
An Energy Efficient Time-sharing Pyramid
Pipeline for Multi-resolution Computer Vision

Qiuling Zhu?, Navjot Garg†, Yun-Ta Tsai†, Kari Pulli†
?Dept. of Electrical and Comp. Eng., Carnegie Mellon University, Pittsburgh, PA, USA

†NVIDIA Research, Santa Clara, CA, USA
Email: qiulingz@andrew.cmu.edu, ytsai@nvidia.com

Abstract—We introduce an energy efficient time-sharing pyra-
mid pipeline architecture designed for multi-resolution image
analysis in mobile computer vision. The time-sharing pipeline
efficiently reduces the off-chip memory traffic by re-organizing
the data storage and processing order of an image pyramid.
We build a parameterized image pyramid hardware generator
and successfully evaluate the overall pyramid design space.
Our results demonstrate that the time-sharing pyramid pipeline
achieves about 50% of hardware savings in terms of area and
power consumption compared to the traditional linear pipeline
implementation. We also implement the multi-resolution Lucas-
Kanade optical flow algorithm on the time-sharing pipeline, and
demonstrate an order of magnitude savings in off-chip memory
traffic and system energy consumption.

Index Terms—time-sharing; pipeline; image pyramid; multi-
resolution computer vision; optical flow

I. INTRODUCTION

Mobile camera applications, from computational photogra-
phy to computer vision, require efficient processing of large
amounts of data, and can greatly benefit from hardware
acceleration. The overall performance and energy use is often
limited by the memory bandwidth [1], [2], [3], [4]. This
problem has been addressed by multiresolution processing [5].

Image pyramid is the basic structure for multi-resolution
image processing, and it provides a complete image repre-
sentation that supports fast search and direct access to pixels
at different image resolutions [6], [7], [3]. More importantly,
the image pyramid also provides a hierarchical framework for
efficient implementation of multi-resolution algorithms (e.g.,
motion and stereo analysis). In image pyramid processing, the
pixels of an image in the pyramid are recursively processed
and up-sampled or down-sampled to create an increasingly
finer or coarser image for analysis.

This paper proposes a time-sharing pipeline that exploits
the special pyramid access pattern, and minimizes the off-
chip memory traffic by streaming the intermediate data storage
only through an on-chip buffer. This pipeline architecture
presents superior power and energy efficiency, and it is also
configurable and general enough, both for constructing all
types of basic pyramid structures (e.g., Gaussian pyramid)
and performing various multi-resolution vision tasks (e.g.,
hierarchical optical flow).

To achieve this, our time-sharing pyramid pipeline architec-
ture combines the advantages of conventionally used linear and
segment pyramid pipelines and performs the multi-resolution

tasks at different pyramid levels in a particular spatial and
temporal order. The time-sharing pyramid pipeline is designed
for a specialized front-end computer vision processor with
the primary goal of improving the energy efficiency. It im-
plements only one copy of the processing element (PE) for
an image pyramid and runs it at full clock rate for the
computations of data at all pyramid levels, in a time-sharing
manner. This allows exploiting the special pyramid access
pattern and preserving good spatial and temporal data locality
throughout the pyramid processing so that the active working
dataset is small and can be temporarily buffered on-chip while
streaming through the linebuffer of the pyramid, eliminating
all unnecessary off-chip memory traffic. We demonstrate the
application of the pipeline architecture in the implementation
of multi-resolution Lucas-Kanade optical flow and how our
design yields superior hardware efficiency and substantial
energy savings compared to the traditional designs.

Related work Pyramid architectures for computer vision
engines [4], [8], [9], [10] can be divided into two categories:
segment pipeline (i.e., SP) and linear pipeline (i.e., LP) [7],
[5]. In the SP architecture, one processing element (PE) works
for all the pyramid levels, one level after another. As the
on-chip memory is not able to hold a whole pyramid level,
the PE writes the results of computing one pyramid level
to the main memory. To start the computation for the next
level, the results are read again from the main memory again.
Therefore, a segment pipeline results in heavy memory traffic
as it requires reading and writing each level of the image
pyramid from and to the main memory. On the other hand,
in the LP architecture, the PE is duplicated for every pyramid
level and all the PEs work in parallel for all the pyramid levels
simultaneously. A certain amount of SRAM linebuffers are
assigned to each PE for storing the latest working data set at
each level. The intermediate data just streams through the local
memory linebuffer, eliminating the unnecessary data access
to/from the main memory. However, the inefficient usage of
the computational resources due to the unbalanced workloads
among the PEs at different pyramid levels is a severe problem
with this architecture.

II. TIME-SHARING PIPELINE PYRAMID ARCHITECTURE

We propose an efficient time-sharing pyramid pipeline (i.e.,
TP), shown in Fig. 1 (a). It combines the good properties of
the linear and segment pipeline pyramid architectures while

1

4

16

T

I

M

I

N

G

M

U

X

PE

G0

G1

G2

G0

Fig. 1. (a) Time-sharing Pyramid Pipeline Illustration (b) Time-sharing Pyramid Pipeline Workload Distribution (c) Time-sharing Pyramid Pipeline Architecture

avoiding their shortcomings. That is, it implements physically
only a single copy of each PE, but logically it processes all
the pyramid levels in parallel, in a time-sharing manner.

Fig. 1 (b) shows the TP working mechanism on a partial
Gaussian pyramid. Assuming that the resolution scaling ratio
is four (two for both x and y), we first divide the overall work
set of a pyramid into multiple work units. We highlight one
of the work units in Fig. 1 (b) which comprises one pixel at
level G2, four pixels at G1 and 16 pixels at G0. The PE will
process one work unit after another. In each work unit, the
PE can process from coarse-to-fine, or from fine-to-coarse. In
either case, it spends one time slot to process one pixel at the
coarsest level, and four times more time processing four times
more pixels at each successive pyramid level. After finishing
processing all the pixels in one work unit, the PE starts to
process the next work unit. The red numbers shown in the
figures represent the relative number of time slots spent at
each level. In this way, the time-sharing pipeline has a single
PE working for all pyramid levels in a time-sharing pipeline
manner. A control block (i.e., timing MUX) sits between the
PE and the pyramid memory and is responsible for scheduling
work of the single PE.

Fig. 1 (c) shows the overall architecture of a time-sharing
Gaussian pyramid pipeline where the processing element is
a simple convolution engine. For a more complicated multi-
resolution pyramid system, the convolution engine can be
replaced with other processing elements. We implement only
one convolution engine that is connected to linebuffer SRAM
arrays through the Timing MUX control block. The linebuffers
at the coarser pyramid levels have smaller sizes than those
of the finer pyramid levels, resulting in a linebuffer pyramid.
The linebuffer pyramid holds the most recent data, which is a
small subset of the whole image pyramid. The Timing MUX
schedules how the processing elements access data from one
level of the linebuffer pyramid and write the results into the
next level. The design only needs to access the source image
(G0) from the main memory. The intermediate data (e.g., the
pixels in the middle levels of the Gaussian pyramids) are just
temporarily buffered in the linebuffer pyramid, from which it
can be requested by other processing elements in the system.

III. MULTI-RESOLUTION OPTICAL FLOW

We next map the time-sharing pipeline to a real multi-
resolution computer vision application. The measurement of
optical flow is a crucial and challenging task in process-
ing of video sequences, and its hardware acceleration has

been regarded as critically important for low-power real-time
computer vision systems [11]. We will demonstrate that the
Lucas-Kanade (L-K) algorithm [12], [13], [14], an optical flow
method with a relatively low computational hardware overhead
and reasonably good accuracy, can be efficiently implemented
in the proposed time-sharing pipeline.

The hierarchical L-K optical flow estimation proceeds from
coarse to fine pyramid levels and has a very regular pyramid
structure. As shown in Fig. 2, two image pyramids are first
constructed for the two consecutive source images A and B.
The motion estimations are first performed at the coarsest
level of the image pyramids and the estimated motion vectors
(velocities) are upsampled and used as the seed to be refined
at the next finer pyramid level. To achieve this, each pixel of
image A maintains a memory address from the upsampled
velocity results as the starting point, and then the motion
estimation is performed at each pixel between the current
level of the updated images A and B. The updating process is
called “warp” as the memory address is offset by the previous
velocity seed. This process is iterated until the finest level, and
it yields the optical flow between the two images.

While the Gaussian pyramids of two image frames are
first constructed from the finest scale to the coarsest scale,
the motions between the two images frames are estimated
starting from the coarsest scale back to the finest scale. The
sequential processing order significantly delays the processing.
However, in the time-sharing pipeline implementation (Fig. 2),
we can perform the Gaussian pyramid construction and motion
estimation simultaneously. To achieve this, the processing ele-
ments (e.g., two downsampling filters, one motion estimation
(ME) engine and another image warping block) are connected
to three linebuffer pyramids through different Timing MUX
blocks. The down-sampling filters first start to work in the
time-sharing manner to construct the Gaussian pyramids. As
long as there are enough pixels computed at the coarsest scale,
the motion estimation engine will start to work and the motion
refinement operation propagates gradually from the coarsest
scale to the finest scale in the time-sharing manner. Mean-
while, the two downsampling filters continuously generate new
pixels at all scales of pyramids to feed the motion estimation
engines. The resulting architecture significantly reduces the
latency of the whole process.

Besides the two fine-to-coarse linebuffer pyramids, there is
another coarse-to-fine linebuffer pyramid for the storage of the
motion vectors at each pyramid resolution due to the feedback
loop of the algorithm. Our time-sharing pipeline only needs

Fig. 2. Time-sharing Pyramid Pipeline Implementing L-K Optical Flow

to read the two source images from the main memory, and
write the resulting motion vectors back to the memory. The
intermediate results, e.g., the two image Gaussian pyramids
and the intermediate motion vectors at intermediate levels,
just stream through the linebuffer and are consumed in the
processing feedback loop. A segment pipeline, on the other
hand, would have to store the intermediate results back to
DRAM, and then access them again when the computation
proceeds to the next level.

IV. IMPLEMENTATION, EVALUATION AND RESULTS

In this section, we implement the prototype hardware and
model all the three discussed pyramid pipelines. We will
show that the proposed time-sharing pyramid pipeline demon-
strates superior hardware efficiency compared to linear pyra-
mid pipeline, and significant memory bandwidth and energy
savings compared to segment pipeline.

A. Hardware Cost Evaluation

As the time-sharing pyramid pipeline is a fundamental
structure in a low-power computer vision SoC engine, its
area and power requirements need to be as low as possible
[15]. The pyramid engine is composed of four major parts:
the processing engine logic PE, the window registers to hold
the current working windows, the linebuffer SRAM arrays,
and the control logic including Timing MUX. In order to
efficiently explore the design space, we use the Genesis2
design tool to build the image pyramid engine chip generator
that encapsulates all the possible combinations of the design
parameters[16], from which the optimized synthesizable hard-
ware for a specific design point can be automatically generated
for fast evaluation. We also implement the corresponding
segment and linear pipelines for comparison. Area and power
are measured from the automated physical synthesis of the
designs on a commercial 32 nm CMOS process at 500 MHz
using Synopsys synthesis tools. Below, we use PyrL, WinS,
ImSize to denote the number of pyramid levels, the window
size, and image width.

In Fig. 3, we break down the area consumption of TP and
compare it to the corresponding LP designs for constructing
the 1080p image pyramids. We see that TP consumes much
less PE cost due to the time-sharing of the same PE among

 Slide 1 Slide 1

0.0E+00

6.0E+04

1.2E+05

1.8E+05

TP LP TP LP TP LP TP LP TP LP TP LP TP LP

PyrL_3 PyrL_4 PyrL_5 PyrL_6 PyrL_7 PyrL_8 PyrL_9

Memory Interface Shift Register PE

Area [um^2] vs. pyramid levels for TP & LP

Fig. 3. Area Comparison with LP

 Slide 1 Slide 1

0.0E+00

2.5E+04

5.0E+04

7.5E+04

1.0E+05

SP PyrL_3 PyrL_4 PyrL_5 PyrL_6 PyrL_7 PyrL_8 PyrL_9

WinS_3 WinS_5 WinS_7
WinS_9 WinS_11 WinS_13

Area [um^2] vs. pyramid level with different window sizes for TP & SP

Fig. 4. Area Comparison with SP

different pyramid levels. Although it consumes slightly more
shift-register and controlling logic for accommodating the
time-sharing configurations, that are negligible compared with
the reduction of the PE cost. Therefore, TP significantly
saves area cost over LP, but maintains the minimum off-chip
memory bandwidth requirements as we will explain below.

It is also important to understand the extra hardware over-
head of TP compared to SP. We plot the areas of SP for
different window sizes on the left in Fig. 4. For each window
size, we also plot the corresponding areas of TP with different
pyramid levels. As expected, TP consumes increasingly more
area compared to SP as the pyramid levels grow. On the other
hand, we see that the slope of the curves is proportional with
the window size, and the bottom curve which corresponds to
the window size of three is almost flat. That implies that the
overhead of TP over SP is fairly small for designs with small
windows. As TP consumes the same amount of area as the PE
with SP, the real extra cost actually comes from the linebuffers,
shift registers, and their control logic.

B. Performance and Energy Evaluation

We next evaluate the performance and energy efficiency of
the proposed pipeline. In Fig. 5 (a) we demonstrate the latency
of performing optical flow estimation for one pair of image
frames. We see that TP is almost two times faster than SP
as it allows performing the pyramid construction and motion
estimation in parallel (see Section III). On the other hand,
TP is only slightly slower than LP, while it eliminates the
duplication of the processing elements to save area and energy.

To understand the memory traffic savings, we implement
the L-K optical flow based on the time-sharing pipeline and
collect the memory traffic statistics. In Fig. 5 (b), we break
down the L-K DRAM traffic statistics for all the SP, TP
and LP designs. Basically there are two different types of
data traffic in the optical flow implementation: the traffic for
the movement of the image pixels and the calculated motion
vectors at all pyramid levels. The movement of the image

 Slide 1 Slide 1

0.0E+00

1.5E+06

3.0E+06

4.5E+06

6.0E+06

PEL DRAM RD

for PYR

PEL DRAM RD

for ME

PEL DRAM

WR

MV DRAM RD MV DRAM

WR

(b) Memory Bandwidth Analysis

Segment pipeline

Time-sharing pipeline

& Linear pipeline

DRAM traffic [bytes] vs. memory access type

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

Segment pipeline Time-sharing pipeline Linear pipeline

(c) Energy Consumption Evaluation

DRAM access Line buffer access Logic operations

Energy consumption [nJ]

0

3

6

9

12

1920 x 1080 1080 x 702 640 x 480

(a) Performance Evaluation

Segment pipeline

Time-sharing pipeline

Linear pipeline

Latency (ms) vs. image resolution

Fig. 5. Performance and Energy Evaluation

pixels has two different purposes: the construction the image
pyramids and the motion estimation. The plots show that
the SP implementation reads the two image pyramids from
the DRAM twice, first for the Gaussian pyramid construc-
tion (PEL RD FOR PYR) and then for motion estimation
(PEL RD FOR ME). It also requires memory bandwidth to
write the constructed Gaussian pyramids back to the DRAM
(PEL DRAM WR). SP also needs to write the motion vectors
at all pyramid levels to the DRAM (MV DRAM WR) and
read them again (MV DRAM RD) for refining the motion
vectors at successive pyramid levels. In the time-sharing and
linear pipeline, however, the memory traffic is reduced to only
accessing the two source images from the DRAM, and to
returning the resulting motion vectors back to the DRAM. All
other intermediate memory traffic is completely eliminated.

Fig. 5 (c) shows the energy consumption evaluation results.
We see that the energy consumption of the pipeline systems
are dominated by DRAM accesses. Compared to SP, our TP
achieves almost an order of magnitude of energy savings on
DRAM access (note the logarithmic scale), while consuming
similar amount of energy as SP for linebuffer (SRAM) access
and logic operations. The LP design is as efficient as TP for
memory performance, however, it consumes more energy on
the logic processing elements.

Fig. 6 presents the calculated optical flow (velocity) on a
benchmark image with a left-to-right movement. The proposed
TP-based implementation produces the same motion vectors
as the SP-based implementation, validating the approach.

V. CONCLUSION

The real-time and low-power demands of implementing
computer vision applications on a mobile device are often
met with application specific hardware accelerators. The image
pyramid data structure that provides a hierarchical framework
to implement multi-resolution algorithms amplifies such de-
mands. A specialized time-sharing pipeline architecture that
overcomes the inefficiencies of the conventional segment and
linear pipeline architectures has been developed to provide
the required efficiencies. Our hardware evaluation for 32nm
CMOS process shows significant improvements in both area
and power. Moreover, we present opportunities of exploiting
the time-sharing pipeline to eliminate off-chip memory traffic,
resulting in energy savings for performing a real-time multi-
resolution computer vision task. This paper demonstrates that
a specialized pipeline architecture that exploits the inherent
pyramid data access pattern can achieve superior area, power,

(b) Segment Pipeline Optical Flow (a) Source Image Frames (c) Time-sharing Pipeline Optical Flow

Fig. 6. Optical Flow Results

and energy efficiency of the SOC design for low-power multi-
resolution image processing.

REFERENCES

[1] G. P. Stein, E. Rushinek, G. Hayun, and A. Shashua, “A computer vision
system on a chip: a case study from the automotive domain,” IEEE
Computer Vision and Pattern Recognition, 2005.

[2] S. Muramatsu, Y. Otsuka, H. Takenaga, Y. Kobayashi, I. Furusawa, and
T. Monji, “Image processing device for automotive vision systems,”
IEEE Intelligent Vehicle Symposium, 2002.

[3] P. Burt, “A pyramid-based front-end processor for dynamic vision
applications,” Proceedings of the IEEE, vol. 90, no. 7, 2002.

[4] G. van der Wal, M. W. Hansen, and M. R. Piacentino, “The Acadia
vision processor,” in CAMP, 2000.

[5] P. Burt and G. van der Wal, “An architecture for multiresolution, focal,
image analysis,” in Pattern Recognition, vol. 2, 1990.

[6] D. C. Zhang, “Method of image fusion and enhancement using mask
pyramid,” FUSION, 2011.

[7] G. S. van der Wal and P. J. Burt, “A VLSI pyramid chip for multiresolu-
tion image analysis,” International Journal of Computer Vision, vol. 8,
no. 3, 1992.

[8] E. Rushinek and P. Del Vecchio, “Multi-threaded design tackles SOC
performance bottlenecks,” EmbeddedSystems Europe, 2006.

[9] S. Kyo and S. Okazak, “In-vehicle vision processors for driver assistance
systems,” in ASPDAC, 2008.

[10] A. Techmer, “Application development of camera-based driver assistance
systems on a programmable multi-processor architecture,” in IEEE
Intelligent Vehicles Symposium, 2007.

[11] F. Barranco, M. Tomasi, J. Diaz, M. Vanegas, and E. Ros, “Parallel
architecture for hierarchical optical flow estimation based on FPGA,”
IEEE Transactions on VLSI systems, vol. 20, no. 6, 2012.

[12] B. D. Lucas, T. Kanade et al., “An iterative image registration tech-
nique with an application to stereo vision,” in Proceedings of the 7th
international joint conference on Artificial intelligence, 1981.

[13] V. Mahalingam, K. Bhattacharya, N. Ranganathan, H. Chakravarthula,
R. R. Murphy, and K. S. Pratt, “A VLSI architecture and algorithm for
Lucas-Kanade-based optical flow computation,” IEEE Transactions on
VLSI systems, vol. 18, no. 1, 2010.

[14] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm,” Intel Corporation, 2001.

[15] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, and P. Pirsch, “Real-time
stereo vision system using semi-global matching disparity estimation:
Architecture and FPGA-implementation,” International Conference on
Embedded Computer Systems, 2010.

[16] O. Shacham., “Chip multiprocessor generator: automatic generation of
custom and heterogeneous compute platforms,” PhD Thesis, Stanford,
2011.

