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Abstract

In this technical report we study different parallel graph coloring al-
gorithms and their application to the incomplete-LU factorization. We
implement graph coloring based on different heuristics and showcase their
performance on the GPU. We also present a comprehensive comparison
of level-scheduling and graph coloring approaches for the incomplete-LU
factorization and triangular solve. We discuss their tradeoffs and differ-
ences from the mathematics and computer science prospective. Finally we
present numerical experiments that showcase the performance of both al-
gorithms. In particular, we show that incomplete-LU factorization based
on graph coloring can achieve a speedup of almost 8× on the GPU over the
reference MKL implementation on the CPU.

1 Introduction

The graph coloring algorithms have been studied by many authors in the past.
The main objective of graph coloring is to assign a color to every node in a
graph, such that no two neighbors have the same color and at the same time use
as few colors as possible. Let us make this statement a bit more formal.

Let a graph G(V,E) be defined by its vertex V and edge E sets. The vertex
set V = {1, ..., n} represents n nodes in a graph, with each node identified by a
unique integer number i ∈ V . The edge set E = {(i1, j1), ..., (ie, je)} represents
e edges in a graph, with each edge from node i to j identified by a unique integer
pair (i, j) ∈ E.
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Also, let the adjacency matrix A = [ai,j ] of a graph G(V,E) be defined
through its elements

ai,j =

{
1 if (i, j) ∈ E
0 otherwise

}
(1)

Let us assume that if (i, j) ∈ E then (j, i) ∈ E, in other words, the adjacency
matrix is symmetric. If it is not, we can always work with Ḡ induced by A+AT .
An example of a graph G and its adjacency matrix A is shown below.

A =


0.0 1.0 1.0

0.0 1.0 1.0
1.0 1.0 0.0 1.0
1.0 1.0 1.0 0.0

 , G(V,E) =

3

1

4

2
V = {1, 2, 3, 4}
E = {(1, 3), (1, 4),

(2, 3), (2, 4), (3, 4)}

Let us further define a function f(i) : V → C, where C = {1, ..., k} is a set
of numbers, with each number representing a distinct color. Also, let |C| = k be
the number of colors, where |C| denotes the cardinality (number of elements) of
set C. In graph coloring we are interested in finding a function f that minimizes
number of colors k, such that

min
f

|C|

subject to f(i) 6= f(j) if (i, j) ∈ E (2)

The achieved minimum is called the chromatic number χ(G) of a graph G.
The graph coloring problem stated in (2) for a general graph is NP-complete

[20, 10]. However, there are many algorithms that can produce heuristic-based
colorings that are a good enough approximation of the minimum coloring in a
reasonable amount of time [19, 14].

This is especially true when graph coloring is applied to parallelize the
incomplete-LU factorization preconditioner used in the iterative methods for
the solution of large sparse linear systems. From the preconditioner perspec-
tive, fewer colors mean more parallelism, while more colors often imply stronger
coupling to the original problem. Therefore, it usually does not hurt the pre-
conditioner to have a few more colors than the theoretical minimum χ(G).

We will discuss applications to the incomplete-LU and sparse triangular solve
in more detail later in the paper. Let us now focus on the coloring algorithms
studied in great detail on the GPU in [9].
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2 Graph Coloring

Let us first described a sequential algorithm that can perform approximate graph
coloring. We will simply perform a breadth-first-search (BFS), and assign each
node the smallest possible color among its neighbors, see Alg 1.

Algorithm 1 Sequential Graph Coloring

1: Let G(V,E) be an input graph and S a set of root nodes.
2: Let C be an array of integers (representing colors), with
3: C[r] = 1 for r ∈ S, and
4: C[r] =∞ otherwise.
5: while S 6= {∅} do
6: Use some heuristic to order the vertices of S.
7: for v ∈ S do . Explore vertices in a given order
8: Find the set of neighbors N and subset of visited neighbors W of v.
9: C[v] = maxw∈W C[w] + 1.

10: end for
11: Set S = N \W .
12: end while

This is a special case of a greedy approach often used for the graph coloring
problem [14]. It is not optimal, but it is simple to implement. A graph coloring
obtained by this algorithm on a sample graph is shown in Fig 1.

Figure 1: A sample graph coloring

In order to perform the coloring on a parallel platform, we could attempt
to parallelize this algorithm. However, let us rather focus on a different more
interesting approach that is based on the maximal independent set problem [21].

Let an independent set of graph G(V,E) be a subset of vertices W ⊆ V , such
that if i, j ∈ W than (i, j) /∈ E, in other words, no two vertices are adjacent.
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Also, let a maximal independent set S be an independent set, such that S 6⊂W ,
for any other independent set W . Finally, let maximum independent set Z be a
maximal independent set, such that |Z| = maxS |S|, on other words, a maximal
independent set with the largest cardinality.

Notice that a graph can have many maximal independent sets. For example,
the graph on Fig. 1 has the following distinct maximal independent sets, with
some of them being maximum independent sets:

{4, 5, 6, 7}, {4, 5, 2, 7}, {4, 5, 2, 3}, {4, 5, 6, 3},
{8, 5, 6, 7}, {8, 5, 2, 7}, {8, 5, 2, 3}, {8, 5, 6, 3},
{1, 2, 3, 8, 9}, {1, 6, 3, 8, 9}, {1, 6, 7, 8, 9}, {1, 2, 7, 8, 9},← maximum ind. sets

Ideally we would like to find the maximum independent set, assign the same
color to the nodes in it, and repeat. Unfortunately, this problem for a general
graph is NP-complete. However, M. Luby developed a parallel algorithm for
finding a maximal independent set [21], which can be used as an approximate
solution to the original problem. His scheme is illustrated in Alg. 2 below.

Algorithm 2 Independent Set

1: Let G(V,E) be an input graph.
2: Let S = {∅} be the independent set.
3: Assign a pre-generated random number r(v) to each vertex v ∈ V .
4: for v ∈ V in parallel do . Find local maximum
5: if r(v) > r(w) for all neighbors w of v then
6: Add vertex v to the independent set S.
7: end if
8: end for

Algorithm 3 Graph Coloring

1: Let G(V,E) be the adjacency graph of the coefficient matrix A.
2: Let set of vertices W = V .
3: for k = 1, 2, ...until W = {∅} do . Color an Independent Set Per Iteration
4: Find in parallel an independent set S of W .
5: Assign color k to vertices in S.
6: Remove vertices in set S from W , so that W = W \ S
7: end for

Therefore, a common parallel approach for graph coloring is to leverage the
parallel (maximal) independent set algorithm and implement coloring following
the outline in Alg. 3, based on ideas by M. T. Jones and P. E. Plassman in [19].
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Notice that it is possible to change the heuristics for selecting the nodes for
the independent set on line 3 - 5 of Alg. 2, therefore generating different and
perhaps better approximations to the maximum independent set [2, 18, 1]. We
illustrate a choice proposed by J. Cohen and P. Castonguay in [9], where:

a) we use a hash function computed on-the-fly instead of random numbers.

b) we use maximum and minimum hash values to be able to generate two
distinct (maximal) independent sets for each of the hash values.

c) we associate multiple hash values with each node, and use different hash
values to create different pairs of (maximal) independent sets at once.

We compare Cohen-Castonguay (CC) with Jones-Plassman-Luby (JPL) ap-
proach described in Alg. 2 and 3 on realistic matrices from Tab. 2. We note
that for the nonsymmetric matrices we work with the auxiliary A+AT matrix.
We interpret these as adjacency matrices of some graph G according to (1). The
JPL and CC algorithms are implemented in CUDA, with latter being available
in the CUSPARSE library, through csrcolor routine. We perform the experi-
ments using CUDA Toolkit 7.0 release on Ubuntu 14.04 LTS, with Intel 6-core
i7-3930K 3.20 GHz CPU and Nvidia K40c GPU hardware.

Let us first focus on the case when the entire graph (100% of nodes) is colored
with a given algorithm. The Fig. 2a and 2b show the number of colors needed
for each graph and the time taken to compute them. Notice that the plots show
that CC is roughly 3 − 4× faster than the JPL algorithm. However, the CC
algorithm also generates 2− 3× more colors. Therefore, in problems where the
initial pre-processing time is not very important JPL is a reasonable algorithmic
choice, and vice-versa for CC algorithm.

(a) # of colors (b) Time (ms)

Figure 2: JPL and CC algorithms for coloring 100% of graph nodes
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(a) # of colors (b) Time (ms)

Figure 3: JPL and CC algorithms for coloring 90% of graph nodes

Surprisingly in our numerical experiments roughly the same ratios hold when
we color 80% and 90% of the graph nodes, with the latter case plotted in Fig.
3a and 3b. Also, notice that the number of necessary colors and computation
time drops by 1.5 − 3.0× and 1.2 − 2.4×, respectively, when only 90% of the
graph nodes need to be colored, see Fig. 4a and 4b. Therefore, we can obtain a
faster approximate solution if we have a scheme to process the rest of the nodes.

For example, if the nodes denote tasks and edges denote dependencies be-
tween them, then: (i) we can assign a distinct color for each of the remaining
10% of the nodes, so that the corresponding tasks are processed sequentially,
or (ii) we can assign the same single color to the remaining 10% of the nodes,
so that the corresponding tasks are processed in parallel (therefore ignoring the
edge dependencies, if permitted by the underlying application).

(a) # of colors (b) Time (ms)

Figure 4: Ratio of JPL and CC algorithms between coloring 100% and 90% of graph nodes
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Finally, there exist many re-coloring techniques that may improve an existing
approximate coloring [18]. They however are beyond the scope of this paper and
will not be discussed in greater detail here.

As the percentage of nodes to be colored is lowered further, for example to
80%, in our numerical experiment we see diminishing returns in terms of number
of colors and required computation time. Also, in the case of incomplete-LU
factorization, the set of remaining nodes becomes potentially too large to have
its dependencies “ignored” even for preconditioning.

The detailed results are summarize in Tab. 1. It will be shown in later sec-
tions that in many cases the time needed for approximately coloring a graph cor-
responding to a given adjacency matrix is a small fraction of the time needed for
solving the associated linear system using an iterative method with incomplete-
LU preconditioning. We will explore this well known applications of graph col-
oring – incomplete-LU factorization – in the next section.

There are different variants of incomplete factorization that can benefit from
reorderings based on graph coloring. We will focus on the incomplete-LU with 0
fill-in [ilu(0)]. The other variants, such as incomplete-LU with p-levels of fill-in
[ilu(p)], are beyond the scope of this paper [27].

JPL CC

100% 90% 80% 100% 90% 80%

mat # time # time # time # time # time # time
rix col. (ms) col. (ms) col. (ms) col. (ms) col. (ms) col. (ms)

1. 23 14.2 15 10.3 13 9.59 48 3.72 32 3.20 32 3.29
2. 42 44.1 31 37.4 27 32.8 80 14.7 48 13.6 48 13.4
3. 12 6.99 7 4.63 6 4.12 32 1.92 16 1.26 16 1.25
4. 13 7.49 7 4.87 6 4.08 43 2.53 16 1.48 16 1.46
5. 10 5.75 5 3.51 5 3.52 32 2.06 16 1.50 16 1.51
6. 12 11.6 7 8.80 6 8.44 43 4.42 16 3.00 16 3.04
7. 11 8.02 5 5.20 4 4.19 32 2.97 16 2.31 16 2.31
8. 32 16.3 22 11.6 19 10.2 64 3.70 48 3.28 32 2.58
9. 21 10.4 13 7.56 12 7.48 48 2.46 32 2.12 32 2.18
10. 15 8.63 5 3.33 4 2.62 48 2.73 16 1.47 16 1.50
11. 35 22.0 16 13.4 14 11.6 64 5.45 32 4.32 32 4.28
12. 12 9.24 7 6.77 6 5.75 46 3.80 16 2.43 16 2.41

Table 1: # of colors and time used for coloring different % of nodes
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3 Incomplete-LU Factorization

The incomplete-LU factorization with 0 fill-in is one of the most popular black-
box preconditioners for iterative methods and smoothers for algebraic multigrid.
The algorithm performs Gaussian elimination without pivoting of the coefficient
matrix A = [aij ] of the sparse linear system

Ax = f (3)

where A ∈ Rn×n, the solution x ∈ Rn and right-hand-side f ∈ Rn. The algorithm
computes the lower L = [lij ] and upper U = [uij ] triangular factors, such that

A ≈ LU (4)

and sparsity pattern of A and L+ U is the same, in other words, the algorithm
drops all elements that are not part of the original sparsity pattern of A, so that{

lij = 0 if i > j or aij = 0
uij = 0 if i < j or aij = 0

(5)

There are two distinct approaches to expose parallelism in the incomplete-
LU factorization with 0 fill-in: (i) level-scheduling and (ii) graph coloring. Let
us first explore both of them from the theoretical prospective, focusing on their
distinct characteristics and tradeoffs. To illustrate the algorithms, let us consider
the following symmetric coefficient matrix

A =



a11 a14 a51
a22 a26

a33 a37
a41 a44 a48 a49
a51 a55 a59

a62 a66
a73 a77

a84 a88
a94 a95 a99


(6)

The first level-scheduling approach involves an implicit reordering of the lin-
ear system (3). In this approach we factor the original system, by finding which
rows are independent, grouping them into levels, and processing all the rows
within a single level in parallel [16, 24]. In this setting the “levels’” represent
the data dependencies between groups of rows. Therefore, the next level can be
processed only when the previous level has finished.
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Figure 5: The data dependency DAG of the original matrix A

The directed acyclic graph (DAG) illustrating the data dependencies in the
incomplete-LU factorization of the matrix in (6) is shown in Fig. 5. Note that
in practice we do not need to construct the data dependency DAG because it is
implicit in the structure of the matrix. There is a dependency between node i
and j, for i > j if there exists an element aij 6= 0 in the matrix.

The analysis phase of the level-scheduling scheme discovers already available
parallelism. Notice that in this algorithm the node’s children are visited only
if they have no data dependencies on the other nodes. The independent nodes
are grouped into levels, which are shown with dashed lines in Fig. 5. This
information is passed to the numerical factorization phase, which can process
the nodes belonging to the same level in parallel. Finally, an outline of the
scheme is shown in Alg. 4 and 5.

Algorithm 4 Symbolic Analysis Phase

1: Let n and e be the matrix size and level number, respectively.
2: e← 1
3: repeat . Traverse the Matrix and Find the Levels
4: for i← 1, n do . Find Root Nodes
5: if i has no data dependencies then
6: Add node i to the list of root nodes.
7: end if
8: end for
9: for i ∈ the list of root nodes do . Process Root Nodes

10: Add node i to the list of nodes on level e.
11: Remove the data dependency on i from all other nodes.
12: end for
13: e← e+ 1
14: until all nodes have been processed.
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Algorithm 5 Numerical Factorization Phase

1: Let k be the number of levels.
2: for e← 1, k do
3: list← the sorted list of rows in level e.
4: for row ∈ list in parallel do . Process a Single Level
5: Update elements in the row.
6: end for
7: Synchronize threads. . Synchronize between Levels
8: end for

Since level-scheduling scheme can be viewed as an implicit reordering, we
are still solving (3) and therefore the rate of convergence of iterative methods
will not be affected when the level-scheduling scheme is used. It is important to
note that physically shuffling the rows in memory, so that the rows belonging to
the same level are next to each other from the computer science prospective, is
irrelevant from the mathematical perspective because by construction the rows
being shuffled are independent.

The second graph coloring approach to the incomplete-LU factorization [26,
7, 8, 6] involves an explicit reordering Q, so that we solve the reordered system

(QTAQ)(QTx) = QT f (7)

The reordering Q is constructed based on graph coloring of the DAG il-
lustrated in Fig. 5, that corresponds to the coefficient matrix in (6). The
reordering results from the relabeling of nodes such that nodes of the same
color are adjacent to one another. In our example, this relabeling permutation
qT = [1, 2, 3, 8, 9, 4, 5, 6, 7] corresponds to the reordering matrix

QT =



1
1

1
1

1
1

1
1

1


(8)
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which results in the reordered coefficient matrix

QTAQ =



a11 a14 a15
a22 a26

a33 a37
a88 a84

a99 a94 a95
a41 a48 a49 a44
a51 a59 a55

a62 a66
a73 a77


(9)

Notice that this matrix has diagonal blocks, which expose the parallelism
available in the factorization and subsequent lower and upper triangular solves.
The matrix updates during the factorization can now be performed trivially
using diagonal scaling, matrix addition and multiplication.

Also, notice that if we look at the reordered matrix QTAQ from the level-
scheduling prospective, its data dependency DAG has wider and fewer levels
as shown in Fig. 6. This implies that graph coloring extracts more parallelism
than was originally available.

Figure 6: The data dependency DAG of the reordered matrix QTAQ

It is important to point out that physically shuffling the rows in memory, so
that the rows belonging to the same color are next to each other from computer
science prospective, is again irrelevant from the mathematical perspective be-
cause we have already changed the dependencies between them based on graph
coloring. However, just as with level-scheduling, from the practical point of
view such reshuffling can improve memory coalescing at the cost of some extra
memory required to perform the shuffle.

Let us now address how the explicit reordering Q affects the convergence of

an iterative method. The reordering Q is an orthogonal matrix (QTQ = I),
therefore the reordered system (7) has been obtained from the original system
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(3) using an orthogonal transformation. Since orthogonal transformation does
not change the eigenvalues of a matrix, which govern the convergence of iterative
methods, the unpreconditioned iterative methods are not affected [17].

However, when incomplete-LU preconditioning is added, the situation changes.
It is more or less clear that depending on the reordering, different fill-in entries
of the matrix will be dropped during the incomplete factorization, resulting in
a preconditioner with a better or worse quality. Therefore, it follows that the
convergence of the preconditioned iterative methods will be affected.

The authors are not aware of any general theoretical results about the ef-
fects of reordering on convergence, but there are many empirical studies, some
of which are listed in these references [13, 12, 11, 5]. In our experiments, con-
vergence was usually negatively affected by the graph coloring reordering, but
the impact was not significant enough to offset gains obtained through the extra
parallelism attained by coloring.

4 Sparse Triangular Solve

Finally, it is insightful to look at the difference between level-scheduling and
graph coloring through the perspective of a standalone sparse triangular solve.

It has already been shown that the data dependency DAG for the incomplete-
LU factorization in Fig. 5 and the corresponding lower triangular solve is the
same [23, 24]. Therefore, a single level-scheduling analysis phase can be used to
explore the available parallelism in both problems.

Let us now see what happens when we perform graph coloring on the lower
triangular part of the matrix in (6) shown below

L =



l11
l22

l33
l41 l44
l51 l55

l62 l66
l73 l77

l84 l88
l94 l95 l99


(10)

In order to perform the graph coloring of nonsymmetric matrix L, we work
with Ḡ induced by L + LT , which has the same sparsity pattern as A, and
therefore results in the same reordering Q in (8). Then,
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QTLQ =



l11
l22

l33
l88 l84

l99 l94 l95
l41 l44
l51 l55

l62 l66
l73 l77


(11)

Notice that the data dependency DAG of the QTLQ is exactly the same as that
of L, and that of A shown in Fig. 5. Therefore, graph coloring did not help us
expose more parallelism in standalone sparse triangular solve.

Also, notice that the only way to attain the data dependency DAG of QTAQ
shown in Fig 6, is to symmetrically switch the three elements in red from the
upper to the lower triangular part of the matrix

l11
l22

l33
l88

l99
l41 l84 l94 l44
l51 l95 l55

l62 l66
l73 l77


(12)

Consequently, the only way to extract more parallelism is to break the exist-
ing data dependencies and create new ones. This is exactly what happens in
the incomplete-LU factorization, where the explicit reordering based on graph
coloring sets up a new problem with different data dependencies, that is better
suited for parallelism, but results in a different preconditioner from the original
problem. Notice that the switch of elements from lower to upper triangular part
also happens in the case of incomplete-LU, but is harder to spot in (9) due to a
symmetric sparsity pattern.

Let us now compare the level-scheduling and graph coloring approaches on
a set of realistic matrices.
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5 Numerical Experiments

In this section we study the performance of the incomplete-LU factorization
with 0 fill-in. In particular, we are interested in the speedup obtained by the
numerical factorization phase using level-scheduling with and without a prior
explicit reordering of the matrix. Notice that in the former case we will simply
be using level-scheduling, while in the latter case we will use reordering resulting
from graph coloring of the adjacency graph of the coefficient matrix.

We use twelve matrices selected from The University of Florida Sparse Matrix
Collection [28] in our numerical experiments. The seven symmetric positive
definite (s.p.d.) and five nonsymmetric matrices with the respective number of
rows (m), columns (n=m) and non-zero elements (nnz) are grouped and shown
according to their increasing order in Tab. 2.

# Matrix m,n nnz s.p.d. Application

1. offshore 259,789 4,242,673 yes Geophysics
2. af shell3 504,855 17,562,051 yes Mechanics
3. parabolic fem 525,825 3,674,625 yes General
4. apache2 715,176 4,817,870 yes Mechanics
5. ecology2 999,999 4,995,991 yes Biology
6. thermal2 1,228,045 8,580,313 yes Thermal Simulation
7. G3 circuit 1,585,478 7,660,826 yes Circuit Simulation
8. FEM 3D thermal2 147,900 3,489,300 no Mechanics
9. thermomech dK 204,316 2,846,228 no Mechanics
10. ASIC 320ks 321,671 1,316,085 no Circuit Simulation
11. cage13 445,315 7,479,343 no Biology
12. atmosmodd 1,270,432 8,814,880 no Atmospheric Model.

Table 2: Symmetric positive definite (s.p.d.) and nonsymmetric test matrices

The experiments are performed using csrilu0 and csrilu02 routines that
implement different variants of level-scheduling (as well as the GetLevelInfo

routine that returns extra information about distribution of rows into levels).
The graph coloring is performed using csrcolor routine, that implements CC
algorithm, for 100% of graph nodes. All of these routines are implemented on the
GPU as part of the CUSPARSE library [25]. Also, we compare our performance
to the reference csrilu0 implementation on the CPU in Intel MKL [22]. The
experiments are performed with CUDA Toolkit 7.0 release and MKL 11.0.4 on
Ubuntu 14.04 LTS, with Intel 6-core i7-3930K 3.20 GHz CPU and Nvidia K40c
GPU hardware.
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(a) G3 circuit (b) offshore

Figure 7: Distribution of rows into levels for level-scheduling approach csrilu0

(a) G3 circuit (b) offshore

Figure 8: Distribution of rows into levels for graph coloring approach csrilu0

First, let us take a closer look at the distribution of rows into levels with
and without prior graph coloring. We plot this distribution for G3 circuit and
offshore matrices for level-scheduling (no prior reordering) in Fig. 7. In this
case there are roughly up to 2000 and 1000 rows per level for these matrices,
respectively. Then, the same plot is shown after graph coloring in Fig. 8. Notice
that now we have more than 400, 000 and 20, 000 rows per level. Recall that rows
in a single level can be processed in parallel, therefore the degree of available
parallelism has increased more than an order of magnitude after graph coloring.

Let us also take a look at the difference in the number of levels, which
represent data dependencies, that are required for each matrix. We plot it in
Fig. 9. Notice that the difference varies across matrices, but in our numerical
experiments it is not uncommon for it to be of two orders of magnitude.
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Figure 9: Number of levels resulting from level-scheduling and graph coloring reorderings

An interesting observation is that for parabolic fem graph coloring resulted
in a slightly worse distribution of rows into levels. This is very rare, but could
happen because we are using approximate coloring algorithms. Fortunately, the
decrease in degree of parallelism is small.

Finally, the speedup of the numerical factorization phase of the incomplete-
LU factorization in CUSPARSE on GPU vs. MKL on CPU is shown in Fig. 10.
Notice that the difference in performance follows the improvement in the degree
of available parallelism, which mirrors the better distribution of rows into levels.

Figure 10: Speedup of numerical fact. based on graph coloring & level-scheduling vs. MKL

16



In our numerical experiments, on average numerical factorization phase of
level-scheduling (with no prior explicit reordering) attains 3× speedup, while
using explicit reordering based on graph coloring allows us to reach almost 8×
speedup over the CPU. The detailed timing results are shown in Tab. 3. Notice
that the time for the csrcolor routine is higher than shown in Tab. 1 for
coloring 100% of nodes with CC algorithm, because here we explicitly generate
the reordering vector with it. Also, note that additional speedup in csrilu0

can often be obtained using JPL algorithm and recoloring techniques.

CUSPARSE MKL

level-scheduling graph coloring

# csrilu0 csrilu0 csrcolor csrilu0 csrilu0

analysis (fact.) (coloring) (fact.) (fact.)

1. 79.39 410.4 5.15 20.14 255.3
2. 154.4 596.6 17.0 103.1 1102.
3. 36.50 6.210 4.64 9.970 59.50
4. 53.13 17.71 6.18 12.17 56.30
5. 74.81 35.09 7.21 10.86 47.22
6. 92.30 61.00 11.0 21.88 211.1
7. 114.4 57.18 11.2 16.66 92.50
8. 76.80 539.3 4.28 19.31 136.4
9. 34.79 54.74 3.55 11.38 118.7
10. 23.23 174.3 4.49 18.97 69.55
11. 53.89 44.32 7.73 35.34 397.0
12. 86.85 28.67 11.9 22.11 107.5

Table 3: Time(ms) for the incomplete-LU factorization

6 Conclusion

In this paper we have explored graph coloring algorithms and their application
to the incomplete-LU factorization.

We noticed that exact graph coloring is the best reordering for extracting
parallelism from a given problem. However this problem is NP-complete. Fortu-
nately, there are many approximate graph coloring schemes. We presented one
such novel algorithm (CC) and compared it with the standard approach (JPL).
We noticed that the former approach, implemented in the CUSPARSE library,
finds the solution faster, while the latter often has better quality.

17



We have also explained the relationship between level-scheduling and graph
coloring approaches to the incomplete-LU factorization. In our numerical exper-
iments we have shown that using graph coloring we can improve the performance
of the numerical factorization phase of the incomplete-LU by almost 8× when
compared to the Intel MKL reference implementation on the CPU.

Finally, we note that the advantages of using graph coloring will vary greatly
depending on the degradation of convergence of an iterative method. However,
we believe that for many problems the additional degree of parallelism and the
resulting speedup will often outweight this disadvantage.
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Appendix - Iterative Methods

This appendix was added to illustrate the difference in performance of precondi-
tioned iterative methods using level-scheduling and graph coloring approaches.
In particular, we experiment with Bi-Conjugate Gradient Stabilized (BiCGStab)
and Conjugate Gradient (CG) iterative methods for nonsymmetric and s.p.d.
systems, respectively. These methods are preconditioned with incomplete-LU in
(4) and Cholesky A ≈ RTR factorizations with 0 fill-in, respectively.

We compare their implementation using the CUSPARSE and CUBLAS li-
braries on the GPU and MKL on the CPU. In our experiments we let the initial
guess be zero, the right-hand-side f = Ae where eT = (1, . . . , 1)T , and the stop-
ping criteria be the maximum number of iterations 2000 or relative residual
||ri||2/||r0||2 < 10−7, where ri = f − Axi is the residual at i-th iteration. The
experiments are performed with CUDA Toolkit 7.0 release and MKL 11.0.4 on
Ubuntu 14.04 LTS, with Intel 6-core i7-3930K 3.20 GHz CPU and Nvidia K40c
GPU hardware.

CPU GPU GPU
(reference) (level-scheduling) (graph coloring)

# solve
||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it. solve

||ri||2
||r0||2 # it.

time(s) time(s) time(s)

1. 0.45 8.83E-08 25 2.00 8.83E-08 25 10.67 † 2000
2. 24.4 9.74E-08 570 46.5 9.71E-08 570 12.16 9.99E-08 723
3. 22.3 9.85E-08 1044 3.55 9.83E-08 1044 6.36 9.95E-08 1106
4. 22.7 9.97E-08 713 10.7 9.97E-08 713 8.66 9.90E-08 1377
5. 75.5 9.98E-08 1746 65.4 9.98E-08 1746 17.23 9.96E-08 2447
6. 109. 9.99E-08 1655 48.1 9.90E-08 1655 15.44 9.99E-08 1348
7. 13.6 8.51E-08 183 9.51 8.22E-08 183 3.48 9.94E-08 300
8. 0.10 5.25E-08 4 0.74 5.25E-08 4 0.19 7.21E-08 10
9. 58.5 1.56E-04 2000 42.3 1.96E-04 2000 14.92 1.41E-04 2000
10. 0.15 6.33E-08 6 0.16 6.33E-08 6 0.18 9.09E-08 8
11. 0.17 2.52E-08 2.5 0.22 2.52E-08 2.5 0.24 5.51E-08 3
12. 7.95 8.19E-08 74.5 3.06 9.62E-08 75 2.57 8.64E-08 105

Table 4: csrilu0 preconditioned CG and BiCGStab methods

The results of the numerical experiments are shown in Tab. 4, where we
state the number of iterations required for convergence (# it.), achieved rela-

tive residual ( ||ri||2||r0||2 ) and time in seconds taken by the iterative solution of the
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linear system (solve). Notice that the solve time excludes the graph coloring
(csrcolor), level scheduling (csrilu0 analysis) and numerical factorization
(csrilu0) time, that has already been shown in Tab 3. Also, note that here the
solve time is in seconds (s), while in previous tables it is in milliseconds (ms).

Figure 11: Growth in the number of iterations using graph coloring vs. level-scheduling

Figure 12: Speedup of iterative method using graph coloring vs. level-scheduling

There are two important takeaways from these experiments. The first is
that graph coloring often resulted in an increase in the # of iterations taken to
convergence, see Fig. 11. Notice that it is often < 1.5×, but there is a single case
indicated by † in Tab. 4 when the iterative method actually failed to converge.

22



The second takeaway is that in most cases we have obtained a larger speedup
using graph coloring when compared to level-scheduling for the overall run time
of the iterative method, see Fig. 12. Notice that using graph coloring we have
increased the degree of available parallelism, and therefore each iteration is much
faster than before. Ultimately, even though we take more iterations, in most
cases in our numerical experiments the significant speedup per iteration still
allows us to achieve an overall speedup for the iterative method.

This brief empirical study showcases some of the tradeoffs of working with
level-scheduling and graph coloring based approaches.
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