Propagation. Journal of Machine Learning Research - Proceedings Track. 5,

(2009), 177-184.

[51] Govindaraju, N. et al. 2006. GPUTeraSort: high performance graphics co-processor

sorting for large database management. Proceedings of the 2006 ACM SIGMOD

international conference on Management of data (New York, NY, USA, 2006),

325–336.

[52] Govindaraju, N.K. et al. 2005. Fast and approximate stream mining of quantiles and

frequencies using graphics processors. Proceedings of the 2005 ACM SIGMOD

international conference on Management of data (New York, NY, USA, 2005),

611–622.

[53] GTgraph: A suite of synthetic random graph generators:

https://sdm.lbl.gov/~kamesh/software/GTgraph/. Accessed: 2011-07-11.

[54] Halstead,Jr., R.H. 1985. MULTILISP: a language for concurrent symbolic

computation. ACM Trans. Program. Lang. Syst. 7, 4 (Oct. 1985), 501–538.

[55] Harish, P. and Narayanan, P.J. 2007. Accelerating large graph algorithms on the

GPU using CUDA. Proceedings of the 14th international conference on High

performance computing (Berlin, Heidelberg, 2007), 197–208.

181

[56] He, B. et al. 2007. Efficient gather and scatter operations on graphics processors.

Proceedings of the 2007 ACM/IEEE conference on Supercomputing (New York,

NY, USA, 2007), 46:1–46:12.

[57] He, B. et al. 2009. Relational query coprocessing on graphics processors. ACM

Trans. Database Syst. 34, (Dec. 2009), 21:1–21:39.

[58] He, B. et al. 2008. Relational joins on graphics processors. Proceedings of the 2008

ACM SIGMOD international conference on Management of data (New York, NY,

USA, 2008), 511–524.

[59] Hensley, J. et al. 2005. Fast Summed-Area Table Generation and its Applications.

Computer Graphics Forum. 24, 3 (2005), 547–555.

[60] High performance block-sorting data compression library:

https://github.com/IlyaGrebnov/libbsc. Accessed: 2011-09-23.

[61] Hillis, W.D. and Steele, G.L. 1986. Data parallel algorithms. Communications of the

ACM. 29, 12 (Dec. 1986), 1170-1183.

[62] HLSL (Windows): http://msdn.microsoft.com/en-

us/library/bb509561(v=vs.85).aspx. Accessed: 2011-08-25.

[63] Hong, S. et al. 2011. Accelerating CUDA graph algorithms at maximum warp.

Proceedings of the 16th ACM symposium on Principles and practice of parallel

programming (New York, NY, USA, 2011), 267–276.

[64] Hong, S. et al. 2011. Efficient Parallel Graph Exploration for Multi-Core CPU and

GPU. (New York, NY, USA, 2011), to appear.

[65] Hou, Q. et al. 2008. BSGP: bulk-synchronous GPU programming. ACM

SIGGRAPH 2008 papers (New York, NY, USA, 2008), 19:1–19:12.

[66] Hussein, M. et al. 2007. On Implementing Graph Cuts on CUDA. First Workshop

on General Purpose Processing on Graphics Processing Units (Boston, MA, Oct.

2007).

[67] IEEE Computer Society 2009. IEEE Standard VHDL Language Reference Manual.

IEEE Std 1076-2008 (Revision of IEEE Std 1076-2002). (2009), c1 -626.

[68] Kainz, B. et al. 2009. Ray casting of multiple volumetric datasets with polyhedral

boundaries on manycore GPUs. ACM SIGGRAPH Asia 2009 papers (New York,

NY, USA, 2009), 152:1–152:9.

[69] Kerr, A. et al. 2009. A characterization and analysis of PTX kernels. (Oct. 2009), 3-

12.

182

[70] Kim, C. et al. 2010. FAST: fast architecture sensitive tree search on modern CPUs

and GPUs. Proceedings of the 2010 international conference on Management of

data (New York, NY, USA, 2010), 339–350.

[71] Kipfer, P. et al. 2004. UberFlow: a GPU-based particle engine. Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (New

York, NY, USA, 2004), 115–122.

[72] Knuth, D.E. 1998. The Art of Computer Programming, Volume 3: (2nd ed.) Sorting

and Searching. Addison Wesley Longman Publishing Co., Inc.

[73] Koch, D. and Torresen, J. 2011. FPGASort: a high performance sorting architecture

exploiting run-time reconfiguration on fpgas for large problem sorting. Proceedings

of the 19th ACM/SIGDA international symposium on Field programmable gate

arrays (New York, NY, USA, 2011), 45–54.

[74] Kogge, P.M. and Stone, H.S. 1973. A Parallel Algorithm for the Efficient Solution

of a General Class of Recurrence Equations. IEEE Transactions on Computers. C-

22, 8 (Aug. 1973), 786-793.

[75] Kun Zhou et al. 2011. Data-Parallel Octrees for Surface Reconstruction. IEEE

Transactions on Visualization and Computer Graphics. 17, 5 (May. 2011), 669-681.

[76] Lee, V.W. et al. 2010. Debunking the 100X GPU vs. CPU myth: an evaluation of

throughput computing on CPU and GPU. Proceedings of the 37th annual

international symposium on Computer architecture (New York, NY, USA, 2010),

451–460.

[77] Leischner, N. et al. 2010. GPU sample sort. 2010 IEEE International Symposium on

Parallel & Distributed Processing (IPDPS) (Atlanta, GA, Apr. 2010), 1-10.

[78] Leiserson, C.E. and Schardl, T.B. 2010. A work-efficient parallel breadth-first

search algorithm (or how to cope with the nondeterminism of reducers).

Proceedings of the 22nd ACM symposium on Parallelism in algorithms and

architectures (New York, NY, USA, 2010), 303–314.

[79] Luo, L. et al. 2010. An effective GPU implementation of breadth-first search.

Proceedings of the 47th Design Automation Conference (New York, NY, USA,

2010), 52–55.

[80] Mark Harris et al. 2007. Parallel Prefix Sum (Scan) with CUDA. GPU Gems 3.

Addison-Wesley. 573-589.

[81] Mark, W.R. et al. 2003. Cg: a system for programming graphics hardware in a C-

like language. ACM Trans. Graph. 22, 3 (Jul. 2003), 896–907.

[82] McCool, M. 2004. Metaprogramming GPUs with Sh. A K Peters.

183

[83] Mcgraw, J. et al. 1985. SISAL: Streams and iteration in a single assignment

language, language reference manual version 1.2. Lawrence-Livermore-National-

Laboratory.

[84] Merrill, D. and Grimshaw, A. 2011. High Performance and Scalable Radix Sorting:

A case study of implementing dynamic parallelism for GPU computing. Parallel

Processing Letters. 21, 02 (2011), 245-272.

[85] Merrill, D. and Grimshaw, A. 2009. Parallel Scan for Stream Architectures.

Technical Report #Technical Report CS2009-14. Department of Computer Science,

University of Virginia.

[86] Message Passing Interface Forum 2009. MPI: A Message-Passing Interface

Standard Version 2.2.

[87] Newman, M. and Girvan, M. 2004. Finding and evaluating community structure in

networks. Physical Review E. 69, 2 (Feb. 2004).

[88] NVIDIA Optix Ray Tracing Engine: http://developer.nvidia.com/optix. Accessed:

2011-09-23.

[89] OpenGL Overview: http://www.opengl.org/about/overview/. Accessed: 2011-08-25.

[90] Optimizing parallel reduction in CUDA: 2007.

http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reductio

n/doc/reduction.pdf. Accessed: 2009-12-12.

[91] Owens, J.D. et al. 2008. GPU Computing. Proceedings of the IEEE. 96, 5 (May.

2008), 879-899.

[92] Pantaleoni, J. and Luebke, D. 2010. HLBVH: hierarchical LBVH construction for

real-time ray tracing of dynamic geometry. Proceedings of the Conference on High

Performance Graphics (Aire-la-Ville, Switzerland, Switzerland, 2010), 87–95.

[93] Parboil Benchmark suite: http://impact.crhc.illinois.edu/parboil.php. Accessed:

2011-07-11.

[94] PCI-SIG 2010. PCI Express Base 3.0 Specification.

[95] Rice, H.G. 1953. Classes of Recursively Enumerable Sets and Their Decision

Problems. Transactions of the American Mathematical Society. 74, 2 (1953), pp.

358-366.

[96] Rogers, H. 1987. Theory of recursive functions and effective computability. MIT

Press.

184

[97] Satish, N. et al. 2009. Designing efficient sorting algorithms for manycore GPUs.

2009 IEEE International Symposium on Parallel & Distributed Processing (Rome,

Italy, May. 2009), 1-10.

[98] Satish, N. et al. 2010. Fast sort on CPUs and GPUs: a case for bandwidth oblivious

SIMD sort. Proceedings of the 2010 international conference on Management of

data (New York, NY, USA, 2010), 351–362.

[99] Satish, N. et al. 2010. Fast Sort on CPUs, GPUs and Intel MIC Architectures. Intel

Labs.

[100] Scarpazza, D.P. et al. 2008. Efficient Breadth-First Search on the Cell/BE

Processor. IEEE Transactions on Parallel and Distributed Systems. 19, 10 (Oct.

2008), 1381-1395.

[101] Sengupta, S. et al. 2008. Efficient parallel scan algorithms for GPUs. Technical

Report #NVR-2008-003. NVIDIA.

[102] Sengupta, S. et al. 2007. Scan primitives for GPU computing. Proceedings of the

22nd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware

(Aire-la-Ville, Switzerland, Switzerland, 2007), 97–106.

[103] Shopf, J. et al. 2008. March of the Froblins: simulation and rendering massive

crowds of intelligent and detailed creatures on GPU. ACM SIGGRAPH 2008 classes

(New York, NY, USA, 2008), 52–101.

[104] Sintorn, E. and Assarsson, U. 2008. Real-time approximate sorting for self

shadowing and transparency in hair rendering. Proceedings of the 2008 symposium

on Interactive 3D graphics and games (New York, NY, USA, 2008), 157–162.

[105] Sklansky, J. 1960. Conditional-Sum Addition Logic. IEEE Transactions on

Electronic Computers. EC-9, 2 (Jun. 1960), 226-231.

[106] Snir, M. 1986. Depth-size trade-offs for parallel prefix computation. Journal of

Algorithms. 7, 2 (Jun. 1986), 185-201.

[107] Snyder, L. 1986. Type architectures, shared memory, and the corollary of modest

potential. Annual Reviews Inc. 289–317.

[108] Sunderam, V.S. 1990. PVM: A framework for parallel distributed computing.

Concurrency: Practice and Experience. 2, (Dec. 1990), 315-339.

[109] Tang, P. and Yew, P.-C. 1990. Software combining algorithms for distributing

hot-spot addressing. Journal of Parallel and Distributed Computing. 10, 2 (1990),

130 - 139.

[110] Tarditi, D. et al. 2006. Accelerator: using data parallelism to program GPUs for

general-purpose uses. SIGOPS Oper. Syst. Rev. 40, 5 (Oct. 2006), 325–335.

185

[111] The Graph 500 List: http://www.graph500.org/. Accessed: 2011-07-11.

[112] Thearling, K. and Smith, S. 1992. An improved supercomputer sorting

benchmark. Proceedings of the 1992 ACM/IEEE conference on Supercomputing

(Los Alamitos, CA, USA, 1992), 14–19.

[113] Thrust - Code at the speed of light - Google Project Hosting:

http://code.google.com/p/thrust/. Accessed: 2011-08-25.

[114] Ullman, J. and Yannakakis, M. 1990. High-probability parallel transitive closure

algorithms. Proceedings of the second annual ACM symposium on Parallel

algorithms and architectures - SPAA ’90 (Island of Crete, Greece, 1990), 200-209.

[115] University of Florida Sparse Matrix Collection:

http://www.cise.ufl.edu/research/sparse/matrices/. Accessed: 2011-07-11.

[116] Valiant, L.G. 1990. A bridging model for parallel computation. Commun. ACM.

33, 8 (Aug. 1990), 103–111.

[117] Valiant, L.G. 1976. Universal circuits (Preliminary Report). Proceedings of the

eighth annual ACM symposium on Theory of computing (New York, NY, USA,

1976), 196–203.

[118] Xia, Y. and Prasanna, V.K. 2009. Topologically Adaptive Parallel Breadth-first

Search on Multicore Processors. 21st International Conference on Parallel and

Distributed Computing and Systems (PDCS’09) (Nov. 2009).

[119] Yang, Z. et al. 2008. Parallel Image Processing Based on CUDA. (2008), 198-

201.

[120] Yoo, A. et al. A Scalable Distributed Parallel Breadth-First Search Algorithm on

BlueGene/L. ACM/IEEE SC 2005 Conference (SC’05) (Seattle, WA, USA), 25-25.

[121] Zagha, M. and Blelloch, G.E. 1991. Radix sort for vector multiprocessors.

Proceedings of the 1991 ACM/IEEE conference on Supercomputing (New York,

NY, USA, 1991), 712–721.

[122] Zhang, E.Z. et al. 2011. On-the-fly elimination of dynamic irregularities for GPU

computing. Proceedings of the sixteenth international conference on Architectural

support for programming languages and operating systems (New York, NY, USA,

2011), 369–380.

[123] Zhou, K. et al. 2009. RenderAnts: interactive Reyes rendering on GPUs. ACM

SIGGRAPH Asia 2009 papers (New York, NY, USA, 2009), 155:1–155:11.

[124] Zhou, K. et al. 2008. Real-time KD-tree construction on graphics hardware. ACM

SIGGRAPH Asia 2008 papers (New York, NY, USA, 2008), 126:1–126:11.

186

INDEX

activity factor .. 36

architectural mismatch .. 29

atomic read-modify-write operations .. 9, 33

autotuning ... 67

bank conflict.. 30, 56

barrier .. 26, 33

between-group variance .. 64

BFS

concurrent discovery .. 151

neighbor-gathering ... 143

redundant expansion factor .. 153

status-lookup .. 148

boolean circuit parallel model ... 76

branch divergence .. See SIMD divergence

bulk-synchronous parallel model (BSP) ... 26

coalescing .. 30, 112

combining ... 33

software combining .. 11

contention .. 32

cooperative thread array (CTA) .. 26

CTA serialization .. 50, 81, 106, 109

data-parallel ... 6

dependences

allocation dependences .. 7

shared data dependences .. 7

distribution sort ... 102

divergence .. See SIMD divergence

DRAM... 25

fine-grained ... See granularity

frontier (BFS) .. 15, 135

global memory .. 25

granularity ... 24

granularity coarsening ... 39, 48

grid (of CTAs)... 26

host .. 25

input-oriented decomposition ... 8

kernel... 23

187

kernel fusion.. 91, 108

lanes (SIMD) ... See SIMD lanes

level synchronous.. 134

loop raking .. See raking

memory efficiency .. 36

memory wall ... 90, 111

meta-programming .. 39

output-oriented decomposition ... 6

prefix scan ... 76

Brent-Kung .. 76

deficiency ... 77

definition .. 75

depth-size optimal (DSO) .. 77

downsweep phase ... 79

exclusive scan .. 75

inclusive scan ... 75

prefix sum .. 3, 15, 76

sequential ... 76

Sklansky ... 76

upsweep phase ... 79

prefix scan global parallelizations

reduce-then-scan .. 80

scan-then-propagate ... 79

two-level reduce-then-scan .. 81, 109

prefix scan local parallelizations

Blelloch .. 82

reduced-conflict Brent Kung (RCBK) ... 84

sequential-reduce-then-scan (SRTS) ... 85

radix sort ... 102

composite scan ... 116

digit .. 102

digit-place .. 102

early-exit .. 117

multi-scan ... 107

raking .. 55

RMAT synthetic graphs .. 140

segmented scan ... 92

shared memory .. 25

SIMD divergence .. 32

SIMD lanes ... 23

simultaneous multithreading (SMT) ... 23

single-instruction, multiple-data (SIMD) .. 23

single-program, multiple-data (SPMD) .. 23

sorting network ... 13, 101

split primitive .. 104

stencil kernel ... 6

188

iterative stencil pattern ... 12

strip mining ... 55

thread... 23

thread serialization .. 53, 85

tile ... 49

tuning policy ... 57

warp... 24

warpscan ... 86, 87

within-group variance ... 64

work complexity ... 76

