
NVIDIA Technical Report NVR–2012–02
Presented at HPG2012 as a poster

Understanding the Efficiency of Ray Traversal on GPUs –
Kepler and Fermi Addendum

Timo Aila Samuli Laine Tero Karras

NVIDIA Research

Abstract

This technical report is an addendum to the HPG2009 paper "Understanding the Efficiency of Ray Traversal on
GPUs", and provides citable performance results for Kepler and Fermi architectures. We explain how to optimize
the traversal and intersection kernels for these newer platforms, and what the important architectural limiters
are. We plot the relative ray tracing performance between architecture generations against the available memory
bandwidth and peak FLOPS, and demonstrate that ray tracing is still, even with incoherent rays and more complex
scenes, almost entirely limited by the available FLOPS. We will also discuss two esoteric instructions, present in
both Fermi and Kepler, and show that they can be safely used for faster acceleration structure traversal.

Introduction

Table 1 extends "Understanding the Efficiency of Ray Trav-
ersal on GPUs" [AL09] with results for Kepler and Fermi
architectures. As can be seen from the graph in Figure 3,
the measured traversal and intersection performance contin-
ues to scale almost perfectly with the peak FLOPS of the
GPUs, indicating that ray tracing has yet to hit the memory
bandwidth wall and that instruction-level code optimizations
continue to be relevant.

Implications of memory architecture

NVIDIA’s Fermi architecture [NVI10] includes a conven-
tional cache hierarchy, which reduces the average latency of
memory fetches. That said, Fermi’s L1 cache services re-
quests to only one cacheline per clock, and replays the fetch
instruction until all threads of a warp have been serviced,
consequently introducing a new bottleneck for incoherent
accesses. Highly optimized traversal and intersection ker-
nels are in fact limited by the L1→SM communication, even
in cases where the L1 hit rate is high and external memory
bandwidth largely unused. Speculative traversal is less use-
ful on Fermi than it was on Tesla primarily because it causes
divergent memory accesses, but it still helps with incoherent
rays and in larger scenes.

The Kepler architecture [NVI12a] brings a major upgrade
to the SM’s peak FLOPS and practically no improvements
to the L1. As a result its L1 is useful only for coherent,

low-priority accesses such as traversal stack and ray fetches.
On the positive side, Kepler significantly upgrades the tex-
ture units, and since these units tolerate incoherent accesses
rather well, it is beneficial to fetch all BVH node and trian-
gle data through texture caches. Since the average latency of
texture fetches is high, one should avoid dependent fetches
whenever possible, even at the cost of fetching data that has
a low probability of being useful. Speculative traversal is
clearly beneficial with Kepler, particularly with incoherent
diffuse rays and more complex scenes because address di-
vergence does not overwhelm its texture caches.

Aila and Laine [AL09] hypothesize that it might be ben-
eficial to replace terminated rays once the SIMD utilization
drops below a threshold. In practice this is not overly useful
on Fermi, probably because it makes memory accesses less
coherent and amplifies the L1→SM bottleneck, but on Ke-
pler it does improve the performance of incoherent rays as
long as the data is accessed using texture fetches.

Faster ray-box test using VMIN, VMAX instructions

Ray-box intersection is the most time-consuming operation
when traversing bounding volume hierarchies, and a large
fraction of the instructions is spent in selecting minimum
or maximum floating point values (Fig. 1). Esoteric PTX-
exposed [NVI12b] instructions called VMIN and VMAX
can be used for accelerating this computation on Fermi
and Kepler. They can perform max(min(a,b),c) or
min(max(a,b),c) in one op for signed 32-bit integers.



2 Aila, Laine, Karras / Understanding the Efficiency of Ray Traversal on GPUs – Kepler and Fermi Addendum

	
  

tmin_x

tmax_x

tmin_y

tmax_y

tmin

tmax

tmin

tmax

X

X

Figure 1: This series illustrates the span intersection in
ray-box test. We intersect the ray to two vertical planes to
obtain (tmin_x,tmax_x), and two horizontal planes to ob-
tain (tmin_y,tmax_y). In three dimensions there would also
be (tmin_z,tmax_z). Finally, tmin is the largest of tmin_x,
tmin_y and tmin_z. Similarly, tmax is the smallest of tmax_x,
tmax_y and tmax_z.

DEFINITIONS
B = Box (xmin,ymin,zmin,xmax,ymax,zmax);
O = ray origin (x,y,z);
D = ray direction (x,y,z);
invD = (1/D.x,1/D.y,1/D.z);
OoD = (O.x/D.x,O.y/D.y,O.z/D.z);
tminray = ray segment’s minimum t value; ≥0
tmaxray = ray segment’s maximum t value; ≥0

RAY vs. AXIS-ALIGNED BOX
// Plane intersections (6 x FMA)
float x0 = B.xmin*invD[x] - OoD[x]; [−∞,∞]
float y0 = B.ymin*invD[y] - OoD[y]; [−∞,∞]
float z0 = B.zmin*invD[z] - OoD[z]; [−∞,∞]
float x1 = B.xmax*invD[x] - OoD[x]; [−∞,∞]
float y1 = B.ymax*invD[y] - OoD[y]; [−∞,∞]
float z1 = B.zmax*invD[z] - OoD[z]; [−∞,∞]

// Span intersection (12 x 2-way MIN/MAX)
float tminbox = max4(tminray, min2(x0,x1),

min2(y0,y1), min2(z0,z1));
float tmaxbox = min4(tmaxray, max2(x0,x1),

max2(y0,y1), max2(z0,z1));

// Overlap test (1 x SETP)
bool intersect = (tminbox<=tmaxbox);

Figure 2: Pseudocode for ray-box intersection.

The use of integer comparisons with floating point data
is potentially dangerous since it gives correct results only
if at least one of the arguments is non-negative. This con-
dition is violated by our code, see Figure 2, but gladly we
need only intersect and tminbox to be correctly set in
the end. The latter determines the processing order of child
nodes when more than one is intersected.

Since we know by construction that tminray is non-
negative, tminbox will also be non-negative. Thus it does
not matter that the min2() operations may give wrong
intermediate results; when the largest of these and the
tminbox is chosen, the potentially incorrect negative val-
ues will be ignored.

tmaxbox can be incorrect because the max2() op-
erations may select the wrong negative numbers. Still,
max2(x0,x1) is negative only when both of the ray’s in-
tersections with x-aligned planes are behind the ray’s origin,
and in that case the ray segment cannot intersect the box.
Same is true for y and z. In these cases intersect must
be false, which is what happens whenever tmaxray is a
negative number.

So, even though most of the intermediate results can in-
deed be wrong, all of the end results are guaranteed to be
correct. The span intersection is then simplified to:

// Span intersection (6 x VMIN/VMAX)

float tminbox = vmin_max(x0,x1,vmin_max(y0,y1,

vmin_max(z0,z1,tminray)));

float tmaxbox = vmax_min(x0,x1,vmax_min(y0,y1,

vmax_min(z0,z1,tmaxray)));

Summary

The most relevant optimizations on Tesla, Fermi, and Kepler
architectures are summarized in Table 2.

The optimized kernels are available at http://code.google.com/
p/understanding-the-efficiency-of-ray-traversal-on-gpus/

Acknowledgements

Marko Dabrovic (www.rna.hr) for the Sibenik cathedral
model. University of Utah for the Fairy scene. Guillermo
M. Leal Llaguno (www.evvisual.com) for the San Miguel
scene.

References
[AL09] AILA T., LAINE S.: Understanding the efficiency of ray

traversal on GPUs. In Proc. High-Performance Graphics 2009
(2009), pp. 145–149.

[NVI10] NVIDIA: NVIDIA’s next generation CUDA compute
architecture: Fermi. Whitepaper, 2010.

[NVI12a] NVIDIA: NVIDIA’s next generation CUDA compute
architecture: Kepler GK110. Whitepaper, 2012.

[NVI12b] NVIDIA: Parallel thread execution ISA version 3.0.
Whitepaper, 2012.

NVIDIA Technical Report NVR–2012–02



Aila, Laine, Karras / Understanding the Efficiency of Ray Traversal on GPUs – Kepler and Fermi Addendum 3

Conference, 283K tris Fairy, 174K tris Sibenik, 80K tris San Miguel, 11M tris

Ray type
Tesla Fermi Kepler Tesla Fermi Kepler Tesla Fermi Kepler Tesla Fermi Kepler

[AL09]

Measured Primary 142.2 272.1 432.6 74.6 154.6 250.8 117.5 243.4 388.2 – 76.9 131.7

(MRays/s) AO 134.5 284.1 518.2 92.5 163.6 317.6 119.6 244.1 441.2 – 94.5 187.9
Diffuse 60.9 126.1 245.4 40.8 73.2 156.6 46.8 94.7 192.5 – 33.3 58.8

× previous Primary 1.91 1.59 2.07 1.62 2.07 1.59 1.71

architecture AO 2.11 1.82 1.77 1.94 2.04 1.81 1.99
Diffuse 2.07 1.95 1.79 2.14 2.02 2.03 1.77

Table 1: Performance measurements in MRays/sec for Tesla (GTX285), Fermi (GTX480) and Kepler (GTX680) using the setup
from Aila and Laine [AL09]. The scaling between generations is visualized in Figure 3.

0"

0.5"

1"

1.5"

2"

2.5"

3"

3.5"

4"

4.5"

GTX285" GTX480" GTX680"

Peak%FLOPS*%

Memory%bw%(GB/s)%

Diffuse%

AO%

Primary%

779 GFLOPS 1344 GFLOPS 3090 GFLOPS
159 GB/s 179 GB/s 192 GB/s

Figure 3: Relative average performance (MRays/sec) of primary, ambient occlusion (AO), and diffuse rays in our four test
scenes on GTX285, GTX480, and GTX680, plotted against the relative memory bandwidth and peak FLOPS. Ray tracing
performance continues to follow peak flops very closely, while memory bandwidth has increased at a much slower rate. It
seems that the primary predictor of ray tracing performance is still the achievable peak flops rather than memory bandwidth.
Interestingly, diffuse rays seem to scale even better than primary rays, but that is an artifact caused by Kepler optimizations
that favor incoherent rays. Since the peak flops of GTX285 can only be achieved in one very specific scenario, we adjusted its
dual issue rate from 2.0 to a more realistic upper bound of 1.2 to be more directly comparable with newer architectures.

NVIDIA Technical Report NVR–2012–02



4 Aila, Laine, Karras / Understanding the Efficiency of Ray Traversal on GPUs – Kepler and Fermi Addendum

Tesla [AL09] Fermi Kepler
Data
fetches

Fetch nodes through texture,
triangles from (uncached) glob-
al memory.

Fetch nodes through L1, trian-
gles through texture. L1 is a
bottleneck with incoherent rays
but texture is not fast enough to
fetch everything.

Fetch all node and triangle data
through texture, and avoid de-
pendent fetches whenever pos-
sible. L1 is slow and beneficial
only for traversal stacks and ray
fetches.

Persistent
threads

Doubles performance. Not beneficial due to a better
hardware work distributor.

Can replace all terminated rays
once fewer than 60% of the
warp’s lanes have work. Favors
incoherent rays, +10%.

Speculative
traversal

Nearly always useful. A small win for incoherent rays
and large scenes.

One or two-slot postpone buffer
is beneficial for incoherent rays.

VMIN,
VMAX

Not available. A trivial +10%. Less useful than on Fermi be-
cause their throughput is lower,
+5%.

Table 2: Summary of differences in traversal and intersection kernels for Tesla, Fermi, and Kepler.

NVIDIA Technical Report NVR–2012–02


