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Abstract—Many of the challenges of modern SoC design can
be mitigated or eliminated with globally asynchronous, locally
synchronous (GALS) design techniques. Partitioning a design
into many synchronous islands introduces myriad asynchronous
boundary crossings which typically incur high latency. We have
designed a pausible bisynchronous FIFO that achieves low inter-
face latency with a pausible clocking scheme. While traditional
synchronizers have a non-zero probability of metastability and er-
ror, pausible clocking enables error-free operation by permitting
infrequent slowdowns in the clock rate. Unlike prior pausible syn-
chronizers, our circuit employs standard two-ported synchronous
FIFOs, common circuit elements that integrate well with standard
toolflows. The pausible bisynchronous FIFO achieves an average
latency of 1.34 cycles across an asynchronous interface while
using less energy and area than traditional synchronizers.

I. INTRODUCTION

Modern SoCs built in deeply scaled process nodes present
extraordinary design challenges. Slow wires and process, volt-
age, and temperature (PVT) variation make the synchronous
abstraction increasingly untenable over large chip areas, re-
quiring immense effort to achieve timing closure. The globally
asynchronous, locally synchronous (GALS) design methodol-
ogy is one means of mitigating the difficulty of global timing
closure. GALS design flows delimit ”synchronous islands” of
logic that operate on local clocks and communicate with each
other asynchronously.

GALS has a decades-long history in academia [1], and the
use of multiple clock domains is common in industry today
[2] [3]. However, individual clock domains in large commercial
designs still span many square millimeters, and so many of the
design challenges posed by a fully synchronous design persist
in these systems. The full advantages of GALS design can
only be realized if large SoCs are partitioned into myriad small
synchronous blocks, not a handful of large areas, an approach
we refer to as fine-grained GALS. Industry has been reluctant
to adopt this approach due to three main issues: the difficulty
of generating many local clocks, the latency incurred by asyn-
chronous boundary crossings, and the challenge of integrating
GALS methodology into standard toolflows. Overcoming these
difficulties will permit widespread adoption of GALS and ease
the timing closure challenge in large SoCs.

We propose a novel design for low-latency asynchronous
boundary crossings using pausible clocks. Our interface uses
the standard two-port first-in first-out (FIFO) queues common
in digital designs, but synchronizes read and write pointer
updates using two-phase signals that allow data to traverse
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Fig. 1. A brute-force bisynchronous FIFO.

the interface with very low latency. The contributions of this
paper include:

1) A novel flow-control scheme for FIFO pointers that
uses two-phase increment and acknowledge signals to
transmit data across an asynchronous interface.

2) A low-latency bisynchronous FIFO design that uses
pausible clocking techniques with standard two-ported
synchronous FIFOs that integrate easily into standard
toolflows.

3) A thorough analysis of the timing constraints imposed
by pausible clocking systems, including consideration
of the delay required for signals to traverse the distance
between the interface and the clock generator circuit.

We believe that this work overcomes many of the barriers to
the adoption of fine-grained GALS in modern SoCs.

II. BACKGROUND

While industry has not yet embraced the GALS approach,
progress has been made in overcoming the barriers to GALS.
Previous work addresses some of the challenges of local clock
generation and synchronization latency.

A. Local Clock Generation
Historically, on-chip clocks have typically been generated by

phase-locked loop (PLL) circuits. These circuits can reliably
generate a fixed target frequency, but are large, power-hungry,
and difficult to design, making them poor candidates for
inclusion in each synchronous island of a GALS system.
Recently, some systems have abandoned the goal of a fixed
target frequency in favor of adaptive clocking schemes that
can temporarily vary the clock period in response to noise
events [4]. Going further, some adaptive clocks do not target



a particular frequency at all, instead using replica critical
path circuits to continuously adjust the generated clock as
local conditions change [5]. Since they do not attempt to
lock to particular frequency targets, adaptive clock generators
avoid much of the complexity of PLL circuits. These circuits
impose minimal overhead on the overall system, and are ideal
candidates for local clock generation in GALS designs [6].

B. Synchronization Latency
Signals crossing the boundary between fully asynchronous

clock domains, such as those crossing between synchronous
islands in a GALS design, must be synchronized to mini-
mize the risk of metastability and operational failure. This
synchronization is typically achieved by sending such signals
through several flip-flops in series in the receiver clock do-
main. The flip-flops delay the signal for one or more cycles,
providing extra time for any metastability to resolve. While
these brute force (BF) synchronizers do not eliminate the
possibility of metastability, they can reduce the probability
until it is negligible. BF synchronizers can be used with a FIFO
memory to construct a BF bisynchronous FIFO as shown in
Figure 1. This FIFO safely transmits data between two clock
domains, synchronizing the read and write pointers with BF
synchronizers. The pointers must be gray coded so that any
synchronization error does not disrupt the pointer location by
more than one increment; the logic to encode and decode the
pointers is an overhead of this scheme.

Several circuits have been designed with the explicit purpose
of reducing the synchronization latency penalty. Chakraborty
and Greenstreet demonstrate circuits that can synchronize data
with low latency if some information about the relative phase
of the two clocks is known at design time [7]. However, their
scheme is not practical in the case of fully asynchronous clock
domains. Dally and Tell devised an even/odd synchronizer that
achieves low-latency communication across an asynchronous
interface, but their circuit requires a complicated phase predic-
tor and functions only with stable clock frequencies [8]. These
circuits are useful in certain applications, but do not provide
a satisfactory solution to the barriers to GALS adoption.

C. Pausible Clocking
A different method to reduce synchronization latency is

pausible clocking. As described in [9], pausible clocks take
advantage of the adaptive clock circuits already present in
many GALS implementations. A simple adaptive clock circuit
consists of one or more inverting delay lines fed into the
input of a Muller C-element (see Figure 2a). These delay lines
replicate the various critical paths found in the synchronous
logic island; the C-element ensures that the next clock edge
will not be generated until the slowest replica path resolves.
The pausible clock circuit adds another input to the C-element
that can be triggered asynchronously by signals entering the
clock domain (see Figure 2b). A mutual exclusion (mutex)
circuit ensures that the asynchronous input cannot toggle
simultaneously with the rising clock edge. When the mutex
input r2 is high, the mutex is opaque and signals at the data
input r1 are delayed until the clock edge has passed. When r2
is low, the mutex is transparent and signals at r1 are passed
through. Because the mutex can become metastable if its inputs
toggle simultaneously, the clock can pause for an arbitrarily
long duration (with vanishingly small probability) if r1 and
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Fig. 2. Adaptive clock generators (a) can be extended with a mutex to
synchronize requests, forming a pausible clock circuit (b).

r2 go high at the same time. However, there is no longer any
danger of metastability at the asynchronous input, and typical
circuit operation synchronizes input signals with roughly one
cycle of latency. Prior work describes the design and operation
of pausible clocking circuits in detail [6] [9] [10].

D. Related Work
Pausible clocking enables low-latency synchronization of

signals with arbitrary relative phase, and as such represents
an attractive option for boundary crossings in GALS design.
Several prior proposals for GALS boundary crossings integrate
pausible clocks with FIFO queues to synchronize data across
an interface [6] [9] [10] [11] [12]. These designs typically
require a fully asynchronous FIFO that services two-phase
request and acknowledge signals to store data words in transit.
There are many asynchronous FIFO designs in the literature,
from Sutherland’s classic micropipelines [13] to GasP and
Mousetrap FIFOs [14] [15]. However, these asynchronous
FIFOs have several disadvantages over their synchronous
counterparts. Rather than keeping data in place and updating
pointers to the data, these FIFOs propagate data from the
back to the front of the queue. This data movement incurs
a penalty in both energy and latency, a penalty that increases
with the queue depth. Furthermore, many asynchronous FIFOs
require careful delay matching to satisfy two-sided timing
constraints. Some of these issues can be mitigated by the use
of circular FIFOs, such as the one proposed in [16]. However,
asynchronous FIFOs necessarily require careful asynchronous
circuit design and verification that is poorly supported by
standard VLSI toolflows.

III. THE PAUSIBLE BISYNCHRONOUS FIFO
We propose a pausible clocking scheme that achieves flow

control via a standard two-ported synchronous memory ele-
ment that is synchronously written in one clock domain and
asynchronously read in another. We refer to this circuit as
a pausible bisynchronous FIFO. Like the BF bisynchronous
FIFO, data is stored in the FIFO while the read and write
pointers are synchronized between clock domains. In the pau-
sible FIFO, however, this synchronization is completed with a
pausible clock network, not with slow BF synchronizers. This
design combines the low-latency synchronization of pausible
clocking with the favorable characteristics of standard two-
ported FIFOs.

Figure 3 shows the pausible bisynchronous FIFO circuit.
The pausible synchronizers that provide synchronization in
both the transmit (TX) and receive (RX) clock domains are
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Fig. 3. The pausible bisynchronous FIFO. Only one of the increment-acknowledge paths is shown for clarity; in the complete system, each increment and
acknowledge line requires its own mutex and synchronization circuitry. The labeled letters show the sequence necessary to synchronize data through the FIFO.

shown in gray. These circuits are similar to those in [6],
except that the feedback FF has been replaced with a latch to
reduce overhead. Note that each pausible clock circuit requires
its input pointer increment or acknowledge signal to use a
two-phase request-acknowledge protocol. This ensures that the
unsynchronized signal can only toggle once, and then must
wait for an acknowledgement before toggling again, preventing
additional switching at an unsafe clock phase. By design,
this protocol prevents multiple toggles within a single clock
period; however, this is problematic for the synchronization of
pointer updates, because it implies that each pointer can only
be updated once per cycle, restricting throughput to the slower
of the two clock periods. Accordingly, the pausible FIFO
does not synchronize the multi-bit pointers directly. Instead,
several single-bit, two-phase pointer increment lines signal an
update to the read or write pointers, and corresponding pointer
acknowledge signals are sent back once the increments are
synchronized. This allows multiple pointer increments to occur
in succession within a single clock period, and allows full
throughput even at mismatched clock periods. Our experimen-
tation found that three increment-acknowledge pairs in either
direction guaranteed full throughput for TX:RX clock period
ratios as high as 2 or as low as 1/2. Additional increment and
acknowledge lines could be added to ensure full throughput
in the case of more extreme mismatches between TX and

RX clock periods, but this is likely unnecessary, as sending
data across an interface with such mismatched periods would
quickly fill or empty the FIFO.

Each of the increment and acknowledge signals must be
synchronized through their own mutex circuit in the pausible
clock network. The g2 outputs of all mutexes are ANDed
together, and this result is used as the synchronizing input
to the C-element, ensuring that the clock edge is not gen-
erated until every mutex guarantees a safe phase. Additional
interfaces (e.g., to multiple different synchronous islands) can
also be accommodated in this way: the g2 outputs from every
interface can be ANDed together to ensure that all interfaces
synchronize correctly. This does have the side effect that
a clock pause from any one interface will stall the entire
synchronous domain, but we found clock pauses to be so rare
that we do not believe this will pose a significant problem in
practice (see Section VI).

The write pointer logic stores the value of the write pointer,
as well as its best knowledge of the read pointer (possibly
delayed from the actual read pointer position as updates are
synchronized from the RX domain). It uses these values to
calculate whether the FIFO is full, and to signal backpressure
accordingly. The write pointer logic also sends write pointer
increment signals by toggling one of the two-phase write
pointer increment lines in the event of a write to the FIFO.



TABLE I. TIMING VARIABLES

Variable Description
T The nominal clock period of the synchronous block.
TL The average latency of a data word through the interface.
tins The insertion delay of the clock for the synchronous block.
tr2 The delay from the output of the C-element to the mutex r2 input.

tfb
The delay from the mutex r2 input through the mutex and around the
feedback path to the mutex r1 input.

tg2
The delay from the mutex r1 input through the mutex to the output
of the C-element.

tCL
The minimum time available to perform combinational work on the
synchronized request signal before the next clock edge.

tm
Time allotted to resolve mutex metastability, used to reduce the
frequency of clock pauses.

tw
The wire delay from the boundary of the synchronous island to the
local clock generator.

A state machine tracks which increment signals are in flight
and which have been acknowledged and can be used again.
The read pointer logic performs similar calculations in the RX
clock domain to determine whether the FIFO is empty. With
this logic and the pausible clocks synchronizing the pointer
updates, the pausible bisynchronous FIFO can synchronize
new input data in roughly one cycle on average.

The dual-port FIFO is clocked by the TX clock, and can
be implemented as FFs, a latch array, or an SRAM macro
as appropriate for its size. Such FIFOs are standard circuit
elements in modern designs, and the numerous area and energy
optimizations for these memory elements can be leveraged
with no additional design effort. No custom design is needed
to implement the FIFO, and standard scan and test structures
can be easily implemented.

The pausible bisynchronous FIFO could be easily modified
to interface between a clock domain with pausible clocking
and one with a traditional fixed reference, such as a PLL.
By replacing the pausible synchronizer on the fixed-reference
side of the interface with brute-force synchronizing FFs to
synchronize the increment and acknowledge pointers, low
latency in one direction would still be maintained. This would
allow a system to be partially converted to a GALS style
while maintaining legacy IP with traditional clocking where
necessary. These advantages make the pausible bisynchronous
FIFO a good candidate to overcome the barriers to widespread
GALS adoption.

IV. CIRCUIT OPERATION

The sequence labeled on Figure 3 shows the series of steps
involved in writing a data word to the FIFO. In this example,
the FIFO is initially empty, and all two-phase increment and
acknowledge lines are available for use. On the rising edge of
the TX clock, data is written to the FIFO address pointed to
by the write pointer and the input valid signal is asserted (A).
At this point, data is available to be read out of the FIFO. The
write pointer logic then increments the write pointer internally,
and toggles one of the two-phase write pointer increment
lines (B). This write pointer increment line is toggled in the
TX domain, and so it is asynchronous to the RX domain
and must be synchronized through the RX pausible clock
network. Depending upon the phase at which the write pointer
increment toggle arrives at the RX domain, it may pass through
immediately, be delayed until after the next RX clock edge,
or (in rare cases) cause metastability in the mutex and be
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Fig. 4. The key timing paths in the pausible synchronizer.

delayed for a longer time. However, the update will eventually
be synchronized into the RX domain (C), at which point the
read pointer logic can increment its internal tracking of the
write pointer and assert the valid signal at the output of the
system (D).

At this point, the data can be synchronously read from the
FIFO in the RX domain. (Once this read occurs, the RX pointer
logic will need to toggle one of the read pointer increment
signals to inform the TX domain; this series of toggles is
not shown.) However, from the perspective of the TX domain,
the write pointer update is still in flight, as a corresponding
acknowledge signal has not yet been received. Accordingly,
after the synchronization, the RX clock edge toggles the
corresponding acknowledge line (E). As this toggle occurs in
the RX clock domain, it must be synchronized through the
TX pausible clock network (F). This acknowledge signal then
updates the TX logic state machine, freeing the write pointer
increment line for future use (G).

V. TIMING ANALYSIS

Pausible clocking integrates the logic for asynchronous
boundary crossings into the clock generation mechanism for
the entire synchronous island. This integration imposes con-
straints on the operating conditions of each of these systems.
Previous work in pausible clocks does not fully address these
constraints, but this paper contributes a thorough accounting
of the capabilities and limitations of pausible clock timing,
which is critical to designing a realistic system. In this section,
we derive expressions for the average latency of the pausible
interface, as well as the constraints imposed upon the clock
period, insertion delay, and wire delay across the synchronous
island. We neglect the effects of variation in this analysis,
treating circuit delays as fixed quantities. In reality, stochastic
or worst-case corner analysis would be needed to ensure timing
robustness, although post-silicon tuning could alleviate the
effects of process variation. Table I describes each of the
variables used in the analysis in this section.

A. Timing Fundamentals
The important delays through the pausible clock network

are shown in Figure 4. tr2 is the delay from the output of the
C-element to the mutex r2 input. tfb is the delay from the r2
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input through the mutex and around the feedback loop to the
r1 input. tg2 is the delay from the mutex r1 input to the output
of the C-element, including delay through the AND tree when
multiple mutexes contribute timing information. The sum of
these three delays cannot exceed the delay through the clock
generator, or else the clock will frequently pause, increasing
the clock period beyond the target for the synchronous island
(see Figure 5). Since the clock generator delay is set to T/2
for a desired clock period T , these delays collectively enforce
a minimum clock period for the synchronous block:

T/2 ≥ tr2 + tfb + tg2 (1)

If this clock period constraint is exceeded, then the timing
slack in the system translates into a margin tm that guards
against the effect of clock pauses:

tm = T/2− (tr2 + tfb + tg2) (2)

Mutex metastability can be seen as a temporary increase in tfb
caused by simultaneous toggling of the mutex inputs. If (1) is
just satisfied (that is, if T/2 = tr2 + tfb + tg2), then tm = 0,
and any mutex metastability that delays its output will cause
the clock to pause. If tm > 0, then some metastability can be
tolerated before a clock pause occurs. In practice, we found
mutex metastability to be an infrequent event, with long clock
pauses rare (see Section VI). Accordingly, in this analysis we
will tend to trade off tm in favor of other more critical timing
parameters.

As detailed in Section IV, the low latency of the pausible
bisynchronous FIFO depends on the ability of the RX pointer
logic to immediately respond to a write pointer update by
asserting data valid before the next RX clock edge arrives.
The worst-case setup time for this logic is shown in Figure 6.
We refer to this available time to complete combinational work
within the same cycle as a received request as tCL. In the worst
case for this timing path, metastability in the mutex causes a
clock pause before resolving in favor of r1. When g1 toggles, a
clock edge will be generated as soon as this signal propagates
around the feedback loop to the clock generator. Thus, the time
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Fig. 6. The setup time requirement for the synchronized request signal. In the
worst case, metastability consumes any available timing margin, so that when
g1 finally goes high, the next clock edge is guaranteed to occur as soon as
the signal can propagate through tfb and tg2. This is therefore the maximum
allowable delay for logic that depends on the synchronized output.

TCL available for logic before this clock edge is only

tCL = tfb + tg2. (3)

This parameter is constrained by the complexity of the pointer
logic; if a long enough time is not apportioned for tCL, then
an extra register must be inserted before the logic to “pipeline”
the computation, increasing the latency of the interface by
one cycle. If tm > 0, then increasing tfb by adding delay
to the feedback path trades off excess tm to increase the time
available for same-cycle combinational work.

In order to derive the average latency of the interface, the
phase at which the request signal arrives must be considered.
As shown in Figure 7, if a request signal arrives while the
mutex is transparent, the request can be serviced within the
same cycle. Assuming that the fully asynchronous request
signal is equally likely to arrive at any phase, the average
latency of such requests is 0.75T − tr2. If the request arrives
while the mutex is opaque, then the request cannot be serviced
until the next cycle. The average latency of such requests is
1.25T − tr2. If the duty cycle of the clock is 50%, then taking
the mean of these two expressions gives the average latency
tL of the interface as a whole:

tL = T − tr2 (4)

Increasing tr2 decreases the average latency of the interface
because it shifts the transparent phase of the mutex closer to
the next clock edge. If tm > 0, then increasing tr2 by adding
delay to the mutex r2 input trades off excess tm to decrease
the average latency through the interface. Since tm can also be
traded for additional tCL, this means that there is a trade-off
between reducing latency and increasing the time available for
combinational work in the read pointer logic.

B. Insertion Delay
In real systems, the clock distribution network within the

synchronous island will have some insertion delay tins be-
tween the generation of the clock edges and their propaga-
tion through the clock network to the register endpoints. As
first noted in [17], this insertion delay mis-aligns the mutex
transparent phase, which could lead to circuit failure (see
Figure 8). Small insertion delays can be compensated by
intentionally increasing tr2 to match tins, realigning the phases
and protecting against metastability. However, the clock period
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constraint from (1) limits the increase in tr2. Setting tr2 = tins
yields the constraint on the insertion delay permitted for a
given clock period:

tins ≤ T/2− tfb − tg2 (5)

Handling large insertion delays is a fundamental challenge
of pausible clocking schemes. One technique to allow larger
insertion delay places all FFs adjacent to the interface on a sep-
arate clock with a much smaller clock tree [6]. However, this
approach could pose challenges with standard toolflows. [18]
proposed adding lockup latches to the circuit as in Figure 9.
We propose a similar scheme, except that our transparent high
latches are enabled by the r2 input, so they are transparent only
when the mutex is not. The latches allow requests to propagate
through the transparent mutex before the clock signal arrives
at the leaf nodes, but then delays the request at the transparent
mutex until after the clock edge has safely arrived at the FF
clock input. The latches do not increase the latency of the
interface because signals that would not race the clock would
still have to wait for the next clock edge to be synchronized.
Adding latches marginally increases the area and energy of the
circuit, but allows an additional T/2 of insertion delay:

tins ≤ T − tfb − tg2 (6)

However, tCL is decreased by the delay through the transparent
latch, as the asynchronous request must propagate through the
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latch before it reaches the combinational network.
Expressions for average latency and tCL must be adjusted

when insertion delay is considered:

tL = T + tins − tr2 (7)
tCL = T/2 + tins − tr2 (8)

Increasing insertion delay increases the average latency of the
interface because the next clock edge is delayed relative to the
transparent phase of the mutex. This delay also increases the
time available for combinational work.

C. Wire Delay
In addition to the non-idealities of clock insertion delay, a

nonzero wire delay is required to traverse the physical distance
between the block interface and the clock generation circuit.
Prior analysis of pausible clock timing neglects this delay, but
collocating all of the blocks involved is impractical for a real
GALS system. For instance, a tiled partitioning with a nearest-
neighbor communication scheme would require four interfaces
for each block, each communicating to a different neighbor
(see Figure 11). It would not be physically possible to collocate
the clock generator with these different interfaces.

Different design decisions impose this wire delay on dif-
ferent paths in the pausible clock circuit. A traditional ap-
proach places each mutex at the boundary of the synchronous
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Fig. 11. A mutual exclusion (mutex) circuit. The circuit was simulated in
SPICE to find the magnitude of mutex metastability as a function of the arrival
time difference between signals r1 and r2.

island, with the local clock generator centrally located as in
Figure 10a. This adds a wire delay tw to tr2 and tg2, increasing
the minimum achievable cycle time (from (1)) and decreasing
the maximum allowable insertion delay (from (5)). Alternately,
all mutexes can be placed near the clock generator as in
Figure 10b. This adds tw to the latency of the system, but
does not impact the cycle time or insertion delay constraints.
In either approach, tw could be reduced by using higher metal
layers and dedicated routing channels to transmit these critical
signals. Even with these considerations, tw will likely be a
substantial fraction of the clock period for most systems, and
will therefore have a noticeable impact on system performance.

VI. IMPACT OF MUTEX METASTABILITY

The above analysis assumed that mutex metastability is so
rare that its impact on average latency and cycle time will be
negligible. To confirm this assumption, we simulated the mutex
circuit in Figure 11a in SPICE in a 28nm CMOS process.
Inputs were toggled with random relative arrival times and the
resulting delay through the circuit was measured. Figure 11b
shows the results of the simulation. Assuming that the relative
arrival times are uniformly distributed, integrating under the
curve reveals that a 1ns clock period would be increased by
an average of just 0.23ps from clock pauses, an impact of less
than 0.1%. Furthermore, long clock pauses are exceedingly
rare: pauses longer than 100ps make up less than one event
in 106. Adding a small tm eliminates most clock pauses and
reduces the average impact on cycle time even further.

VII. EXPERIMENTAL SETUP

To evaluate the pausible bisynchronous FIFO, we imple-
mented the circuit as an interface module in Verilog RTL. Sim-
ple transmit and receive blocks were constructed to send and
receive data; the interface manages communication between
these two blocks (see Figure 12). The communication between
the interface and its neighbors is fully synchronous, and uses
standard ready-valid interfaces; all asynchronous communi-
cation takes place within the interface itself, similar to the
“GALS wrapper” approach described in [18]. This allows other
interfaces to be swapped in for the pausible bisynchronous
FIFO for straightforward comparison. The mutex circuit and
the local clock generators are described with behavioral Ver-
ilog, but the rest of the circuit is fully synthesizable.

To ensure that our circuit integrates well with standardized
toolflows, we synthesized the circuit using Synopsys Design

Interface

TX Clock 
Generator

TX Block RX Block

RX Clock 
Generator

TX Clock Domain RX Clock Domain

Fig. 12. The setup used to simulate the interfaces. The shaded area was
synthesized to obtain area and energy comparisons.

Compiler in the same 28nm process as described in Section VI.
The local clock generators were implemented as behavioral
cells because the design of an adaptive clocking macro is
outside the scope of this work. The mutex circuits were treated
as black boxes with custom library definitions based roughly
on SPICE simulations. They were defined as state elements
for the synthesis tool so as to break the combinational loops
inherent to pausible clock design. Unlike synthesis of a stan-
dard digital block, the pausible bisynchronous FIFO circuit has
several timing paths that cross between clock domains. These
paths should not be unconstrained; as noted previously, the
timing of many of these paths is critical for circuit operation.
Accordingly, we used the timing analysis from Section V to
define custom timing constraints on these paths so the synthesis
tool would appropriately optimize timing. We constrained the
tfb and tg2 paths to 200ps each, with tr2 negligible. According
to (1), these constraints should permit operation with a clock
period of 800ps or larger. An insertion delay of 250ps was
explicitly added to the clock generation circuits, well below
the maximum insertion delay permitted by (6). We did not
insert additional wire delay for physical distance as described
in Section V-C.

The post-synthesis netlist was simulated using VCS with
delays annotated from synthesis. The probability of clock
pausing was modeled with a simple exponential distribution
estimated from the SPICE simulations described in Section VI,
although the average impact of these clock pauses on latency
was negligible. Power was measured by Primetime PX, with
activity factors back-annotated from the gate-level simulation.

VIII. PERFORMANCE RESULTS

We compared the performance of three different interfaces:

• Synchronous, a fully synchronous FIFO queue that
functions only within a single clock domain. This is a
standard element in all digital designs. Since the read
and write pointers do not have to be synchronized across
clock domains, the control logic is simpler than either
of the bisynchronous interfaces.

• BFSync, a brute force bisynchronous FIFO with three
series FFs used to synchronize the pointers, as shown in
Figure 1.

• Pausible, the pausible bisynchronous FIFO described in
Section III and shown in Figure 3.

Each interface was used in the experimental setup shown in
Figure 12. 128-bit data words were sent across the interface.
Each interface included an 8-element FIFO built from FFs.

Figure 13 shows the average latency through the interface
as the ratio of clock periods is varied. (The RX clock period is



TABLE II. SYNTHESIS RESULTS

Average Latency (cycles) Area (µm2) Power (mW) Energy (fJ/bit)
Synchronous 1 4968 4.08 39.8

BFSync 4 5005 6.03 58.9

Pausible 1.34 4808 5.41 52.8
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Fig. 13. Simulation results showing the latency of each interface as the ratio
of TX clock period to RX clock period is varied. The latency of the pausible
bisynchronous FIFO averages 1.34 cycles, and is much less than the latency
through the brute-force synchronizer.

held fixed at 1.25ns, while the TX clock period is swept from
0.625ns to 5ns.) The pausible bisynchronous FIFO achieves
an average latency of just 1.34 cycles throughout this range,
much lower than the 4 cycles of BFSync and comparable to
the 1-cycle synchronous latency. In accordance with (7), much
of the increase in latency beyond one cycle is caused by 250ps
insertion delay. The result is slightly higher than predicted by
(7) because of the non-zero delay between the TX and RX
interface estimated by the synthesis tool. If we include a wire
delay tw of 150ps in the simulation as described in Section V-C
and assume the floorplan of Figure 10b, this delay is directly
added to the latency of the interface. For a 1ns clock period,
this increases the average latency from 1.34 cycles to 1.49
cycles.

Table II shows the results of synthesis of each design. The
area of each design is dominated by that of the FIFO, so the
total area of each design is similar. The energy cost of the
pausible interface per bit of data sent is somewhat less than
the BF synchronizer because the gray-coding logic is removed.
The synthesized design is able to operate with a clock period
as low as 800ps (as predicted by (1)) before clock pauses start
to become much more frequent. The interface still operates
correctly at a clock period of 600ps, although faster periods
cause the setup time constraint in (8) to be violated, leading
to incorrect functionality.

IX. CONCLUSION

We have designed a low-latency asynchronous interface
that works well with standard design tools. The pausible
bisynchronous FIFO achieves an average of 1.34 cycles of
latency, while incurring minimal energy and area overhead
over a synchronous interface. Careful analysis of the timing

constraints imposed by the system allows full integration with
standard toolflows. We believe that this circuit represents a key
enabling technology for fine-grained GALS systems, which
can mitigate many of the challenges of modern SoC design.
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