
NOVA: A Functional Language for Data Parallelism

Alexander Collins
University of Edinburgh

a.collins@ed.ac.uk

Dominik Grewe
University of Edinburgh

dominik.grewe@ed.ac.uk

Vinod Grover ∗

NVIDIA Corporation
vgrover@nvidia.com

Sean Lee
NVIDIA Corporation
selee@nvidia.com

Adriana Susnea
NVIDIA Corporation

asusnea@nvidia.com

Abstract
Functional languages provide a solid foundation on which complex
optimization passes can be designed to exploit available parallelism
in the underlying system. Their mathematical foundations enable
high-level optimizations that would be impossible in traditional im-
perative languages. This makes them uniquely suited for generation
of efficient target code for parallel systems, such as multiple Central
Processing Units (CPUs) or highly data-parallel Graphics Process-
ing Units (GPUs). Such systems are becoming the mainstream for
scientific and ‘desktop’ computing.

Writing performance portable code for such systems using low-
level languages requires significant effort from a human expert.
This paper presents NOVA, a functional language and compiler for
multi-core CPUs and GPUs. The NOVA language is a polymorphic,
statically-typed functional language with a suite of higher-order
functions which are used to express parallelism. These include
map, reduce and scan. The NOVA compiler is a light-weight, yet
powerful, optimizing compiler. It generates code for a variety of
target platforms that achieve performance comparable to competing
languages and tools, including hand-optimized code. The NOVA
compiler is stand-alone and can be easily used as a target for
higher-level or domain specific languages or embedded in other
applications.

We evaluate NOVA against two competing approaches: the
Thrust library and hand-written CUDA C. NOVA achieves com-
parable performance to these approaches across a range of bench-
marks. NOVA-generated code also scales linearly with the number
of processor cores across all compute-bound benchmarks.

1. Introduction
Although a number of programming systems have emerged to make
parallel programming more accessible on multi-core CPUs and
programmable GPUs for the last several years, many of them — in-
cluding Threading Building Block (TBB) [3], CUDA [4], and Open
Compute Language (OpenCL) [2] — are targeted towards C/C++
programmers who are familiar with the intricacies of the underlying
parallel hardware. They provide low-level control of the hardware,
with which C/C++ programmers can fine-tune their applications to
enhance the performance significantly, by sacrificing high-level ab-
straction. Whilst the level of abstraction they provide gives much

∗Direct all correspondence to vgrover@nvidia.com.

NVIDIA Technical Report NVR-2013-002, Jul. 2013.
© 2013 NVIDIA Corporation. All rights reserved.

flexibility to the C/C++ programmers, it also has been an obstacle
for others to adopt these low-level programming systems.

To broaden the application of parallel programming, there have
been various attempts to provide programming systems with high-
level abstraction and performance gains comparable to what the
aforementioned low-level systems offer [1, 9–11, 17, 24]. This pa-
per presents NOVA, a new functional language for parallel pro-
gramming that shares the same goal as these systems. NOVA al-
lows the user to express parallelism using high-level parallel prim-
itives including map, reduce and scan. The NOVA compiler gener-
ates multi-threaded C code for CPUs or CUDA C code for NVIDIA
GPUs. The generated code achieves performance comparable to
similar approaches and hand-written code.

While NOVA can be used on its own, it can also be used as
an intermediate language (IL) for other languages such as domain
specific languages (DSLs). The NOVA compiler can be extended
with additional front-ends for DSLs. This allows them to exploit
the optimizations and multiple back-ends present in the compiler.
Moreover, the compiler can be extended with additional back-ends.
There are currently three back-ends (sequential C, parallel C and
CUDA C). By allowing extension of both the front and back-ends,
NOVA can be integrated within existing tools.

1.1 Contributions
The main contributions of this paper are:

• The NOVA language: a high-level functional programming lan-
guage for parallel computation. It includes support for nested
parallelism, recursion and type polymorphism.

• The NOVA compiler: which produces efficient, scalable and
performance portable target code from the NOVA language.
It achieves performance comparable to existing state-of-the-art
low-level tools and hand written parallel code.

1.2 Structure
The rest of this paper is structured as follows. Section 2 presents
an example that motivates our work. Section 3 details the NOVA
language, and Section 4 describes the NOVA compiler. Section 5
presents more details of the optimization passes performed by the
compiler. Section 6 describes the code generation phase of the
compiler. We evaluate the performance and scalability of NOVA
generated code in Section 7. Related work is discussed in Section 8
and we conclude in Section 9.

Thrust NOVA

S
pe

ed
up

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

1.2x

Figure 1. Performance of the NOVA and Thrust implementations
of the bounding box algorithm. Higher is better.

2. Motivation
Consider implementing an algorithm that computes the tight
bounding box of a set of two-dimensional points. Implementing
this by hand for both multi-core CPU and GPU would require two
distinct versions of the program. For example, one would be im-
plemented in C++ and the other in CUDA C [4]. An alternative
would be to use Thrust [6], which provides parallel abstractions for
both CPU and GPU using CUDA C. The bounding box example
from the Thrust example distribution1 achieves this with 86 lines
of code.

However, we can implement this algorithm far more succinctly
using a functional programming language. Using NOVA, we can
implement this in 32 lines of code, compared to the 86 lines re-
quired by Thrust. NOVA completely removes the need for low-level
boiler plate code, such as device management and host to device
memory transfers which are required when using CUDA C. NOVA
also removes the need for platform specific optimizations. These
are often required to achieve best performance in hand-written C++
and CUDA C, and Thrust.

Figure 1 shows the performance achieved by the NOVA and
Thrust versions of the bounding box algorithm. The experiments
were run on a NVIDIA GeForce GTX480 using CUDA 4.1. NOVA
achieves a speedup in execution time of 1.07× over Thrust.

This performance improvement is due to the high-level opti-
mizations that are enabled by expressing the algorithm in a func-
tional language form. For example, the map and reduce operations
can be merged into a composite mapReduce operation. This over-
laps the execution of the map and reduce operations, increasing the
utilization of the GPU and therefore improving performance.

The code is also far more maintainable. It does not require the
programmer to have an in-depth knowledge of the intricacies of the
underlying hardware. They simply choose the parallel primitives
that best suit their algorithm, and the NOVA compiler decides how
best to implement them on the given hardware.

3. The NOVA Language
NOVA is a statically-typed functional language, intended to be used
as an intermediate language, or target language, for domain specific
front-ends. Figure 2 summarises the structure of the compiler; with
multiple front-ends, and back-ends (for code generation). The de-
sign of the language is centered around vectors and data parallel
operations, rather than registers and instructions. It is also designed
to facilitate high-level language transformations such as deforesta-
tion of vector operations and closure conversion [16]. A represen-

1 http://thrust.googlecode.com/files/examples-1.6.zip

NOVA
Compiler

NOVA
Language

NOVA
IR

CUDA C
Back-end

Parallel C
Back-end

Seq. C
Back-end

Figure 2. Summary of the structure of the NOVA compiler infras-
tructure, with a common NOVA-Intermediate Representation, and
multiple front-ends and back-ends.

Operation Description

map f X1 . . .Xn Applies function f to every tuple of elements at
the same index in vectors X1 . . .Xn

reduce f i X Performs a reduction on vector X using func-
tion f and initial value i

scan f i X Performs a prefix-scan on vectorX using func-
tion f and initial value i

permute I X Generates an output vector Y such that
Y [I[i]] = X[i]

gather I X Generates an output vector Y such that Y [i] =
X[I[i]]

slice b s e X Generates an output vector Y such that Y [i] =
X[b+ i.s] with a length of d(e− b)/se

filter f X Given a filter function f and a vector X, re-
turns a vectors containing only those elements
from X for which f evaluates to true

Table 1. A representative sample of NOVAs built-in parallel oper-
ations

tative set of the parallel operations provided by NOVA are listed in
Table 1.

The rest of this section is structured as follows. Section 3.1
describes the salient features of NOVA, Section 3.2 describes the
syntax of NOVA, Section 3.3 details the polymorphic type system
and Section 3.4 presents informal operational semantics for the lan-
guage. Section 3.5 shows two simple example programs, highlight-
ing the salient features of the language.

3.1 Language Features
NOVA includes the usual functionality you would expect from a
functional language including lambda expressions and let-expressions.

3.1.1 Foreign Functions
NOVA allows existing code, written in the target language (such
as C) to be used within a NOVA program. These are defined in
a foreign section at the start of the program. For example the
following makes the foreign function f available within a NOVA
program:

(f o r e i g n
(f : (i n t → i n t))

)

The generated code can then be linked against a library containing
the implementation of the foreign function.

3.1.2 Algebraic Data Types
NOVA supports sum types, a form of user-defined algebraic (or
compositional) data type. This allows types to be combined to
create more complex types. For example, a Maybe data type, that
either holds a value of type int , or nil can be defined as follows:

(t y p e s
(Maybe :

(+ (Some : i n t)
(None : u n i t))))

Sum types also support recursion. This allows complex struc-
tures such as lists or trees to be defined. For example, a list of inte-
gers can be defined as follows:

(t y p e s
(I n t L i s t :

(+ (N i l : u n i t)
(Cons : (i n t , I n t L i s t)))))

However, use of NOVA’s built-in vector data types and parallel
operators is recommended over the use of, for example, a user-
defined list type, as this will achieve best performance.

3.1.3 Recursion
NOVA supports recursion through the use of µ-expressions, which
are similar to the fixed-point combinator. A µ-expression has the
form mu (x : t) e. This binds identifier x to expression mu (x : t) e
in expression e. In other words, e can refer to itself using the iden-
tifier x. On top of this very general definition, we add the constraint
that e must be a λ-expression that is statically determinable. This
allows us to perform closure conversion on µ-expressions.

For example, consider the following recursive µ-expression:

(mu (f i b : i n t → i n t)
(lambda (n : i n t)

(i f (< n 2) then 1
e l s e (f i b (− n 1) (− n 2)))))

The enclosing µ-expression defines the identifier fib . This identifier
is bound to the entire µ-expression. When fib is used within the
body of the µ-expression, it evaluates to this entire µ-expression.

Many functional languages use a recursive let-expression (some-
times called letrec) to implement recursion. Our µ-expressions
are equivalent:

mu (x:τ) e ≡ letrec (x e) in x

3.1.4 Type Generalization and Specialization
NOVA allows type generalization and specialization, in a similar
manner to System F [13, 21]. Polymorphic types can be defined as
follows:

(t y p e s
(L i s t ' a :

(+ (N i l : u n i t)
(Cons : (' a , (L i s t ' a))))))

This example demonstrates both type generalization and type
specialization. List is the type constructor:

f o r a l l ' a . (+ (N i l : u n i t)
(Cons : (' a , (L i s t ' a))))

This type can be specialised to store a list of integers by using a
type application:

(L i s t i n t)

This produces the concrete type:

(+ (N i l : u n i t)
(Cons : (i n t , (L i s t i n t))))

We impose a few restrictions on the use of generalized, forall
types and type applications. Firstly, general types can only be
constructed within the types section at the start of a NOVA program.

Secondly, after type checking a program, all types must be spe-
cialized, or turned into concrete types. This is because the pro-
gramming environments that NOVA targets (including CUDA C
and parallel C) require all types to be concrete. If an expression is
discovered whose type is not specialized to a concrete type (such as
partial application of a parallel operator), the compiler complains
that it could not statically determine the concrete type of the ex-
pression.

3.1.5 Type Inference
The NOVA language performs Hindley-Milner type inference [20],
with some extensions to support polymorphism in the arity of some
of the built-in parallel operators.

For example, the map parallel operator can take a variable num-
ber of input vectors, which are used to compute a single output vec-
tor. Performing type inference over this variable number of input
parameters is not possible with Hindley-Milner type inference, but
it is restricted to the built-in operations. Therefore the compiler in-
cludes hand-coded rules to perform type inference for expressions
involving these operators.

3.2 Syntax
The syntax of NOVA is based on S-expressions [19]. A large subset
of the syntax is given in Figure 3. Operations on primitive types,
such as arithmetic operations, are not explicitly represented in the
syntax. Instead, they are encoded as function applications to ‘built-
in’ functions. For example, adding numbers a and b is written as
(+ a b). This makes code generation simpler for the compiler front
ends that target NOVA, as the operator precedence and associativity
are explicitly specified.

A NOVA program consists of multiple sections. First, the input
variables have to be specified. The compiled program will expect
these variables to be passed by the user at runtime. The type of
every input must be specified, as programs are statically typed. Op-
tional foreign functions are declared in the second section, accord-
ing to the required convention. Another optional section is used to
specify user-defined types, such as sum types. The final section of
a NOVA program is an expression specifying the program code.

Expressions can either be simple expressions (such as identi-
fiers and constants) or composite expressions (such as conditionals
and let expressions). Composite expressions generally have to be
enclosed in parenthesis. The only exceptions are function applica-
tions and let expressions. These are expanded into nested, single
argument expressions before being type checked. For example, ap-
plying function f to arguments x and y will be transformed into a
pair of function applications. (f x y) is treated as ((f x) y). Our
subsequent description of the operational semantics assumes trans-
formation has been performed.

Functions can be defined using lambda expressions. Multiple
formal parameters can be specified for a lambda expression. Sim-
ilarly to function application, these are transformed into nested
lambda expressions. Again, our later description of the operational
semantics assumes that this transformation has been performed. For
example, the following expression:

(lambda (x : i n t) (y : i n t) : i n t (+ x y))

is transformed into:
(lambda (x : i n t) : (i n t → i n t)

(lambda (y : i n t) : i n t (+ x y))

Tuple elements can only be accessed using a constant index.
This restriction is necessary to ensure that the accessed tuple el-
ement type is known at compile time. NOVA contains no vector

Const = [0− 9]+.?[0− 9]∗ | true | false | nil Constants

ArithOp = + | - | / | * | % Arithmetic operators

CompareOp = = | ~= | < | <= | > | >= Comparison operators

LogicOp = and | or | not Logical operators

MathOp = abs | sqrt | exp | log Math operators

BitewiseOp = & | | | ^ | ~ | << | >> Bitwise operators

VectorOp = map | reduce | permute | gather | slice Vector operators

| range | length | scan | filter
BuiltInOp = ArithOp | CompareOp | LogicOp Built-in operations

| MathOp | BitwiseOp | VectorOp

Id = BuiltInOp | a string that is not a reserved word Identifiers

SimpleType = int | int32 | int16 | int8 | float | double | bool | unit Basic types

| (SimpleType{, SimpleType}+) Tuple type

| + TypeCtorDecl+ Sum type

| vector SimpleType 1D vector

| vector#n SimpleType nD vector, where n ≥ 1

Type = Id Type identifier

| Type -> Type Function type

| (SimpleType) Parentheses

| SimpleType Simple types

Expr = Id | Const

| (Expr Expr+) Function application

| (Expr {, Expr}+) Tuple constructor

| (Expr.Const) | (Expr!Expr) Tuple and vector access

| (if Expr then Expr else Expr) Conditional expression

| (case Id CasePattern+) Case expression

| (let VarDef+ in Expr) Let expression

| (lambda ParamDecl+ : Type Expr) Lambda expression

| (mu ParamDecl Expr) Mu (recursive) expression

| (Expr)

CasePattern = (Id Id Expr) Pattern in a case expression

VarDef = (Id Expr) Let variable definitions

ParamDecl = (Id : Type) Lambda parameter declarations

InputDecl = (Id : SimpleType) Input variable declarations

TypeDecl = (Id : SimpleType) Type identifier declaration

TypeCtorDecl = (Id : SimpleType) Type constructor declaration

Program = (InputDecl+){(types TypeDecl+)}?{(foreign ParamDecl+)}?(Expr) NOVA programs

Figure 3. Syntax of NOVA programs. Non-terminals in the grammar are denoted NonTerminal and terminals as terminal. The pipe
character | separates rules. Regular expressions are used to simplify the grammar: e+ denotes e repeated 1 or more times, and e∗ that e is
repeated 0 or more times. e? denotes that e is optional. [0 − 9] denotes all integers from 0 to 9. { and } are used to group terms and do not
themselves appear in the language.

(CONST)
c is a constant of type τ

Γ ` c : τ
(ID) Γ{x : τ} ` x : τ

(APP)
Γ ` e1 : τ2 -> τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

(TUPLE-CTOR)
Γ ` ei : τi τi ∈ SimpleType

Γ ` (e1, . . .,en) : (τ1, . . .,τn)

(TUPLE-ACCESS)
Γ ` e : (τ0, . . .,τn) Γ ` c : int 0 ≤ c ≤ n

Γ ` e1.c : τc

(VECTOR1-ACCESS)
Γ ` e1 : vector#1 τ Γ ` e2 : int

Γ ` e1!e2 : τ

(VECTORN-ACCESS)
Γ ` e1 : vector#n τ Γ ` e2 : (int, . . .,int) n > 1

Γ ` e1!e2 : τ

(IF)
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

(CASE)
Γ ` x : (T1 : τ1) + . . .+ (Tn : τn) Γ{xi : τi} ` ei : τ

Γ ` case x (T1x1e1) . . .(Tnxnen) : τ

(LET)
Γ ` e′ : τ ′ Γ{x : τ ′} ` e : τ

Γ ` let (x e′) in e : τ

(LAMBDA)
Γ{x : τ ′} ` e : τ

Γ ` lambda(x:τ ′):τ(e) : τ ′ -> τ

(MU)
Γ{x1 : τ1} ` lambda(x2:τ2):τ3(e) : τ1

Γ ` mu(x1:τ1)(lambda(x2:τ2):τ3(e)) : τ1

(PARENTHESES)
Γ ` e : τ

Γ ` (e) : τ

(PROGRAM)
Γ∅ ∪ {x1 : τ1, . . . , xn : τn} ` e : τ τ1, . . . , τn ∈ SimpleType

Γ∅ ` ((x1:τ1) . . .(xn:τn))(e) : τ

Figure 4. Type rules for the NOVA language. The notation is explained in Section 3.3

(VALUE) 〈v, σ〉 ⇓ v (ID) 〈x, σ〉 ⇓ σ(x) (PARENTHESES)
〈e, σ〉 ⇓ v
〈(e), σ〉 ⇓ v

(APP)
〈e1, σ〉 ⇓ lambda(x:τ ′):τ(e) 〈e2, σ〉 ⇓ v′ 〈e, σ[x 7→ v′]〉 ⇓ v

〈e1e2, σ〉 ⇓ v

(MU-APP)
〈e1[x1/mu(x1:τ1)e1]e2, σ〉 ⇓ v
〈(mu(x1:τ1)e1)e2, σ〉 ⇓ v

(TUPLE-CTOR)
〈ei, σ〉 ⇓ vi

〈(e1, . . .,en), σ〉 ⇓ (v1, . . .,vn)

(TUPLE-ACCESS)
〈e, σ〉 ⇓ (v1, . . .,vn) c ∈ {1, ..., n}

〈e.c, σ〉 ⇓ vc

(VECTOR-ACCESS)
〈e1, σ〉 ⇓ v1 〈e2, σ〉 ⇓ v2 v is the element at position v2 in vector v1

〈e1!e2, σ〉 ⇓ v

(IF-TRUE)
〈e1, σ〉 ⇓ true 〈e2, σ〉 ⇓ v

〈if e1 then e2 else e3, σ〉 ⇓ v

(IF-FALSE)
〈e1, σ〉 ⇓ false 〈e3, σ〉 ⇓ v
〈if e1 then e2 else e3, σ〉 ⇓ v

(CASE)
σ(x) = Tiv 〈ei, σ[xi 7→ v]〉 ⇓ v′

〈case x (T1x1e1) . . .(Tnxnen), σ〉 ⇓ v′

(LET)
〈e, σ〉 ⇓ v 〈e′, σ[x 7→ v]〉 ⇓ v′

〈let(x e)in e′, σ〉 ⇓ v′

(PROGRAM-TYPEDECL)
〈((x1:τ1) . . .(xn:τn))(e), σ0〉 ⇓ v

〈((x1:τ1) . . .(xn:τn))(types (φ1:τ
′
1) . . .(φ1:τ

′
1))(e), σ0〉 ⇓ v

(PROGRAM)
〈e, σ∅[x1 7→ v1, . . . , xn 7→ vn]〉 ⇓ v for input values v1, . . . , vn

〈((x1:τ1) . . .(xn:τn))(e), σ0〉 ⇓ v

Figure 5. Operational semantics of the NOVA language. The notation is explained in Section 3.4

constructor. This means NOVA cannot create vectors with arbitrary
values. It can only modify vectors passed as input or created by
built-in operations such as range.

Besides the primitive, integer, floating point, boolean and unit
types, NOVA supports tuples, vectors, function types, sum types
and recursive types. A tuple contains a fixed number of elements
of different types that are known at compile time. All elements of a
vector, on the other hand, must be of the same type, and the number
of elements only needs to be known at runtime. Vectors can also
be multi-dimensional with the dimension being known at compile
time. Both tuples and vectors can contain primitive values, vectors,
or tuples. They, however, cannot contain functions.

Functions in NOVA are always unary, i.e. they expect a single
parameter. The return type of the function can be another function.
The built-in function for addition on float , for example, is of type
float → (float → float). This approach is common in functional
languages and allows for partial function applications.

3.3 Type System
NOVA allows parametric polymorphism using standard Hindley-
Milner type inference[20], with some extensions to allow for poly-
morphism in the arity of the built-in parallel operators. A program
is only valid if all polymorphic types in the program can be special-
ized to concrete types by the compiler. The type rules, which define
NOVAs type system, are given in Figure 4. These rules do not in-
clude type inference for the built-in functions, which is explained
in Section 3.3.1. We use the following notation:

• Each type rule has the following form:

(RULE-NAME)
Γ1 ` e1 : τ1 . . . Γn ` en : τn

Γ ` e : τ

This denotes that expression e has type τ (under type environ-
ment Γ) if all of the expressions ei have types τi (under corre-
sponding type environment Γi).

• Types are denoted τ . Valid types are defined by Type in the
syntax specified in Figure 4.

• Expressions are denoted e, constant values are c and variable
identifiers are x.

• Type environments are denoted Γ. These map variable identi-
fiers x to types τ . The notation Γ{x : τ} denotes mapping
Γ updated with identifier x mapped to type τ . Γ0 denotes an
empty type environment, that does not map any identifiers to
types.

NOVA allows the user defined polymorphic lambda functions
through the use of free type variables, denoted ’a. For example, the
following defines a polymorphic lambda function that increments a
number, regardless of it being an integer or floating point number:

(lambda (x : ' a) : ' a
(from_double (+ (to_double x) 1 . 0 L)))

from_double and to_double are built-in polymorphic casts provided
by NOVA, with types ∀α.double → α and ∀α.α → double
respectively.

3.3.1 Types for Built-in Operators
Hindley-Milner does not allow type inference of functions with
variable arity. This feature is required by some of the built-in
parallel operators. For example, map takes a variable number of
input vectors. Its signature is map f X1 . . .Xn, and it has type:

Γ ` f : (τ1, . . . , τn)→ τ τi are appropriate vector types
Γ ` X1 : τ1 . . . Γ ` Xn : τn

Γ ` map f X1 . . . Xn : τ

We therefore extend Hindley-Milner type inference with a hand-
coded pass to infer the types of the built-in functions. Note that this
does not allow variable arity of user defined functions. The type
inferrence works as follows:

1. First, regular Hindley-Milner type inference is performed to
infer types for all the expressions in the program. If these types
are all concrete, type inference is complete. If not, at least one
must contain free type variables and further inference is needed.

2. A hand-coded pass is performed that attempts to constrain any
free type variables. For example, the arity of a built-in operator
may be determinable from the context in which it is used. Also,
many of the operators have strict requirements on the types of
vectors they operator on.

3. Type inference is repeated (by going back to 1) until either a
concrete type is found for all expressions in the program, or the
types do not change. In the latter case, type inference fails to
statically determine a concrete type for the expressions in the
program.

3.4 Operational Semantics
The operational semantics of NOVA is presented in Figure 5. We
use the following notation:

• The semantics are given as ‘big-step’ or ‘natural’ operational
semantics. The notation 〈e, σ〉 ⇓ v denotes that the evaluation
of expression e with machine state σ produces value v.

• Each rule has the following form:

(RULE-NAME)
〈e1, σ1〉 ⇓ v1 . . . 〈en, σn〉 ⇓ vn

〈e, σ〉 ⇓ v
This denotes that with machine state σ, expression e evaluates
to value v, if every expression ei evaluates to a value vi.

• e is an expression and σ is a mapping from variable identifiers
x to values v. Expressions are defined in the syntax by Expr,
and variable identifiers by Id (see Figure 3).

• Values v are defined as follows:

v = Const Constant values

| (v1, . . .,vn) Tuple values

| Tv Sum type values

| lambda(x:e′):τ(e) Lambda expressions

• NOVA is a call-by-value language.
• σ(x) = v if σ maps variable identifier x to value v.
• σ∅ denotes the empty mapping from variable identifiers x to

values v.
• The notation σ[x 7→ v] denotes the mapping σ updated with

identifier x mapped to value v.

3.5 Example Programs
This section presents some simple example programs in the NOVA
language, demonstrating the salient features of the language.

Computing the Length of a List This example uses a tail-
recursive algorithm to count the number of items in a polymorphic
list.

((i n p u t : (L i s t i n t)))
(t y p e s

(L i s t ' a : (+ (N i l : u n i t)
(Cons : (' a , (L i s t ' a))))))

(l e t
(l e n (mu (l e n : i n t → (L i s t ' a) → i n t)

(lambda (l : i n t) (xs : (L i s t ' a)) : i n t
(case xs

(N i l x l)
(Cons xs (l e n (+ l 1) (xs . 1)))))))

in (l e n 0 i n p u t))

Reduction on a Polymorphic Binary Tree This example demon-
strates tree reduction on a polymorphic binary tree, using a poly-
morphic reduction function with type ' a → ' a → ' b.

((i n p u t : (Tree i n t)))
(t y p e s

(Tree ' a : (+ (Lea f : ' a)
(Node : (' a , (Tree ' a) , (Tree ' a))))))

(l e t
(red

(mu (red : (' a→ ' a→ ' a) → (Tree ' a) → ' a)
(lambda (f : ' a→ ' a→ ' a) (t : (Tree ' a)) : ' a

(case t
(Lea f l (l))
(Node n

(l e t
(l e f t (red f (n . 1)))
(r i g h t (red f (n . 2)))

in
(f (t . 0) (f l e f t r i g h t))))))))

in (red + i n p u t))

4. The NOVA Compiler
The NOVA compiler consists of several passes. They can be di-
vided into ‘basic’ passes, which are essential for compilation, opti-
mization passes, which are optional, and code generation. Figure 6
shows the default order of passes in the compiler. The ‘Reader’
parses the input source code and produces an abstract syntax tree
(AST). All subsequent passes work directly on this AST, by ap-
plying transformations to it or annotating it with additional infor-
mation. The optimization passes, ‘Inlining’ through to ‘Tail Call
Elimination’, are called repeatedly until either there is no change to
the AST or a specified maximum number of iterations is reached.
Finally, one of the code generators is called to produce the output
code. The user chooses which target they wish to generate code for,
through a command line argument to the compiler.

4.1 Basic Passes
The basic passes of the compiler perform the minimum set of tasks
needed to enable code generation. Further optimization passes and
code generation can only be performed if these passes succeed.

Reader The reader parses a NOVA program to produce an AST.
The reader does not check for syntax, type or semantic correctness.

Monomorphization This pass inlines the bodies of polymorphic
lambda expressions at their call sites. This simple transformation
allows concrete types to be inferred for an expression whilst allow-
ing let-bound polymorphism.

Type checker The type checker ensures type correctness and per-
forms type inference. It also tries to infer the type of built-in func-
tions and numerical constants because their type is dependent on
the context in which they are used. After type checking, every node
in the AST is annotated with type information.

Assign unique IDs This pass assigns unique IDs to all identifiers,
so that optimization passes do not encounter naming conflicts.

NOVA IR

AST

Type Checker

Reader

Assign Unique
IDs

Built-in
Conversion

Closure
Conversion

Inlining

Let Flattening

CSE

Fusion

Copy
Propagation

Constant
Folding

Dead Code
Elimination

Code
Generation

Monomorphization

Tail Call
Elimination

Sequential C Parallel C CUDA C

Code
Generation

Nested
Parallelism

Figure 6. Overview of the passes in the NOVA compiler. Arrows
indicate the flow of information between the passes. Rounded-
boxes indicate input/output/intermediate code, and sharp-cornered
boxes indicate compiler passes.

Built-in conversion Built-in functions in NOVA are curried,
i.e. they expect one argument at a time and do not necessarily
need all arguments at a call site (partial application). However, at
later stages, e.g. fusion or code generation, all arguments to built-in
functions must be known. The compiler thus converts all built-in
functions to nested lambdas with uncurried ‘built-in function ap-
plications’. Given an addition on int , for example, the compiler
inserts the following expression:

(lambda (arg0 : i n t) : i n t → i n t
(lambda (arg1 : i n t) : i n t

(@+ [] (arg0 , arg1))))

The notation @+ [] (...) stands for an application to an uncurried
built-in function.

For higher-order functions such as map or reduce, the compiler
inserts special ‘parameter expressions’. They represent the argu-
ments to the functions that are being passed to the built-in function.
Consider the following function application:

(map (+ 1) X)

This is equivalent to:

@map [0] (((+ 1) _p0_) , X)

The number in brackets is the ID of the built-in function parameter
which is represented as _p0_. In the case of map, this parameter
stands for an element of the vector argument. Introducing this
parameter to the AST allows later passes to perform optimizations

such as inlining on the AST. Built-in conversion transforms this
expression into:

@map [0] (@+ [] (1 , _p0_) , X)

Without making this parameter explicit in the AST, this would have
not been possible at this stage.

Closure conversion The closure conversion [16] pass transforms
every lambda expression into a closure. It searches the body of the
lambdas for free variables that must be captured by the closure. It
also creates ‘named’ closures for recursive expressions, so that a
recursive closure can refer to itself.

4.2 Optimization passes
All optimization passes in the NOVA compiler are optional and can
be enabled/disabled from the compilers command line interface.
One exception is that the CUDA C code generator expects function
applications to be inlined because closures are not supported by the
code generated for CUDA C. The passes are detailed in Section 5.

4.3 Code generation
The NOVA compiler currently contains three back-ends for code
generation: sequential C, parallel (multi-threaded) C and CUDA C.
All of them are C-based and do not have any external dependencies.
This means they can be easily integrated into other programs and
frameworks. The back-ends are detailed in Section 6.

4.4 Deployment
NOVA code only describes computational kernels. The rest of
the application, for example Input/Output, is written in a separate
language such as C. The NOVA compiler generates two files, a
header and a source file. The header file contains the function
declaration corresponding to the NOVA code. It constitutes the
entry point to the NOVA program. The user needs to include the
header file to be able to run the NOVA code.

The source file contains the actual implementation of the NOVA
code. In the case of CUDA C code it contains both the host code,
for data management and kernel launches, and the kernel code. The
user thus only needs to pass the host arrays to the function and
does not have to deal with communication between the host and
the device.

5. Optimizations
This section details some of the optimization passes performed by
the NOVA compiler. These passes are implemented as graph trans-
formations applied to the abstract syntax tree of a NOVA program.
Section 5.1 then details how NOVA handles nested parallelism a
vital optimization pass for performance of NOVA programs.

Inlining The NOVA compiler performs aggressive inlining.
Given a function application, where the function is known at com-
pile time, it is replaced by the function body with the inlined argu-
ment. Instead of simply replacing every occurence of the function
parameter with the argument, a new identifier is introduced which
gets assigned the value of the argument. The function parameter is
then replaced by the new identifier. This corresponds to the call-
by-value evaluation strategy and eliminates multiple evaluations of
the argument.

For example, the inliner transforms:

(l e t (i n c (lambda (x : i n t) : i n t (+ x 1)))
in (i n c (+ a b)))

into:

(l e t (i n c (lambda (x : i n t) : i n t (+ x 1)))
in (l e t (x1 (+ a b) in (+ x1 1))))

Sometimes the function being called cannot be determined stat-
ically. For example, when the function expression is a conditional:

((i f C then f e l s e g) x)

In this case the compiler is unable to apply inlining.

Let flattening The inlining pass introduces a number of nested
lets - one for each argument. The let flattening pass flattens nested
lets into a single flat let. For example,

(l e t (a 2)
in (l e t (b 3)

in (l e t (c 4)
in (+ (− a b) c))))

will be transformed to:

(l e t (a 2)
(b 3)
(c 4)

in (+ (− a b) c))

This transformation is only valid because identifiers are unique.
Otherwise, it may introduce naming conflicts.

Common subexpression elimination The goal of common subex-
pression elimination (CSE) is to avoid redundant computation.
Consider the expression

((+ (− a b) (− a b)))

The subexpression (− a b) appears twice and is thus redundant.
CSE will transform this expression to

(l e t (c s e (− a b))
in (+ c s e c s e))

The compiler also performs CSE on the vector arguments of
higher-order functions. If the same vector gets passed multiple
times to a higher-order function, the AST gets modified such that
it is only passed once. This may allow for more optimizations.
Consider the following example:

(l e t (f (lambda (x : i n t) (y : i n t) (z : i n t)
: i n t

(+ (− x z) (− y z))))
in (map f X X Z))

After built-in conversion, inlining, dead code elimination, and other
optimizations, this expression looks as follows:

@map [0 , 1 , 2]
(@+ [] (@− [] (_p0_ , _p2_) ,

@− [] (_p1_ , _p2_)) ,
X , X , Z)

Considering the body of the map on its own, there is no possibility
for CSE. Knowing, however, that _p0_ and _p1_ are the same,
namely elements from vector X, we can simplify this expression.
The compiler detects that the first and second vector arguments to
the map are equal and performs the following transformation:

@map [0 , 2]
(@+ [] (@− [] (_p0_ , _p2_) ,

@− [] (_p0_ , _p2_)) ,
X , Z)

Now we can use the previously described CSE method to simplify
the expression to

@map [0 , 2]
((l e t (c s e @− [] (_p0_ , _p2_))

in @+ [] (cse , c s e)) ,
X , Z)

Fusion Each application of a higher-order function such as map
produces a new vector. To avoid unneccessary allocation of tem-
porary results, the compiler tries to fuse these functions whenever
possible. Consider this example:

(l e t (Y (map f X))
in (map g Y))

or the equivalent

(l e t (Y (@map [0] ((f _p0_) , X)))
in (@map [1] ((g _p1_) , Y))

This code produces a new vector Y by applying function f to vector
X. Elements of Y are then passed to function g. Instead of creating
the temporary variable Y, the two map operations can be fused:

(@map [2] ((g (f _p2_)) , X))

This way, we avoid the allocation of a temporary vector.
Currently, the compiler supports fusion of maps inside map,

fold and reduce. In addition, filters can be fused, too, when inside
a reduce or another filter. Fusing filters is especially important
because they are expensive operations.

Copy propagation If a variable A is bound to another variable B
(without performing any operation), we can propagate this infor-
mation and replace all occurences of A with B. For example:

(l e t (t x)
in (+ (− x y) (− t y)))

Copy propagation will result in

(l e t (t x)
in (+ (− x y) (− x y)))

The occurrence of t has been replace by x. Now CSE can eliminate
the redundant computation of (− x y).

Constant folding If all operands in an operation are constant, the
compiler computes the result of the operation at compile time. For
example:

(l e t (t (+ 2 3))
in (+ x t))

This will be transformed to

(l e t (t 5)
in (+ x t))

We can now also replace occurrences of t with the constant 5:

(l e t (t 5)
in (+ x 5))

Dead Code Elimination Many optimization passes, e.g., copy
propagation or constant folding, leave sub-expressions behind that
are never used. This pass eliminates variable bindings where the
variable does not have any uses. The example above would be
simplified to:

(+ x 5)

because t is never used.

Tail Call Elimination This optimization pass identifies named
closures that are tail recursive. The AST nodes for tail-recursive
closures are annotated as such. The code generator can use this
additional information to improve the performance of the generated
code.

0 3 7 11segments

data

Figure 7. Nested vector example. The data vector stores all 11
elements of the nested vector. The segment vector points to the
beginning of each segment and behind the last segment.

5.1 Nested parallelism
NOVA supports nested vectors, i.e., vectors whose elements are
vectors. Any level of nesting is possible. Nested vectors are stored
as a flat data vector holding all data values of the vectors and one
segment vector for each level describing the shape of the vector.
See Figure 7 for an example.

To operate on nested vectors, we need nested parallelism. Con-
sider a vector X whose type is vector vector int . To add 1 to each
element of the vector, we write:

(map (map (+ 1)) X)

In other words, for all inner vectors of X, we apply map with (+ 1).
To execute this expression, we have to break up the nested vector
X into individual sub-vectors X1, . . . , Xn and then apply each of
these to map (+ 1).

There are several ways to execute the above expression in par-
allel. We could divide the sub-vectors equally among the available
processors and perform the inner map sequentially. However, this
can lead to load imbalance because some sub-vectors may be much
bigger than others. In a different approach we could execute the
outer map sequentially and the inner maps in parallel. This may
cause a lot of overhead though especially when the sub-vectors are
small.

To avoid these problems, the NOVA compiler can automatically
flatten the vectors [17]. Since all data values of the sub-vectors are
stored contiguously we can simply apply the map on the flattened
data without any overhead. However, the result of the map is now a
flat vector and the compiler must unflatten it using the shape of the
input vector. The above expression gets thus transformed into:

(u n f l a t t e n (map (+ 1) (f l a t t e n X)))

While nested maps are simple to deal with a reduce inside of a
map is more complex:

(map (reduce + 0) X)

Simply performing the reduction on the flattened array is wrong
because we have to take the segment boundaries into account. The
expression is thus transformed into a special node called segmented
reduction [7]. A segmented reduction works on the flattened data,
thus avoiding load imbalance, and adheres to segments, i.e., one
value is computed for each segment.

6. Code Generation
The NOVA compiler currently contains three back-ends for code
generation: sequential C, parallel (multi-threaded) C and CUDA C.
All of them are C-based which means they can be easily integrated
in other programs and frameworks.

There are some built-in functions whose use is currently re-
stricted. gather, slice , and range can only be used in conjunction
with vector functions such as map, but not on its own. This is be-
cause the return value of these functions is never computed as such.
It is only used to change the index computation when accessing
vector elements. For example,

(map f (gather I X))

results in (pseudo code):

for i in 0 .. N
x = X[I[i]]
...

Slice and range are handled similarly.
The next sections describe how higher-level built-in functions

are handled in the different code generators.

6.1 Sequential C code generation
When generating sequential C code, all higher-level built-in func-
tions are mapped to loops. A reduction (reduce f i X), for example,
gets translated to

accu = i
for it in 0 .. N

accu = f(accu, X[it])

Segmented reduction is implemented as a nested loop with the outer
loop iterating over segments and the inner loop iterating over the
elements of that segment.

Tuples For every tuple type in a NOVA program, a new struct
type is declared. The components of the struct reflect the compo-
nents of the tuple. A tuple value is thus represented as an object of
the corresponding struct.

Closures Closures are represented by objects containing a pointer
to the closure function and memory to hold the values of free vari-
ables. On encountering a closure, a new closure object is created
and the values of the free variables are captured. At function appli-
cations, the function associated with the closure is called and the
closure itself and the argument are passed. Inside the function, the
captured values are unpacked from the closure object and the func-
tion body is evaluated.

Foreign functions When using foreign functions in NOVA, a cer-
tain signature is expected based on the function’s type. The return
value of the C implementation of a foreign function is always void.
The first parameter to the function is a pointer to the result variable
which is followed by the function’s parameters. The following rules
explain how NOVA types are mapped to C types: primitive values
are mapped to their C counterparts (bool is mapped to int); tuples
are represented by a corresponding struct as explained above; vec-
tors are represented by a pointer to a data array and a length (of
type int). If the vector is nested, there will be a pointer for each
nest pointing to the segment descriptors at that level. In that case,
the length of the vector is the length of the first segment descrip-
tor. Foreign functions must not have functions as parameters. The
signatures of foreign functions can be found in the header file.

Example:

(f f : v e c t o r f l o a t → f l o a t → v e c t o r f l o a t)

has the signature

void ff (int*, float**, float, int, float*)

If the return value of a foreign function is a vector, the function
is expected to allocate the memory for it.

6.2 Parallel C code generation
The parallel C code generator generates code to run on a multi-core
CPU using multiple threads. On encountering a parallel operation
such as map or reduce, the generated code calls a multi-core run-
time passing it information on how to process this operation. This
data contains a pointer to the function to be executed as well as
the data needed to execute the function. The runtime passes control
back to the host program when the operation has finished.

The function that corresponds to the operation is essentially a
sequential version of the operation. However, instead of processing
the entire input, it only processes a section of the input. Information
on which part of the input to process is passed together with the in-
put data. It is the runtime’s responsibility to split the work between
the CPU cores.

Some operations require individual results to be merged. When
performing a reduction, for example, each thread may compute
the result for a share of the input. In this case the runtime passes
the results back to the host program which then performs the final
reduction step sequentially.

Multi-core runtime The current implementation of the multi-
core runtime is straightforward: When a parallel operation needs
to be performed, it creates a certain number of threads. Each
thread gets assigned an equal share of the input to process.
The number of threads can be specified by the user setting the
NOVA_NUM_THREADS environment variable. If the variable is not
set, the runtime creates as many threads as there are CPU cores.

6.3 CUDA C code generation
When targeting the GPU, NOVA code gets translated to CUDA
C. Parallel operations result in CUDA kernel launches to perform
the operation. The map operation, for example, gets translated to
a kernel where each thread computes one or more elements of the
result vector. Other operations are slightly more complex because
they require communication between threads.

There is a default maximum number of thread blocks that are
created at kernel launch as well as a default block size. These values
can be changed by the user in the generated header file. If there are
more elements to process than there are threads being launched,
each thread processes multiple elements sequentially inside the
kernel.

In NOVA, the data resides in main memory initially. When
a kernel launch is encountered, the data needed to perform the
computation is copied to the GPU’s device memory. After a kernel
has finished, the result is copied back to the host memory. Every
variable gets copied exactly once even if it is used multiple times.
Since the value of variables in NOVA cannot be changed the copies
of variables are never out-of-date.

A tree-based reduction is used for both normal and segmented
reduction [22]. The scan operation is implemented in three steps: a
partial reduction, followed by a scan on the intermediate result and
a “down-sweep” phase to compute the final result [22]. The filter
operation is also implemented as a sequence of operations. First,
we perform a map operation on the input vector using the filter
function. The resulting vector is a mask of ones and zeros indicating
for each element if it should be part of the output. A +-scan is
performed on the mask resulting in an index vector indicating the
position of each element that is part of the output. Finally, the
elements are moved from the input vector to the output vector based
on the mask and the index vector.

Foreign functions in CUDA C When generating CUDA C code
parallel operations, such as map and reduce, are performed on the
device. If a foreign function is used within such an operation, it thus
needs to be a device function (__device__ in CUDA C).

If a foreign function is used outside of parallel operations, the
compiler assumes that it is a host function, i.e., written in standard
C/C++ code. The function itself may launch kernels on the device
but the compiler has no knowledge of that. Any vector arguments
the function works on are passed as host pointers. If inside the
function they are passed to kernels, the user has to allocate the
device memory and perform the data copy.

Benchmark Description Source

bbox Bounding box Thrust
dot 3D dot product Thrust
norm Vector norm Thrust
gridred Grid reduction Thrust
sumstats Summary of statistics Thrust
sumrows Sum of rows (irregular) Thrust
wordcount Count words in text Thrust
blackscholes Financial modelling CUDA SDK
nbody Physics simulation CUDA SDK
SpMV Sparse matrix-vector product CUSP

Table 2. Benchmarks used for the experiments.

bb
ox do

t

no
rm

gr
id

ed

su
m

st
at

s

su
m

ro
w

s

w
or

dc
ou

nt

A
V

E
R

A
G

E

S
pe

ed
up

 o
ve

r
T

hr
us

t

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

1.2x

Figure 8. Speedup over Thrust.

blackscholes nbody AVERAGE

S
pe

ed
up

 o
ve

r
N

V
ID

IA
 C

U
D

A
 S

D
K

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

1.2x

NOVA CUDA SDK

Figure 9. Speedup over NVIDIA CUDA SDK.

de
ns

e2

m
c2

de
pi

pd
b1

H
Y

S

qc
d5

_4

ra
m

10

sc
irc

ui
t

sh
ip

se
c1

w
eb

ba
se

−
1M

A
V

E
R

A
G

E

S
pe

ed
up

 o
ve

r
C

U
S

P

2.8x 4.0x

0.0x

0.5x

1.0x

1.5x

2.0x

NOVA CUSP

Figure 10. Speedup over CUSP sparse matrix-vector multiplica-
tion benchmark for a range of input matrices.

7. Performance Evaluation
This section evaluates the performance of NOVA generated code
for both CPU and GPU systems. The experiments were run on
an 8-core CPU and NVIDIA GeForce GTX480 using CUDA 4.1.
Table 2 summarises the benchmarks used.

7.1 Comparison with Existing Languages
Figures 8 and 9 show performance results of the CUDA C code
generated by NOVA and Thrust [6], and the hand-written CUDA C
code for the benchmarks from the NVIDIA CUDA SDK. We mea-
sure the kernel-execution time only. This does not include memory
transfers and other CUDA device initialization. This allows direct
comparison of the quality of the CUDA C code generated by each
approach, which would otherwise be skewed by memory transfer
times.

In Figure 8, we compare the performance of NOVA to that of
Thrust on 7 benchmarks. Both NOVA and Thrust achieve similar
performance. The performance results for NOVA and Thrust are
within 10% of each other.

Figure 9 compares the performance of NOVA to hand-written
CUDA C code from the NVIDIA CUDA SDK. On both bench-
marks, the performance of the NOVA code is within 4% of the
hand-written code. Again, the two approaches achieve similar per-
formance.

Figure 10 shows the performance of the SpMV benchmark
across a range of different input matrices. The matrix format used is
ELL [18]. The performance of the NOVA generated code is com-
pared against CUSP [5], a library of carefully-tuned sparse ma-
trix algorithms. The NOVA-generated CUDA C codes significantly
outperform the CUSP generated code on all but three of the bench-
marks (mc2depi, scircuit and webbase-1M). On average, over all of
the benchmarks, NOVA achieves a speedup of 1.5× over the CUSP
implementations.

7.2 Performance on multi-core CPUs
Figure 11 shows the speedup of the parallel C++ code over the
sequential version. The experiments are run on an 8-core Intel i7
CPU and the number of threads is varied from 1 to 8.

Most applications demonstrate good scaling behavior. The per-
formance roughly scales linearly with the number of threads. How-
ever, for nbody and box3x3 benchmarks, the performance only im-
proves marginally when using more than 4 threads. These appli-
cations are memory-bound, thus adding more compute resources
does not improve performance significantly. Their performance is
bounded by the memory bandwidth of the system which does not
scale linearly with the number of cores used.

8. Related Work
The closest work to our own is on generating parallel target code
from functional languages. Data Parallel Haskell [17] (DPH) al-
lows programmers to express nested parallelism [8] in Haskell.
Nested parallelism is particularly useful for irregular computation
and recursive parallelism. An important optimization is ‘vector-
ization’ which flattens nested computations to better load balance
work across multiple processors. Our approach, described in Sec-
tion 5.1, extends this by allowing nested parallelism on GPUs as
well as multi-core CPUs. However, we do not support recursive
nesting. In contrast to DPH, which adds parallelism for CPUs to
Haskell, Accelerate [10] adds GPU support to Haskell. Accelerate
uses array-based operations such as zipWith and fold to map
data parallelism to GPUs. It does not support nested arrays. Cop-
perhead [9] is a language for GPU computing embedded in Python.
Similarly to Accelerate and NOVA, it uses array-based operations
such as map and scan. Copperhead supports nested parallelism

bb
ox do

t

no
rm

gr
id

re
d

su
m

st
at

s

su
m

ro
w

s

w
or

dc
ou

nt

bl
ac

ks
ch

ol
es

nb
od

y

re
m

_p
oi

nt
s

bo
x3

x3

ra
di

x_
so

rt

A
V

E
R

A
G

E

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l e

xe
cu

tio
n

0x

1x

2x

3x

4x

5x

6x

1 thread 2 threads 4 threads 8 threads

Figure 11. Speedup over sequential execution on 8-core CPU.

but unlike DPH the computation is not flattened. Instead the differ-
ent levels are mapped to the hierarchy of the GPU, including thread
blocks and threads.

Several other approaches target GPUs from high-level lan-
guages. Sponge [15] generates portable CUDA C code from pro-
grams written in StreamIt [23]. Dubach et al. [12] developed a
compiler for Lime, a Java-compatible language targeting heteroge-
neous systems consisting of CPUs and GPUs. Thrust [6] is a C++
based framework using templates to express parallel code that gets
executed on the GPU. It’s design closely mirrors that of the C++
Standard Template Library.

Directive-based approaches to GPU programming have become
popular. They allow incremental porting of existing applications by
annotating code regions that can be run on the GPU. HMPP [11],
PGI [24] and hiCUDA [14] are examples of such frameworks. Their
work has lead to the publication of the OpenACC standard [1]. The
use of directive-based frameworks is generally limited to ‘embar-
rassingly parallel’, regular loops.

9. Conclusions and Future Work
This paper has presented NOVA, a functional language and com-
piler for parallel computing. NOVA allows users to write parallel
programs using a high-level abstraction. This makes the code con-
cise and maintainable, but also performance portable across a vari-
ety of processors.

The NOVA compiler produces code with performance compa-
rable to similar frameworks as well as hand-written code, across
a range of benchmarks. NOVA achieves this using a range of opti-
mization passes including aggressive inlining and fusion. The com-
piler also supports nested parallelism, a powerful mechanism to de-
scribe irregular computations.

NOVA provides support for integrating existing code into
NOVA programs through the use of foreign functions. However,
foreign functions are assumed to be side effect free. We are ex-
tending NOVA with support for monads to allow side effects to be
handled in a safe manner. We are also investigating the interoper-
ability of existing data structures with NOVA generated code.

We are also experimenting with the use of NOVA as an inter-
mediate language. Initial results using an R-style data-parallel lan-
guage are promising, and we will extend the suite of tools that use
NOVA to include further domain specific languages.

References
[1] The OpenACC application programming interface, 2011.

URL http://www.openacc.org/sites/default/

files/OpenACC.1.0_0.pdf. Version 1.0.

[2] The OpenCL specification version 1.2, 2011. URL
http://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf.

[3] Intel Threading Building Blocks reference manual, 2011. URL
http://software.intel.com/sites/products/
documentation/hpc/tbb/referencev2.pdf.

[4] CUDA C programming guide version 4.1, 2012. URL
http://developer.download.nvidia.com/compute/
DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf.

[5] N. Bell and M. Garland. Cusp: Generic parallel algorithms for sparse
matrix and graph computations, 2012. Version 0.3.0.

[6] N. Bell and J. Hoberock. Thrust: A productivity-orientied library for
CUDA. In GPU Computing Gems: Jade Edition. 2011.

[7] G. E. Blelloch. Prefix sums and their applications. Technical Re-
port CMU-CS-90-190, School of Computer Science, Carnegie Mellon
University, 1990.

[8] G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zagha, and S. Chat-
terjee. Implementation of a portable nested data-parallel language. J.
Parallel Distrib. Comput., 21(1):4–14, 1994.

[9] B. C. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling
an embedded data parallel language. In PPOPP, 2011.

[10] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating haskell array codes with multicore GPUs.
In DAMP, 2011.

[11] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A hybrid multi-core
parallel programming environment. In Workshop on General Purpose
Processing Using GPUs, 2007.

[12] C. Dubach, P. Cheng, R. Rabbah, D. Bacon, and S. Fink. Compiling
a high-level language for gpus (via language support for architectures
and compilers). In PLDI, 2012.

[13] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
de l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII,
1972.

[14] T. D. Han and T. S. Abdelrahman. hiCUDA: High-level GPGPU pro-
gramming. IEEE Transactions on Parallel and Distributed Systems,
2011.

[15] A. Hormati, M. Samadi, M. Woh, T. N. Mudge, and S. A. Mahlke.
Sponge: portable stream programming on graphics engines. In ASP-
LOS, 2011.

[16] T. Johnsson. Lambda lifting: Transforming programs to recursive
equations. 1985.

[17] S. L. P. Jones, R. Leshchinskiy, G. Keller, and M. M. T. Chakravarty.
Harnessing the multicores: Nested data parallelism in haskell. In
FSTTCS, 2008.

[18] D. R. Kincaid, J. R. Respess, and D. M. Young. ITPACK 2.0 user’s
guide. Technical Report CNA-150, Center for Numerical Analysis,
University of Texas, Austin, Texas, 1979.

[19] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part i. Communication of the ACM, 1960.

[20] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Science, 1978.

[21] J. C. Reynolds. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque sur la Programmation, pages 408–
423, 1974.

[22] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives
for GPU computing. In Graphics Hardware, 2007.

[23] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language
for streaming applications. In International Conference on Compiler
Construction, 2002.

[24] M. Wolfe. Implementing the PGI accelerator model. In GPGPU,
2010.

