
A Variable Warp Size Architecture

Timothy G. Rogers t Daniel R. Johnson+ Mike O'Connor+* Stephen W. Keckler+*
tUniversity of British Columbia +NVIDIA *The University of Texas at Austin

tgrogers@ece.ubc.ca {djohnson,moconnor,skeckler }@nvidia.com

Abstract

This paper studies the effect of warp sizing and scheduling

on peiformance and efficiency in GP Us. We propose Vari­

able Warp Sizing (VWS) which improves the peiformance of

divergent applications by using a small base warp size in the

presence of control flow and memory divergence. When appro­

priate, our proposed technique groups sets of these smaller

warps together by ganging their execution in the warp sched­

uler, improving peiformance and energy efficiency for regu­

lar applications. Warp ganging is necessary to prevent per­

formance degradation on regular workloads due to memory

convergence slip, which results from the inability of smaller

warps to exploit the same intra-warp memory locality as larger

warps. This paper explores the effect of warp sizing on control

flow divergence, memory divergence, and locality. For an

estimated 5% area cost, our ganged scheduling microarchitec­

ture results in a simulated 35% peiformance improvement on

divergent workloads by allowing smaller groups of threads to

proceed independently, and eliminates the peiformance degra­

dation due to memory convergence slip that is observed when

convergent applications are executed with smaller warp sizes.

1. Introduction

Contemporary Graphics Processing Units (GPUs) group col­

lections of scalar threads into warps [1 9] or wavefronts [1 5]

and execute them in Single Instruction Multiple Thread

(SIMT) fashion. The number of threads in a warp is defined by

the machine architecture. Grouping threads into warps amor­

tizes the fetch, decode, and scheduling overhead associated

with managing thousands of threads on a single Streaming

Multiprocessor (SM) core. However, grouping threads into

warps creates performance challenges when threads within

the same warp execute different control flow paths (control

flow divergence) or access non-contiguous regions in memory

(memory divergence).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

ISCA'15, June 13-17, 2015, Portland, OR USA

© 20 1 5 ACM. ISBN 978- 1 -4503-3402-0/1 5/06 . . . $1 5.00
001: http://dx.doi .org/lO . 1 1 45/2749469.27504 1 0

489

Application

(a) Performance of 165 real world applications using a warp size of 4,
normalized to a warp size of 32.

1 .5

�
- 1 � ..
Eo.s
o
z

o

................ :.::.::.::::.::;:,:",,,,�.,-------=

-Divergent Applications
•••• Warp·Size Insensitive Applications
--Convergent Applications

Warp Size 4 Warp SizeS Warp Size 1 6 Warp Size 32

(b) Performance versus warp size using a representative subset of applica­
tions presented in 1 a. These applications are described in more detail in
Section 5.

Figure 1 : A survey of performance versus warp size.

Figure 1 plots the Instructions Per Cycle (IPC) resulting

from shrinking warp size from 32 threads to 4 threads while

keeping the machine's total thread-issue throughput and mem­

ory bandwidth constant. Figure la shows the effect of shrink­

ing the warp size on a large suite of real world applications,

while Figure 1b plots the harmonic mean performance of 1 5

applications which are selected to represent the 3 classes of

workloads we study throughout this paper. We classify a work­

load as being divergent when performance increases as the

warp size decreases, convergent when performance decreases

as the warp size decreases, and warp-size insensitive when per­

formance is independent of warp size. Figure 1 demonstrates

that application performance is not universally improved when

the warp size is decreased. This data indicates that imposing

a constant machine-dependent warp size for the varied work­

loads running on GPUs can degrade performance on divergent

applications, convergent applications , or both.

A large set of existing, highly regular GPU applications do

not see any performance improvement at a smaller warp size.

However, the divergent applications which do see a perfor­

mance improvement represent a class of workloads that are

important for future GPUs. Prior work such as [6, 7 , 22, 25]

has shown great potential for increasing the performance and

energy efficiency of these types of workloads by accelerating

them on a GPU. These applications include future rendering al­

gorithms such as ray tracing, molecular dynamics simulations,

1.6
1.4
1.2

0.8
0.6
0.4
0.2

0 .. 32 � 28
j 24
� 20 1: 16 � 12 � 8
::I. 4 .;, 0
�

I _ Warp Size 4 o Warp Size 8 o Warp Size 16 ",Warp Size 321

��� ���� �����
m � ��m������������ �
c Cl .. ; Cl � .; .., c � in - '" '" 1:l 1:: z
:E .E u '" c c e " .2 " u. � " :e- " � 0 0 0 = 'iii 'iii 'u Cl E :; E u. E E Vl � '" "- � <.) Cl .s= ::l i! .. (; .. <!) c >(

::; "- >. > " <!) <!) > <!) :E <!) e '5 <!)
C3 ..: Cl > > " .. � c ..: >(": E 1> a:: 0 :s ... a:: .. 0 <.) .. <!) "

:E u.

Divergent Appl ications Warp-Size Insensitive Convergent Applications
Appl ications

Figure 2: Normalized IPC (top) and the average number of ac­

tive thread lanes on cycles when an i nstruction is issued (bot­

tom). Al l configurations can issue 32 thread i nstructions per

cycle.

advanced game physics simulations, and graph processing

algorithms among many others. The goal of our proposed

architecture is to evolve GPUs into a more approachable target

for these parallel, but irregular, applications while maintaining

the efficiency advantages of GPUs for existing codes.

Figure 2 plots the performance and resulting SIMT lane

utilization of different warp sizes for each of the applications

we study. Control-divergent applications have a low utiliza­

tion rate at a warp size of 32 and see utilization increase as

the warp size is decreased. These workloads are able to take

advantage of executing different control flow paths simultane­

ously by using a smaller warp size. Convergent applications

have a high lane utilization rate at a warp size of 32 and see

their utilization decrease as the warp size is reduced. This

reduction in utilization occurs because of increased pressure

on the memory system caused by destroying horizontal lo­

cality across a larger warp. Horizontal locality occurs when

threads within a warp or thread block access similar memory

locations. Modern GPUs coalesce memory requests from the

same warp instruction that access the same cache line. By al­

lowing smaller groups of threads to proceed at different rates,

the locality that existed across the same static instruction is

spread over multiple cycles, causing additional contention for

memory resources . We call this effect memory convergence

slip.

In addition to the performance benefit convergent applica­

tions experience with larger warps, convergent and warp-size

insensitive applications gain energy efficiency from executing

with larger warps . A larger warp size amortizes the energy

consumed by fetch, decode, and warp scheduling across more

threads . When there is no performance benefit to executing

490

with smaller warps, the most energy-efficient solution is to

execute with as large a warp size as possible.

Our paper first examines the effect of providing a variable

warp size, which can be static ally adjusted to meet the perfor­

mance and energy efficiency demands of the workload. We

then propose Variable Warp Sizing, which gangs groups of

small warps together to create a wider warp and dynamically

adjusts the size of each gang running in the machine based on

the observed divergence characteristics of the workload.

Prior work such as [1 1 , 12 , 5 , 29, 30, 26, 3 1 , 9 , 24] proposes

various techniques to improve Single Instruction Multiple Data

(SIMD) efficiency or increase thread level parallelism for di­

vergent applications on GPUs. However, the use of small

warps is the only way to improve both SIMD efficiency and

thread level parallelism in divergent code. These prior works

focus on repacking, splitting, and scheduling warps under

the constraint of a fixed-size warp. Our work approaches the

problem from the other direction. We simplify the accelera­

tion of divergent workloads by starting with a small warp size

and propose a straightforward ganging architecture to regain

the efficiencies of a larger warp. Prior work can improve the

performance of divergent applications when the total number

of unique control paths is limited and the number of threads

traversing each respective path is large. Starting with smaller

warps allows our microarchitecture to natively execute many

more concurrent control flow paths, removing this restriction.

Section 7 presents a more detailed quantitative and qualitative

comparison to prior work.

In this paper, we make the following contributions :

• We characterize the performance, control flow/memory di­

vergence, and fetch/decode effects of different warp sizes on

a large number of graphics and compute GPU workloads .

- We demonstrate that reducing the warp size of modern

GPUs does not provide a universal performance advantage

due to interference in the memory system and an increase

in detrimental scheduling effects .

- We explore the design space uncovered by enabling a dy­

namic, variable warp size. We quantify the effects of

scheduling and gang combination techniques when the ma­

chine has the flexibility to issue from multiple control flow

paths concurrently.

- We propose a novel warp ganging microarchitecture that

makes use of a hierarchical warp scheduler, enabling di­

vergent applications to execute multiple control flow paths

while forcing convergent ones to operate in lock-step.

2. Baseline Architecture

Figure 3 depicts our model of a modern GPU, consisting of

several streaming mUltiprocessor cores (SMs) connected to

the main memory system via an interconnection network. This

paper studies the detailed design of an SM.

Our pipeline decouples the fetch/decode stages from the

issue logic and execution stage by storing decoded instructions

in per-warp instruction buffers (similar to the pipeline model

Streaming Multi process or \ GPU
�IMemCtrll ... IMemCtrl1 Frontend

I LlI-Cache I
I
I

Wa!E Fetch Scheduler I
Decode I

I
l===;=i====�:;====! I

Memory Unit

I L2S I L2

El···� Interconnect

I � ... �

,
1M:��tr'l ••. IMemCtr�

L2<;

Figure 3: Basel ine GPU arch itecture.

in GPGPU-Sim [1]) . Each warp stores one decoded instruction

in the instruction buffer. Each instruction entry in the buffer

also contains a valid bit, which is set when an instruction is

filled into the buffer, and a ready bit, which is set when the

in-order scoreboard indicates the instruction is able to execute.

The front-end of each SM includes an L1 instruction cache

which is probed once per cycle by the warp fetch scheduler.

The warp fetch scheduler determines which empty entry in the

instruction buffer is to be filled. On the execution side, a warp

issue scheduler selects one decoded, ready instruction to issue

each cycle. The register file consists of one bank per lane and

the datapath executes 32 threads per cycle in SIMT fashion.

Our memory system is similar to that used in modern Ke­

pier [28] GPUs. Each SM has a software-managed scratchpad

(known as shared memory in CUDA [27]) , an L l data cache,

and a texture unit. Access to the memory unit is shared by

all lanes. To reduce the number of memory accesses gener­

ated from each warp, GPUs coalesce memory requests into

cache line sized chunks when there is spatial locality across

the warp. A single instruction that touches only one cache

line will generate one transaction that services all 32 lanes .

Our main memory system includes a variable latency, fixed

bandwidth DRAM model.

Program Counters (PCs) and control flow divergence in­

formation for each warp are stored on a compiler-managed

call return stack (CRS) . The stack' s operation is similar to

the post dominator reconvergence stack presented by Fung et

al. [1 1] . Our baseline SM is heavily multithreaded and is able

to schedule up to 32 warps (1 024 threads) .

3. Trade-offs of Warp Sizing

This section details the effect of warp size on both the memory

system and SM front-end. This data motivates an architecture

that is able to dynamically vary warp size.

3.1. Warp Size and Memory Locality

Figure 4 shows the effect warp size has on L 1 data cache

locality in terms of hits , misses, and Miss Status Holding Reg­

ister (MSHR) merges Per Thousand Instructions (PKI) for the

applications we study. As the warp size is decreased, some

applications see an increase in the number of L1 data cache ac-

491

cesses. This phenomenon occurs when memory accesses that

were coalesced using a larger warp size become distributed

over multiple cycles when smaller warps are used, an effect

we term memory convergence slip.

In the divergent applications, memory convergence slip does

not significantly degrade performance for two reasons. First,

an application that is control flow diverged has less opportunity

for converged accesses because fewer threads are participating

in each memory instruction. Second, even when convergence

slip occurs on a divergent application, as it does in CoMD,

ObjClassifier, and Ray tracing, it also often results in more

cache hits , mitigating the effect on performance. While the

control-divergent Ray tracing application also sees an increase

in misses, the performance cost of these misses is offset by

the increased lane utilization observed with smaller warps.

In the convergent applications, memory convergence slip

has a greater effect on performance. All of these applications

see both an increase in the total number of memory accesses

and cache misses at smaller warp sizes. Radix Sort and Game

2 also see an increase in MSHR merges . The loss in throughput

caused by additional traffic to the L2 data cache and DRAM in

these applications is not offset by any increase in lane utiliza­

tion, as these applications already have high SIMT utilization

at larger warp sizes. Perhaps not surprisingly, L 1 locality for

the warp-size insensitive applications is insensitive to the warp

size.

3.2. Warp Size and SM Front-end Pressure

Figure 5 plots the average number of instructions fetched per

cycle at various warp sizes . Decreasing the warp size places

increasing pressure on the SM's front-end. Convergent and

warp-size insensitive applications see a nearly linear increase

in fetch requests as the warp size is reduced. This data indi­

cates that a fixed 4-wide warp architecture increases front-end

energy consumption for non-divergent applications, even if the

performance does not suffer. While divergent applications also

see increased front-end activity, the ability of the architecture

to exploit many more independent control paths is fundamen­

tal to increasing the performance of these applications. Our

design focuses on creating a flexible machine that is able to

expand and contract the size of warps executing in the sys­

tem. The best warp size for a given application balances the

demands for independent control flow with the limitations due

to memory convergence slip.

4. Variable Warp Sizing

This section describes the high level operation of Variable

Warp Sizing, discusses the key design decisions, and details

the operation of each architectural component. We selected

four threads as the minimum warp size for three reasons : (1)

graphics workloads commonly process threads i n groups of

four known as quads, (2) the performance opportunity for the

compute workloads we examined reaches diminishing returns

at warp sizes smaller than four, and (3) the area overhead rises

80
:.: 70
Q.
(I) 60
.,
2' 50 .,
� 40
(I) .,

.!!! 30
� 20 !l :f 10

o
� OOO q) N • .., <l> N � CII) <D N � CII) <D N . "' <I) N � CII) <D N
I' 11, 'I 'I, I' 'I M I' 11 ... M 'I 'I ... M I' 'I M

Cl) Cl) 1' 1' (J) (I) 'I I' m U) '1 '1 Cl) Cl) 1' 1' (J) (I) 1' 1' m U) 'I "

���� ���� ���� ���� ���� ����
CoMO Lighting GamePhysics ObjClassifier Raytracing Image Proc.

Divergent Applications

rTTTl
� CII) to N
I' 11 ... M

Cl) Cl) 1' 1'

����
Game 3

=
• Cl!) <l> N
'I 'I M

(J) (I) 'I I'

����
Convolution

� Cl!) <D N
I' 'I M

m U) 'I "

����
Game 4

Warp-5ize Insensitive Applications

�MSHR Merges
o Misses
• Hits

� CII) <D N . "' <I) N � CII) <D N � CII) <D N . "' <I) N � CII) <D N
11 11 "- "" '1 " '- "" Il l', 11 11 "- "" '1 " '- "" Il l',

Cl) Cl) I' 'I (J) (I) 1' 1' m U) '1 '1 Cl) Cl) I' 'I (J) (I) 1' 1' m U) 'I "

���� ���� ���� ���� ���� ����
FFT Game 1 MatrixMultiply Game 2 FeatureDetect Radix Sort

Convergent Applications

Figure 4: L 1 data cache hits, misses, and MSHR merges per thousand instructions (PKI) at different warp sizes .

.,9 g,s
':7 &:6
�5 .:= �4 ., 1L 3 ., �2
g! 1
<Co

I • Warp Size 4 o Warp Size 8 o Warp Size 16 "Warp Size 32 I

lll� l l l l l l
C Cl on � Cl > U .., c Cii � >. N tl 1: z .,
::0 .S; " '" c is e .. 0 .. IL =:: ., Q. .. 2 0 0 0 E

... ... 'u cb E :s E IL E '" E '" u >. Q. .. U Cl .:= (I) E ., .. '0 .. Cl .. '3 .. c)(cb ::; Q. .. >. > Cl Cl > Cl > Cl ::0 Cl � '0 > .. u .. <C .. c <C)(::I .. <C E 'E 0:: .§ 0 :s 1ii
0::

.. 0 u
Cl ::0 IL

Divergent Applications Warp·Size Insensitive Convergent Applications
Applications

Figure 5: Average instructions fetched per cycle. Fetch band­

width is scaled to match issue bandwidth for each warp size.

notably at warp sizes smaller than four. We discuss the area

trade-offs of different warp sizes in Section 6 .7 .

4.1. High-level Operation

The goal of VWS is to create a machine that is able to dy­

namically trade off MIMD-Iike performance with SIMD-Iike

efficiencies depending on the application. Our proposed vari­

able warp sized machine shrinks the minimum warp size to

four threads by splitting the traditional GPU datapath into

eight unique slices . Each slice can fetch, decode, and issue

instructions independent of other slices . Figure 6 presents

the microarchitecture of our proposed design. Each slice is

static ally assigned threads in a linear fashion: threads 0-3 are

assigned to slice 0, 4-7 to slice 1 , and so on. Threads cannot

migrate between slices.

VWS does not change the number of register file banks

in the SM or impose any additional communication between

them. As in our baseline, each four-lane slice of the datapath

receives its own set of four register file banks (0 in Figure 6).

VWS requires no changes to the memory unit (f), which

includes the shared scratchpad memory, Ll data cache, and

texture cache. All memory requests generated by any slices in

the same cycle are presented to the memory unit as a single 32-

thread access in the same manner as when executing 32-wide

warps. The coalescing unit also operates in the same fashion

as the baseline; multiple threads accessing the same cache line

in the same cycle generate only one memory request.

492

To facilitate warp sizes greater than four, we introduce the

warp ganging unit (0), which is able to override local per-slice

fetch/decode (e) and issue (e) decisions. The gang front­

end (0) performs instruction fetch and decode once for all

small warps participating in a gang. The gang issue scheduler

enforces lock-step execution of all slices participating in a

given gang. The warp ganging unit is discussed in more detail

in Section 4.2 .

When VWS is operating in ganged-only mode, the per-slice

front-end logic (f) and warp issue scheduler (0) are disabled

to save energy. When operating in slice-only mode, each

SM slice uses its independent front-end to fetch and decode

instructions. When both gangs and independent warps are

present in the system at the same time, gangs are given both

fetch and issue priority. This policy ensures that gangs remain

in lock-step as long as possible. When possible, independent

warps are used to fill in holes in the executing gang. Each slice

front-end includes an LO I-cache (0) to reduce pressure on

the larger Ll I-cache (CD) which is shared by all slices in the

SM. Without LO I-caches, providing peak throughput in slice­

only mode would require 8x the Ll I-cache bandwidth. Our

microarchitecture allows 9 separate fetch schedulers (one for

each of eight slices and one for gangs) to request instructions

from the Ll I-cache. We study the effects of scaling Ll 1-
cache bandwidth in Section 6. Arbitration to determine which

scheduler is granted L l access is done by the L l fetch arbiter

(4D), described in more detail in Section 4.6

This microarchitecture can be run in gang-only or slice-only

mode (effectively locking the warp size at 32 or 4 respectively) .

However, our proposed solutions evaluated in Section 6 and

described in the remainder of Section 4 operate by beginning

execution in ganged mode. Sections 4.4 and 4.5 describe how

gangs can be split and reformed on a per-gang basis .

4.2. Warp Ganging Unit

The goal of the warp ganging unit is to force independent

slices to fetch, decode, and execute instructions in lock­

step gangs when threads across multiple slices are control­

convergent. Several factors motivate such ganging. First,

issuing memory accesses from convergent applications with­

out lock-step execution places significantly more pressure on

the memory system and degrades performance. Second, the

Streaminf(MultiDroceSSOr
� Warp GangingUni

11; " Gang Table

GangIDIGangMasklp�vali�ReaclYMaS

Gang Frontend
Gang Fetch
Scheduler
Decode

GanglDIGangMaskl�validlReadYMaS GanJl Control LORic

� � 11 Gang Issue H GP IUi1 Sched uler

Slice �nesO-3]

a Slice Fronlend •
.... LO I-cache

Select InSf

Shared Frontend
Lll-cache

Ll Fetch Arbiter

Slice 7]Lanes28-31] T
r--�S;O:;lic�e�Fro�n�le�nd::-----' � Select Insl

1
1

Warp Fetch Sche duler

*� Decode I- T
1!��ln;:de::: p,e::: n�de�nl�w�a:::' rp� IM� a� Sk:g- ----.,. Select Issue

1 LO I-cache 1 $
1 Warp Felch Sche duler 1 ��::.�:;�

Decode ..

�I �ln::;d=ep= en�d§en§1 w@:ar=p M;; a= sk�I' --•• { Select Issu e

... P Conlrol Logic
I""r Warp Iss ue Sched uler I

•

:=::::=:;
s
�
co= re=bo= a

==
rd
=:='I'l

1-
Call Relu m Slack

lII. ...
!'Dalapalh]LanesQ-3]

I II Re�ster FI eS Icel l
III 4 banks I1

Memory Unit

Figure 6: Variable Warp Sizing SM microarchitecture. Shaded units are disabled when operating in ganged mode to save energy.

system can amortize front-end energy consumption across

more threads when some or all small warps across the slices

in an SM are executing the same instruction.

When a kernel begins and thread blocks are assigned to

an SM, gangs are created from the thread blocks in the same

fashion as 32-wide warps are created in our baseline system.

Each gang is statically assigned eight 4-wide warps, one from

each slice. Information about which warps are participating

in which gang is stored in the gang table (e). Each entry in

the gang table contains a GangID, an 8-bit GangMask (indi­

cating which slices are participating in the gang) , the current

PC of the gang, a valid bit (which is cleared when the gang' s

instruction buffer entries are empty), and a ReadyMask which

indicates which warps in the gang can issue. To simplify the

design of the gang unit, warps are not allowed to migrate be­

tween gangs. We implemented more complex gang forming

and reforming schemes, but saw no significant performance or

energy advantage for our workloads . All warps not participat­

ing in a gang (unganged warps) are managed independently

by their respective slice. Each slice stores an independent

warp mask (e) indicating which of its warps are managed

independent of the warp ganging unit.

4.3. Gang Table

The gang table tracks all information necessary for scheduling

gangs as well as for managing gang splitting and reformation.

The baseline SM described in Section 2 has a capacity of 1024

schedulable threads organized into 32 warps of 32 threads

each. The VWS SM has the same total thread capacity, but

organized into a total of 256 warps of 4-threads each, or 32

4-thread warps per slice. At kernel launch, the threads are

aggregated into maximally-sized gangs of eight 4-wide warps,

or 32 threads per gang to match the baseline architecture. The

term original gang is used throughout this paper to describe a

gang of warps that is created when a thread block is initially

assigned to an SM.

When a gang splits, more entries in the gang table become

493

necessary. Because individual warps are not managed by the

warp ganging unit, a gang of 8 warps can split into at most

4 gangs, with a minimum of two warps per gang. Further

subdivision yields singleton warps which are managed within

each slice. Thus the maximum number of entries needed in the

gang table to track the smallest gangs is 128 (32 original gangs

x 4). These 128 entries can be organized in a set-associative

manner with 32 sets , one set per original gang and four entries

representing up to 4 different gang splits.

Each entry in the gang table contains a unique GangID

identifier and GangMask that indicates which slices are par­

ticipating in this gang. Since warps can only be ganged with

other members of their original gang, all warps from the same

original gang access the same set in the gang table and must

have GangIDs that are in the same group. For example, warp

o in each slice can only be a member of gangs 0-3 . With this

organization, each warp ' s index in the GangMask is simply

the warp's slice number.

To perform fetch and issue scheduling, the warp ganging

unit requires information from the slices . Specifically, the

gang front-end must know the next PC for each gang, and the

gang issue scheduler must know when all warps in a gang have

cleared the scoreboard. Per warp call return stack (or recon­

vergence stack) tracking is done locally in each slice. To track

per-gang PCs and handle gang splitting when control flow

divergence is encountered, each slice signals the warp ganging

unit when the PC at the top of a warp ' s stack changes (e).
Instruction dependence tracking is also done in each slice,

even when operating in gang-only mode. Keeping the depen­

dence information local to each slice makes transferring warps

from ganged to unganged simpler and decreases the distance

scoreboard control signals must travel. The warp ganging unit

tracks dependencies for an entire gang in a ReadyMask by

receiving scoreboard ready signals from each slice (e).
The gang table also contains a per-entry valid bit to track

instruction buffer (I-Buffer) status . The warp gang unit is

responsible for both fetching and issuing of gangs . The gang

unit front-end stores decoded instructions in each member

warp 's per-slice I-Buffer. The valid bit is set by the gang fetch

scheduler when a gang' s per-slice I-Butler entries are filled

and is cleared by the gang issue scheduler when the associated

instruction has been issued. All member warps in a gang issue

their instructions in lock step from their respective slice-local

I-Buffers. This bit is managed internally by the warp ganging

unit and does not require any input from the slices .

4.4. Gang Splitting

The warp ganging unit decides when gangs are split and re­

formed based on a set of heuristics evaluated in Section 6. To

make splitting decisions, the warp gang unit observes when

control flow and memory divergence occurs . Control flow di­

vergence is detected by observing the PCs sent to the ganging

unit by each slice. PCs from the slices undergo a coalescing

process similar to global memory accesses. If all warps in a

gang access the same PC, no splitting is done. If any warp

in the gang accesses a ditlerent PC, the gang is split. If more

than one warp accesses a common PC, a new gang is formed

for these warps . If only one warp accesses a given PC, that

warp is removed from the control of the ganging unit and a

signal is sent to that warp ' s slice, transferring scheduling to

the local slice. All VWS configurations explored in this work

split gangs whenever control flow divergence is detected.

In addition to control flow divergence, memory latency di­

vergence is another motivation for gang splitting . Memory

latency divergence can occur when some threads in a warp

hit in the data cache while other threads must wait for a long­

latency memory operation to complete. Prior work such as

Dynamic Warp Subdivision [24] has suggested warp subdivi­

sion to tolerate memory latency divergence.

Section 6 evaluates VWS architecture configurations that

can split gangs when memory latency divergence is observed

among member warps. Memory latency divergence is detected

when scoreboard ready bits for different warps in a gang are

set at different times when completing memory instructions.

Tracking which warps in a gang are ready is done through the

ReadyMask. We evaluate VWS with two different types of

gang splitting on memory divergence. Impatient Splitting is

the simplest form of gang splitting on memory divergence. If

any warp in a gang sets its ready bit before any other member

warps, the gang is completely split; all members participating

in the gang become independent warps . Impatient splitting

simplifies the splitting process and allows highly memory

divergent workloads to begin independent execution as quickly

as possible. Group Splitting enables warps that depend on

the same memory access to proceed together as a new gang.

When more than one warp in a gang has its ready bit set in

the same cycle, a new gang is created from those warps. Any

singleton warps that result from this process are placed under

independent, per-slice control.

494

4.5. Gang Reformation

In addition to splitting gangs, VWS supports the reformation

of gangs that have been split. The warp ganging unit decides

if warps or gangs from the same original gang should be re­

ganged. While we explored numerous policies, two simple

but effective choices emerged: (1) opportunistic reformation

and (2) no reformation. To simplify the re-ganging hardware,

only one gang can be reformed each cycle. To perform oppor­

tunistic gang reformation, one original gang is selected each

cycle, in round-robin order. The hardware compares the PCs

from each of the original gang' s new gangs or independent

warps, with a worst-case 8-way comparison if the gang has

completely split apart. If any groups of two or more of these

warps or gangs have the same PC, they are merged. Section 6

describes policies to promote more gang reformation by forc­

ing gangs and warps to wait at common control flow post

dominator points in the code.

4.6. Instruction Supply

To avoid building a machine with 8x the global fetch band­

width when VWS is operating in completely independent slice

mode, the fetch bandwidth of the Ll instruction cache is lim­

ited. We evaluated several different LI-I cache bandwidths

and determined that with modestly sized LO I-caches , L l 1-
cache bandwidth can be scaled back to two fetches per cycle

and achieve most of the performance of allowing 8 fetches

per cycle. The global fetch arbiter determines which fetch

schedulers access the Ll I-cache's 2 ports on any given cycle.

The gang fetch scheduler is always given priority to maximize

the number of lanes serviced. The remaining fetch bandwidth

is divided among the per-slice warp fetch schedulers. Individ­

ual warps are distributed to the slices in round-robin fashion

(warp 0 is assigned to slice 0, warp 1 to slice 1 , and so on) .

An arbitration scheme prioritizes slice requests to ensure that

each slice gets fair access to the L l I-cache.

5. Experimental Methodology

The results in this paper are collected using a proprietary, cycle­

level timing simulator that models a modern GPU streaming

multiprocessor (SM) and memory hierarchy similar to that

presented in Section 2. The simulator is derived from a product

development simulator used to architect contemporary GPUs.

Table 1 describes the key simulation parameters . The simulator

processes instruction traces encoded in NVIDIA's native ISA

and generated by a modern NVIDIA compiler. Traces were

generated using an execution-driven, functional simulator and

include dynamic information such as memory addresses and

control flow behavior. We simulate a single SM with 32 SIMT

execution lanes that execute 32-wide warps as our baseline,

similar to that described in [1 3] . For warps smaller than 32, we

use the same memory system but maintain a fixed count of 32

execution lanes sliced into the appropriate number of groups.

We model a cache hierarchy and memory system similar to

Table 1 : Basel ine simulator config uration.

Streaming Multiprocessors I
Execution Model In-order

Warp Size 32
SLMD Pipeline Width 32
Shared Memory / SM 48KB

L I Data Cache 64KB, 1 28B line, 8-way LRU
L2 Unified Cache 1 28KB , 1 28B line, 8-way LRU

DRAM Bandwidth 32 bytes / core cycle
Branch Divergence Method [SA Controlled Call Return Stack

Warp Issue Scheduler Greedy- Then-Oldest (GTO) [32]
Warp Fetch Scheduler Loose Round-Robin (LRR)

ALU Latency 1 0 cycles

contemporary GPUs, with capacity and bandwidth scaled to

match the portion available to a single SM.

The trace set presented was selected to encompass a wide

variety of behaviors, Traces are drawn from a variety of cate­

gories , including High Performance Computing (HPC), games,

and professional/consumer compute application domains such

as computer vision. A third of the selected traces belong to

each of the three categories described in Section 1 : (1) diver­

gent codes that prefer narrow warps, (2) convergent codes that

prefer wider warps, and (3) codes that are mostly insensitive

to warp size.

6. Experimental Results

This section details experimental results for the Variable Warp

Sizing microarchitecture. First, we quantify performance for

several configurations of VWS and then characterize instruc­

tion fetch and decode overhead and the effectiveness of mit­

igation techniques . We perform several sensitivity studies

exploring various design decisions for gang scheduling, split­

ting, and reforming. We demonstrate how gang membership

evolves over time for some sample workloads . Finally, we

examine area overheads for the proposed design.

6.1. Performance

Figure 7 plots the performance of multiple warp sizes and

VWS, using different warp ganging techniques . All techniques

can issue 32 thread instructions per cycle. Fetch and decode

rates are scaled with the base warp size ; WS4 and WS32

can fetch and decode eight instructions per cycle and one

instruction per cycle, respectively. The VWS configurations

use a base warp size of 4 and can fetch up to 8 instructions per

cycle from the L1 I-cache. Simulating our ganging techniques

with 8 times the L 1 I-cache fetch throughput allows us to

explore the maximum pressure placed on the global fetch unit

without artificially constraining it. Section 6 .2 demonstrates

that VWS using the LO I-caches described in Section 4 and

an L 1 I-cache with only 2x the bandwidth achieves 95% of

the performance of using 8x the L 1 I-cache bandwidth on

divergent applications . Warp-size insensitive and convergent

applications are insensitive to L1 I-cache bandwidth. We chose

the following VWS configurations based on an exploration of

the design space detailed in the rest of this section.

495

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

I-ws 32 ows 4 o l-VWS !OE-VWS OE-VWS.lmpatientMeml

I ��I�IIII��I�
0 Cl .. :;; Cl � .; .., c � ... u; � :>. '" 1:l � z
:0 .5 <.> '" c 0 � " .2 " IL � " il. " .$ 0 0 0 E 'iii 'iii '" :Z E 'S E IL E '" E VI '1 :>. 11. "
(,) Cl J:: .. f .. '0 .. z C; � C; 0)(z

:::; 11. .. >. « " Cl Cl « :0 � '6 w Cl > « " i3 c w)(E .. w E 'E 0: :0 .§ 0 :0 :s 0:
:0 .. J: (,) J: .. 0 .. " J: Cl :0 IL

Divergent Applications Warp-Size Insensitive Convergent Appl ications
Applications

Figure 7: Performance (normal ized to WS 32) of large warps,

small warps, and different warp ganging techniques.

WS 32: The baseline architecture described in Section 2 with

a warp size of 32.

WS 4: The baseline architecture described in Section 2 with

a warp size of 4.

I-VWS: Inelastic Variable Warp Sizing with a base warp size

of 4, where gangs are split only on control flow divergence.

Warps are initially grouped together into gangs of 8 warps

(32 threads total) . Upon control flow divergence, gangs are

split based on each warp's control flow path. Once split, they

are never recombined. The ganging unit selects up to two

gangs to issue each cycle. Slices that do not receive a ganged

instruction pick the next available warp from their pool of

unganged warps. The ganged scheduler uses a Big-Gang­

Then-Oldest (BGTO) scheduling algorithm, where gangs

with the most warps are selected first. Gangs with the same

number of warps are prioritized in a Greedy-Then-Oldest

(GTO) fashion. Per-slice schedulers manage independent

warps using a GTO scheduling mechanism.

E-VWS: Elastic Variable Warp Sizing. Warps are split on

control flow divergence and combined in an opportunistic

fashion when multiple gangs or singleton warps arrive at the

same PC on the same cycle. Gangs can only be created from

members of an original gang. A maximum of 2 gangs or

warps can be combined per cycle.

E-VWS-ImpatientMem: Warp ganging similar to E-VWS,

except that gangs are also split when memory divergence

occurs across warps in the same gang. Whenever any memory

divergence occurs in a gang, the entire gang is split. Gangs

are recombined in the same opportunistic fashion as E-VWS .

Figure 7 shows that the I-VWS warp ganging microarchi­

tecture is able to achieve a 35% performance improvement on

divergent applications over a static warp size of 32 . This im­

provement is within 3% of using a warp size of 4 on divergent

applications and it results in no performance loss on conver­

gent applications where simply using a warp size of 4 results

in a 27% slowdown. This data also demonstrates that splitting

gangs on control flow divergence without performing any gang

recombining, the simplest solution, provides the best overall

1.8
1.6

g1.4
�1.2
� 1 ��� ________________ �MM�����
�0.8
0.6

e Application

l

Figure 8: Performance (normalized to WS 32) of I-VWS and WS

4 on al l the applications from in Figure 1 a.

performance for these workloads . Adding opportunistic gang

recombining (E-VWS in Figure 7) actually results in a small

performance decrease on divergent applications . This decrease

is caused by scheduling and packing problems associated with

attempting to issue across more slices at once. When gangs are

larger, there is a greater likelihood that multiple gangs need to

issue to the same slice on the same cycle.

Elastically splitting and regrouping makes no performance

difference on convergent and warp-size insensitive applica­

tions because these applications experience little or no control

flow divergence. Recombining gangs for the divergent work­

loads makes little performance difference when the hardware

has the ability to issue many smaller gangs (or single 4-sized

warps) because remaining unganged is unlikely to result in

a loss of utilization. Having the ability to concurrently issue

multiple paths at the slice granularity makes control flow re­

convergence less performance critical than when only one path

can be executed concurrently.

Figure 7 also quantifies the effect of splitting gangs on mem­

ory divergence (E-VWS-ImpatientMem) . Reducing the effect

of memory divergence helps some of the divergent applica­

tions like Lighting, ObjClassifier, and Ray tracing and provides

a modest 2% performance increase over I-VWS on the diver­

gent applications. However, allowing gangs to split based on

memory divergence results in significant performance degra­

dation on Game 1 , Game 2, and Radix Sort in the convergent

application suite, resulting in an average slowdown of 22%

on the convergent applications. Like 4-sized warps, this loss

in performance can be attributed to memory convergence slip.

Formerly coalesced accesses become uncoalesced and create

excessive pressure on the memory system causing unnecessary

stalls .

Figure 8 shows the performance of all 1 65 applications.

The figure demonstrates that the ganging techniques used in

1-VWS are effective for all the applications studied. 1-VWS

tracks warp size 4 performance on the divergent applications

and eliminates warp size 4 slowdown on the convergent appli­

cations at the left side of the graph.

6.2. Front-end Pressure

Figure 9 plots the fetch pressure of several warp sizes and

ganging configurations. For the divergent applications, 1-VWS

results in 57% fewer fetch/decode operations required each cy-

496

I_ WS 32 0 WS 4 D I-VWS "E-VWS 0 E-VWS-lmpatientMeml

c Cl '" � Cl � ..; .., c Cii � >. '" tl 1:: Z :;: c c.> .. c .. 0 .. IL .. Q. .. 0 0 '" c e � � 0 � '(3 t!J E � E IL E '" E '" u >. Il. U Cl .c '" f .. '" '0 '" Cl '" "3 '" c)(t!J ::; Il. '" >. > Cl Cl > Cl :;: Cl l!! 'C er: Cl > > .. u i2 '" c er:)(::I '" er: E "E .§ 0 ·c 1;; 0:: '" 0 u 1;; ..
Cl :;: IL

Divergent Appl ications Warp-Size Insensitive Convergent Appl ications
Applications

Figure 9: Average fetches per cycle with different warp sizes

and ganging techniq ues.

1.1

u � 0.9
� 0.8 '" § 0.7
z 0.6

.. ,' ..
,..--... -.:�.�.�.��

.c·······
p

/
.---+--+--.... ---. .---+--... --.... ---.

'''0'' 2 L1-1 Fetches Per Cycle
-__ --4 L1-1 Fetches Per Cycle

€Y�,-,-,-,-,-,--,-,-,-,-,-,-,-,-,--,-,-,-,-�

Divergent Applications Warp Size Insensitive
Applications

Convergent Applications

Figure 1 0: Average performance of I-VWS at different L 1 1-

cache bandwidths and LO I-cache sizes. Normalized to I-VWS

with 8x L 1 -1 cache bandwidth .

c1e versus a warp size of 4. This reduction in fetch/decode rep­

resents a significant energy savings while providing almost all

of the performance of 4-sized warps. By opportunistically re­

combining gangs for divergent applications, E-VWS requires

a further 55% less fetch/decode bandwidth than I-VWS, at

the cost of some performance. On divergent applications, E­

VWS-ImpatientMem increases fetch/decode pressure versus

E-VWS but not more than I-VWS .

On the convergent and warp-size insensitive applications,

the ganging configurations that do not split on memory di­

vergence show fetch pressure equal to that of warp size 32.

Because these applications lack control flow divergence, gangs

rarely split and 1-VWS operates exclusively in ganged mode.

However, when gangs are split on memory divergence, the

skewing of memory access returns causes a significant increase

in the number of fetch/decodes per cycle.

Figure 1 0 plots the performance of 1-VWS at different L 1

I-cache bandwidths and LO I-cache sizes. Because the diver­

gent applications traverse multiple independent control flow

paths, restricting L1 I-cache bandwidth results in a signifi­

cant performance loss. However, the inclusion of per-slice

LO I-caches, which are probed first when independent warps

fetch instructions, vastly decreases the performance loss. With

only 2 x the L 1 I-cache bandwidth of the baseline architec­

ture, the addition of small 256B LOs are able to cover most

of the bandwidth deficiency at the L l . Since they remain in

ganged operation, the warp-size insensitive and convergent

applications are insensitive to L 1 I-cache fetch bandwidth.

1 ,8
1 ,6

I _ WS 4 D I-VWS-GTO D I-VWS-LRR C I-VWS-LPC D I-VWS-LGTO � 1-vwsl

0 en .. :;; en > .; .., C � ... in - >. '" 1> � z
:E ,5 <.> '" c C 2 " ,2 " IL

It " :§. " " 0 0 0 � 'iii 'iii ',.
Z E :; E IL E E ;; (/) '1 <.) en >. .. f "- z .. � .. 0)(� .. '>. <>: " Cl "0 Cl <>: Cl :E Cl '5 z

:::i "- w en > � <>: " U .. :E .. c w)(" .. w
E "E 0:: .§ 0 :E :s .. 0:: :E .. 0 :J: <.) :J: .. " :J: Cl :E IL

Divergent Appl ications Warp-Size Insensitive Convergent Appl ications
Appl ications

Figure 1 1 : Performance (normal ized to WS 32) of warp gang­

ing with different schedulers_

I_ WS 32 D WS 4 0 I-VWS-GTO '" I-VWS-LRR 0 I-VWS-LPC � I-VWS-LGTO lID I-VWS

0 en .. " en > .; .., c � ... in - >. '" 1> � z
:E ,5 <.> � c C 2 " ,2 " IL It " % " � 0 0 0 � 'iii ',. E :; E IL E E (/) '1 >. .. 6 "-<.) en � .. f ..

"0
.. Cl .. :; .. 0)(Cl

:::i "- .. '>. > " Cl Cl > Cl :E Cl � '5 " U .. <>: en >
<>:)(.. > .. c � <>: E "E 0:: .§ 0 '" 0::

.. 0 <.) .. "
Cl :E IL

Divergent Appl ications Warp-Size Insensitive Convergent Applications
Applications

Figure 1 2: Averages fetches per cycle with different sched­

ulers_

6.3. Gang Scheduling Policies

We measured the sensitivity of perfonnance and instruction

fetch bandwidth to several different gang scheduling policies,

All gang schedulers attempt to issue up to two gangs per

cycle, and local per-slice schedulers attempt to issue on any

remaining idle slices. We examine the following policies :

1 -VWS: As described in Section 6. 1 , the gang issue scheduler

prioritizes the largest gangs first Big-Gangs-Then-Oldest

(BGTO) and per-slice schedulers are Greedy-Then-Oldest

(GTO).

I-VWS-GTO: Similar to I-VWS, except the gang issue

scheduler uses a greedy-then-oldest policy,

I-VWS-LRR: Similar to I-VWS, except both the gang issue

scheduler and per-slice schedulers use a Loose-Round-Robin

(LRR) scheduling policy.

I-VWS-LPC: Similar to I-VWS, except both the gang issue

scheduler and per-slice schedulers prioritize gangs/warps

with the lowest PC first.

I-VWS-LGTO: Similar to I-VWS, except the gang issue

scheduler prioritizes gangs with the fewest warps first Little­

Gangs-Then-Oldest (LGTO) . Per-slice schedulers use a GTO

policy,

Figure 1 1 shows that the performance of the divergent appli­

cations is sensitive to the gang scheduler choice. The lowest­

PC-first configuration results in a universal performance re­

duction across all the applications . Little-Gangs-Then-Oldest

497

1 ,8 1 _ WS 4
1 .6

I m
D I-VWS (1 gang per cycle)

;� � � � 1 1 1 � � � � ��i'�il:���
0 '" � :;; '" > .; .., c " I- in - >. N U " z :E c '" c 9 e " 0 " u.

;; " Q. " $ 0 0
0 � ' .. 'u E :g � u. � :c E (/) '? >. ' .. a. " <.) '" � � E z .. "0 z "5 .. 0)(z ::; a. <;:. <>: " Cl Cl <>: Cl :E Cl � '5 w '" > <>: " U .. :E � c W)(" /l w E "E '" 0 :E '" 1;1 :E .. 0 :J: U :J: 1;1 " J: Cl :E u.

Divergent Applications Warp-Size Insensitive Convergent Appl ications
Appl ications

Figure 1 3: Performance (normal ized to WS 32) when the num­

ber of gangs able to issue each cycle is changed_

(1-VWS-LGTO) creates a scheduling pathology on the diver­

gent applications. Prioritizing the smallest gangs first is bad

for performance because the gang issue scheduler can only

select a maximum of 2 gangs for execution each cycle; giving

the smallest ones priority can limit utilization by delaying

the execution of gangs with many warps. We also observed

that prioritizing little gangs was detrimental even when more

than two gangs could be scheduled per cycle because little

gangs block the execution of larger gangs. Figure 1 2 shows

the resulting fetch and decode requirements for different gang

scheduling policies. Although the choice of gang scheduler

has a significant effect on performance, it has little effect on

fetch/decode bandwidth. This insensitivity occurs because

gang scheduling has nothing to do with gang splitting when

gangs are split only for control flow divergence and are not

recombined. When splitting gangs on memory divergence is

enabled, the effect of scheduling on the fetch rate is much

greater.

Figure 1 3 plots performance when the number of gangs

selectable per cycle by the gang issue scheduler is set to one,

two, or unlimited (up to four) . This data shows that limiting

the gang scheduler to a single gang per cycle reduces the

performance of the divergent applications by 10% versus the

baseline of two gangs per cycle. Allowing the gang scheduler

to pick unlimited gangs per cycle results in perfonnance that

is within 1 % of two gangs per cycle. Any slices not consumed

by the gang scheduler may be used whenever possible by any

singleton warps managed by local slice schedulers, We choose

to limit the gang scheduler to two gangs per cycle to balance

performance and scheduler complexity.

6.4. Gang Reformation Policies

Figures 1 4 and 1 5 plot perfonnance and instruction fetches

per cycle when the following policies are used to reform gangs

after they have been split:

E-VWS: As described in Section 6, 1 , gangs are reformed on

an opportunistic basis only.

E-VWS-Sync<xx>: Similar to E-VWS, except that when

warps reach a compiler-inserted call-return stack sync in­

struction, they wait for recombination. These instructions are

1 .8
1 .6

I _ WS 4 o E-VWS o E-VWS-Sync1 0 " E-VWS-Sync50 o E-VWS-Sync1001

c Cl oil
.!

Cl > .; M C in � ;.. N <l 1:: Z
:!! c u c C? 2 .. 0 .. IL � .. � .. .!i 0 0 0 � 'iij 'iij 'u E :s E IL E E '" l? ;.. Il. .. U Cl .c oil i z .. "0 .. z .. :; .. c >< z .. « .. Cl Cl « Cl Cl :c ::; Il. Cl > :!! I!! « .. <3 w w >< :!! .. c E w

E "E 0: .§ 0 :!! ." 0:
:!! .. :z: u :z: 0 .. :z: Cl :!! IL

Divergent Appl ications Wa rp-Size Insensitive Convergent Appl ications
Appl ications

Figure 1 4: Performance (normal ized to WS 32) of elastic gang

reformation tech niques_
I -ws 32 ows 4 0 E-VWS " E-VWS-Sync10 0 E-VWS-Sync50 '" E-VWS-Sync1 0�

1 .8
1 .6
1 .4
1 .2

1
0.8
0.6
0.4
0.2

0

I - WS 4 o l-VWS o l-VWS-GroupMem " 1-VWS-lmpatientMem I

� � � � � � � � � � � m � � � � m �
c Cl oil .. Cl � .; M C in � ;.. N <l 1:: Z
:!! c u '" c 'i' 2 .. 0 .. IL � .. Q. .. .!i 0 0 0 � 'iij 'iij 'u E :s E IL E E E '" u ;.. � Z Il. .. U Cl .c oil .. "0 .. z .. " .. c >< Z .. « .. Cl Cl Cl Cl :c ::; Il. >. Cl > « :!! I!! « .. <3 .. w .. c w >< � .. w

E "E 0: :!! .§ 0 :!! ." 0:
:!! C; 0 :z: u :z: :z: :!! IL

Divergent Applications Warp-Size Insensitive Convergent Applications
Applications

Figure 1 6: Performance (normal ized to WS 32) of different

gang spl itting pol icies_

llll1l l llllLlll i1 I ·
w

"' "w" " '-�' . ' ���, •• m " ' _�","�.ml

.. >< � .2 �, " en :c � > � .§ � � � � " 0 0 0 � � � 8 � j 8 �
Divergent Applications Warp-Size Insensitive Convergent Appl ications

Appl ications

Figure 1 5: Average fetches per cycle with different gang refor­

mation techniques_

already inserted, typically at basic block post-dominators, to

enforce the NVIDIA call-return stack architecture_ <XX>
indicates how many cycles a warp will wait at the sync point

for potential reganging.

Forcing warps to wait at control flow post-dominator points

can potentially improve gang reformation, leading to more or

larger gangs and reduced front-end energy while hopefully

resulting in minimal performance degradation. Figures 1 4

and 1 5 demonstrate that waiting at sync points results in a per­

formance loss on our divergent applications_ We see minimal

decrease in the number of fetches per cycle as waiting time

is increased, and any energy efficiency gained from this re­

duction would be more than offset by the loss in performance_

The warp-size insensitive and convergent applications contain

fewer compiler-inserted sync points, experience little or no

control flow divergence, and may spend much or all of their

execution time fully ganged. As a result, their performance is

largely unaffected by wait time at infrequent sync points . Thus

we conclude that forcing warps to wait at post-dominators pro­

vides little to no benefit; most of the reduction in fetch pressure

is captured by opportunistic reganging in E-VWS .

6.S. Gang Splitting Policies

Figure 1 6 explores the use of the following gang splitting

policies without any gang reformation:

I-VWS: As described in Section 6. 1 . Warps are split only on

control flow divergence_

498

Divergent Applications Warp-Size Insensitive
Applications

Convergent Applications

Figure 1 7: Average fetches per cycle using different gang spl it­

ting policies_

1-VWS-GroupMem: Warp ganging similar to 1-VWS except

gangs are also split on memory divergence. As memory

results return for a gang, all warps in a gang that are able to

proceed based on the newly returned value form a new gang.

Gangs are never recombined_

I-VWS-ImpatientMem: Warp ganging similar to I-VWS­

GroupMem except gangs that experience any memory diver­

gence are completely subdivided into individual warps.

As in Section 6 . 1 , Figure 16 demonstrates that splitting

on memory latency divergence can have a small perfor­

mance advantage on some divergent applications, but has

a large performance cost on convergent ones_ Minimizing

the amount of splitting that occurs on memory divergence

(1-VWS-GroupMem) gains back some of the performance lost

for Game 2 but creates problems in Radix Sort. Overall, split­

ting on memory divergence is a net performance loss due to

its negative effect on convergent applications .

Figure 1 7 plots the resulting number of instructions fetched

per cycle when different gang splitting policies are used. This

data demonstrates that even though splitting on memory diver­

gence may be a small performance win for divergent applica­

tions, the number of instructions fetched increases greatly as a

result, by 4 1 % and 69% for 1-VWS-GroupMem and 1-VWS­

ImpatientMem, respectively.

� .� � �
- � o � � � .��------------------------�� � .!!! 1.20
E £
,, � z �

Time

Gang Size
.8
.7
.6
.5

4

. Independent

Figure 1 8: Gang sizes versus time for I-VWS.

6.6. Gang Size Distribution

Figure 1 8 visualizes how gang sizes change over time for

two example divergent workloads, GamePhysics and Lighting.

Each warp assigned to the SM on any given cycle is classified

according to the size of the gang to which it belongs. For

example in the Lighting application, execution begins with

120 4-wide warps assigned to the SM. The black bar at cycle 0

indicates that all warps start out in their original gangs of size 8 .

As time progresses, the original gangs split apart into smaller

gangs until eventually most warps in the SM are executing

independently. In contrast, GamePhysics exhibits much more

structured divergence. The SM begins execution with 300

warps all in their original gangs. Over time, the warps split

in two (the grey color in the GamePhysics graph represents

warps participating in a gang of 4) . One half of the gang

exits , while the other half continues executing in lock step.

These two plots illustrate how 1-VWS reacts to different kinds

divergence. Most of the divergent workloads studied react

similar to Lighting. Similar plots for E-VWS show gangs

splitting and reforming as time progresses . The plots collected

for the convergent applications show that warps stay in their

original gang throughout execution.

6.7. Area Overheads

Table 2 presents an estimate of the area required to implement

I-VWS in a 40nm process. Column two presents the raw area

estimate for each 1-VWS component, while columns three

and four present a rolled-up incremental SM area increase

for 4-wide and 8-wide warps, respectively. We model the L l

I-cache using CACTI [36] at 40nm. The LO I-cache, decoded

I-Buffers, and the gang table are small but dominated by the

storage cells required to implement them. We estimate the

area of these structures by using the area of a latch cell from

the NanGate 45nm Open Cell library and scaling it to 40nm.

We multiply the resulting cell area (2 . 1 }1m2) by the number

of bits and a factor of 1 .5 to account for area overheads in­

cluding control logic . For the per-slice scoreboards, we use a

larger FlipFlop cell (3 .6}1m2 scaled to 40nm) from the Nan­

Gate library and 3 x area overhead factor to account for the

comparators necessary for an associative lookup. Compared

to the scoreboard described in [9] , ours has fewer bits and

noticeably less area. Finally, to estimate the area cost of the

additional control logic required for slicing the SIMD datap­

ath, we examine published literature on the percentage of total

499

Table 2: Area overhead estimates.

Component Additional SM Area
Component Area 4-wide warps S-wide warps

Single-ported Ll I-cache (64KB) 0.OS7mm"
Dual-ported L l I-cache (64KB) 0 . 1 94mm" O . I OSmmL O . I OSmmL
LO I-cache (256B) 0.006mm" 0.052mmL 0.026mmL
Decoded I-Buffers (4Kbits) O .01 3mm" 0 . 1 03mmL 0.052mmL
Gang Table (l 2S entries) 0.026mm" 0.026mmL 0.026mmL
Scoreboard (l SOO bits) 0 .01 9mm" 0 . 1 54mmL O.077mmL
Additional control 0 . 1 60mm" 1 .2S0mmL 0.640nunL
Total S M area increase 1 .7mmL 0.93mmL
Percent SM area increase 1 1 % 6%

I Total GPU area increase 25.8mm" l 3 .9mm"
I Percent GPU area increase 5% 2.5%

core area other processors devote to control [34, 4, 2 1 , 20] .

Based on these studies and the high datapath densities found

in GPUs, we estimate that 1 % of the Fermi SM area (l 6mm2)

is devoted to the datapath control logic that needs to be repli­

cated in each slice. In total, we estimate that I-VWS adds

approximately 1 1 % and 6% to the area of an SM for 4-wide

and 8-wide warps, respectively. For a Fermi-sized 15 SM GPU

(529mm2) , 1-VWS adds approximately 5 % and 2 .5% more

area for 4-wide and 8-wide warps, respectively.

7. Related Work

This section first presents a quantitative comparison of 1-VWS

against two previously proposed techniques which address

the effect of branch divergence on GPUs. It then presents a

qualitative characterization of our work and prior art in the

branch and memory divergence mitigation design space.

7.1. Quantitative Comparison

We compare I-VWS to two previously proposed divergence

mitigation techniques : Thread Block Compaction (TBC) [1 2]

and Dynamic Warp Formation (DWF) [1 1] . This data was col­

lected using TBe' s published simulation infrastructure [lO] ,

which is based on GPGPU-Sim 2.x [3] . We run TBC and

DWF with the exact configuration specified in [l0] and im­

plement 1-VWS with a warp size of 4 on top of their infras­

tructure. Figure 19 plots the result of this study on 5 divergent

applications taken from the TBC simulation studies : raytrac­

ing (NVRT) [2] , face detection (FCDT) [2 1] , breadth first

search (BFS) [8] , merge sort (MGST) [8] , and nearest neigh­

bor (NNC) [8] . NVRT does not run when using DWF [1 2] .

We chose these applications because their divergence behavior

highlights the advantages of 1-VWS . We also ran 1-VWS on

the rest of the applications in the TBC paper and observed

little performance difference. On the five applications , 1-VWS

achieves an average 34% and 15% performance improvement

over the baseline 32-wide warp and TBC respectively. The

increased issue bandwidth and scheduling flexibility of 1-VWS

enables divergent applications to better utilize the GPu.

1 .5

0.5

o
BFS FCDT MGST NNC NVRT

Figure 1 9: Performance (normalized to the 32-wide warp base­

l i ne) using the released TBC infrastructu re [1 0] .

7.2. Qualitative Comparison

Table 3 presents a qualitative characterization of previously

proposed divergence mitigation techniques versus small warps

and 1-VWS . We classify previous work into three categories:

(1) techniques that dynamically form or compact warps to

regain SIMD efficiency [1 1 , 12 , 26, 29, 30] ; (2) techniques that

subdivide warps in the presence of memory and control flow

divergence to expose more thread level parallelism [24, 33] ;

and (3) techniques that allow the interleaved execution of

multiple branch paths within a warp by scheduling multiple

paths from the control flow stack [3 1 , 9] .

The fundamental characteristic that sets 1-VWS and the use

of small warps apart from prior work is the ability to concur­

rently issue many more unique PCs by scaling and distributing

instruction fetch bandwidth. Additionally, 1-VWS can seam­

lessly adapt to memory latency divergence by breaking gangs.

Dynamic Warp Subdivision (DWS) is also able to break lock­

step warp execution on memory divergence [24] . However,

DWS does this with a loss of SIMD efficiency and requires

additional entries to be added to a centralized warp scheduler

for each subdivided warp. In contrast, 1-VWS allows smaller

warps to continue independently, without losing SIMD ef­

ficiency; management of these smaller warps is distributed

among many smaller scheduling entities.

While formation and compaction techniques increase SIMD

efficiency, they pay for this increase with a reduction in avail­

able thread level parallelism, since forming and compacting

warps decreases the number of schedulable entities . This de­

crease in TLP degrades the SM's ability to tolerate latencies .

Conversely, subdivision and multipath stack techniques can

increase latency tolerance but are limited by the number of

scheduling entities in a monolithic warp scheduler and the

number of concurrent entries on the call return stack.

All of the techniques perform well on convergent applica­

tions with the exception of small warps which suffer from

memory convergence slip. We consider two classes of diver­

gent applications : those that have a limited number of unique

control flow (CF) paths and those that have many unique con­

trol flow paths. All of the proposed techniques perform well

on applications that have a limited number of control flow

paths. However, only smaller warps and 1-VWS can main­

tain good performance when the number of unique control

flow paths is high. Compaction and formation techniques re­

quire candidate threads to be executing the same instruction

(PC). Subdivision and mUltipath stack techniques increase

500

Table 3: Characterization of divergence mitigation techniq ues.

Characteristic Forml Subdivide Multipath Small I-VWS
Compact Warps

PCs per Cycle I I I Many Many
Mem. Divergence Adaptive No Yes No Yes Yes
Latency Tolerance Low Limited Limited High High
Performance

Convergent apps High High High Low High
Divergent apps, limited CF High High High High High
Divergent apps, many CF Limited Limited Limited High High

Energy Efficiency
Convergent apps High High High Low High
Divergent apps, limited CF High High High Medium Medium
Divergent apps, many CF Low Low Low High High

the number of schedulable entities in the SM, but do not im­

prove lane utilization and become limited by the number of

entries in a large, centralized structure when the number of

unique control flow paths is large. Energy efficiency largely

follows performance. On diverged applications with limited

control flow paths, small warps and 1-VWS lose some en­

ergy efficiency by fetching and decoding multiple times from

smaller distributed fetch/decode structures, while prior work

fetches one instruction from a larger structure. However, on

divergent applications with many control flow paths, prior

work inefficiently fetches one instruction repeatedly from a

larger structure, while small warps and 1-VWS distribute this

repeated fetching over smaller structures . The smaller warps

in I-VWS make it the only technique which improves both

SIMD efficiency and thread level parallelism, while still ex­

ploiting the performance and energy efficiencies presented by

convergent and warp-size insensitive code.

7.3. Further Related Work

Other architectures have been proposed which support nar­

row SIMT execution, but lack the ganging features of 1-
VWS [1 4, 16 , 1 8] . Simultaneous Branch and Warp Interleav­

ing explores warp reconvergence and scheduling techniques

using a modified SIMD pipeline that is able to execute two

different instructions on the same cycle without scaling the

fetch/decode bandwidth [5] . Meng et al. describe an approach

called Robust SIMD that determines whether an application

would be best served with a given SIMD width [23] . Wang

et al . describe a "Multiple-SIMD, Multiple Data (MSMD)"

architecture that supports flexible-sized warps with multiple si­

multaneous issue from different control-flow paths [35] . Lash­

gar et al . perform an investigation on the effects of warp size

on performance [17] .

8. Conclusion

This paper explores the design space of a GPU SM with the

capability to natively issue from multiple execution paths in

a single cycle. Our exploration concludes that convergent

applications require threads to issue in lock-step to avoid detri­

mental memory system effects . We also find that the ability to

execute many control flow paths at once vastly decreases a di­

vergent application's sensitivity to reconvergence techniques .

We propose Variable Warp Sizing (VWS) which takes ad­

vantage of the many control flow paths in divergent applica­

tions to improve performance by 35% over a 32-wide machine

at an estimated 5 % area cost when using 4-wide warps . An

8-wide design point provides most of that performance benefit,

while increasing area by only 2 .5%. VWS evolves GPUs into

a more approachable target for irregular applications by pro­

viding the TLP and SIMD efficiency benefits of small warps,

while exploiting the regularity in many existing GPU applica­

tions to improve performance and energy efficiency.

Acknowledgements

The authors thank the anonymous reviewers for their insightful

feedback. This work was supported by US Department of

Energy contracts LLNS B59986 1 and LLNS B609478 .

References

[I] T. M. Aamodt, "GPGPU-Sim 3 . x Manual," http://gpgpu- sim.org/
manuallindex.php5/GPGPU- Sim_3 .x_Manual, University of British
Columbia, 20 1 2 .

[2] T . Aila and S . Laine, "Understanding the Efficiency o f Ray Traversal
on GPU s," in Proceedings of the Conference on High Petformance
Graphics (HPG), June 2009, pp. 145-149.

[3] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, "Analyzing
CUDA Workloads Using a Detailed GPU Simulator," in Proceedings
of the International Symposium on Petformance Analysis of Systems
and Software (ISPASS), April 2009, pp. 1 63-174.

[4] J. Baxter, "Open Source Hardware Development and the OpenRlSC
Proj ect," Ph.D. dissertation, KTH Computer Science and Communica­
tion, 201 1 .

[5] N . Brunie, S . Collange, and G . Diamos, "Simultaneous Branch and
Warp Interweaving for Sustained GPU Performance," in Proceedings
of the International Symposium on Computer Architecture (ISCA), June
20 12, pp. 49-60.

[6] M. Burtscher, R. Nasre, and K. Pingali, "A Quantitative Study of
Irregular Programs on GPUs," in Proceedings of the International
Symposium on Workload Characterization (llSWC), November 2012,
pp. 1 4 1 -1 5 1 .

[7] M . Burtscher and K . Pingali, "An Efficient CUDA Implementation of
the Tree-Based Barnes Hut N-Body Algorithm," in GP U Computing
Gems, Emerald Edition, W. Hwu, Ed. Elsevier, 201 1 , pp. 75-92.

[8] S . Che, M. Boyer, J . Meng, D . Tarj an, J . W. Sheaffer, S.-H. Lee, and
K. Skadron, "Rodinia: A Benchmark Suite for Heterogeneous Com­
puting," in Proceedings of the International Symposium on Workload
Characterization (llSWC), October 2009, pp. 44-54.

[9] A. ElTantawy, J. W. Ma, M. O' Connor, and T. M. Aamodt, "A Scalable
Multi-Path Microarchitecture for Efficient GPU Control Flow," in
Proceedings of the International Symposium on High-Petformance
Computer Architecture (HPCA), February 2014, pp. 24S-259.

[1 0] W. W. L. Fung, "Thread Block Compaction Simulation Infrastructure,"
http://www.ece.ubc.ca/-wwlfung/code/tbc- gpgpusim.tgz, University
of British Columbia, 2012 .

[1 1] w. w. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, "Dynamic
Warp Formation and Scheduling for Efficient GPU Control Aow," in
Proceedings of the International Symposium on Microarchitecture
(MICRO), December 2007, pp. 407-420.

[1 2] W. Fung and T. Aamodt, 'Thread Block Compaction for Efficient
SIMT Control Aow," in Proceedings of the International Symposium
on High-Petformance Computer Architecture (HPCA), February 201 1 ,
pp. 25-36.

[1 3] M. Gebhart, D . R. Johnson, D . Tarj an, S . W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, "Energy-Efficient Mechanisms for Man­
aging Thread Context in Throughput Processors," in Proceedings of
the International Symposium on Computer Architecture (ISCA), June
201 1 , pp. 235-246.

[1 4] S . Keckler, W. Dally, B . Khailany, M. Garland, and D. Glasco, "GPUs
and the Future of Parallel Computing," IEEE Micro, vo!. 3 1 , no. 5, pp.
7- 17, September/October 20 1 1 .

[1 5] Khronos Group, "OpenCL," http://www.khronos .orglopencl/.

501

[1 6] R. Krashinsky, C. Batten, M. Hampton, S . Gerding, B . Pharris,
J. Casper, and K. Asanovi6, "The Vector-Thread Architecture," in
Proceedings of the International Symposium on Computer Architecture
(ISCA), June 2004, pp. 52-63.

[1 7] A. Lashgar, A. Baniasadi, and A. Khonsari, "Towards Green GPUs:
Warp Size Impact Analysis," in International Green Computing Con­
ference (IGCC), June 20 1 3 , pp. 1-6.

[I S] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D . Lockhart, C. Batten,
and K. Asanovic, "Exploring the Tradeoffs Between Programmability
and Efficiency in Data-parallel Accelerators," in Proceedings of the
International Symposium on Computer Architecture (ISCA), June 20 1 1 ,
pp. 1 29-140.

[1 9] E. Lindholm, J. Nickolls, S . Oberman, and J. Montrym, "NVIDIA
Tesla: A Unified Graphics and Computing Architecture," IEEE Micro,
vo!. 2S, no. 2, pp. 39-55, March/April 200S.

[20] A. Mahesri, "Tradeoffs in Designing Massively Parallel Accelerator
Architectures," Ph.D. dissertation, University of Illinois at Urbana­
Champaign, 2009.

[2 1] A. Mahesri, D . Johnson, N. Crago, and S. J. Patel, "Tradeoffs in De­
signing Accelerator Architectures for Visual Computing," in Proceed­
ings of the International Symposium on Microarchitecture (MICRO),
November 2008, pp. 1 64-175.

[22] M. Mendez-Lojo, M. Burtscher, and K. Pingali, "A GPU Implementa­
tion of Inclusion-based Points-to Analysis," in Proceedings of the Sym­
posium on Principles and Practice of Parallel Programming (PPOPP),
August 20 12, pp. 1 07-1 1 6 .

[23] J. Meng, J. Sheaffer, and K. Skadron, "Robust SIMD : Dynamically
Adapted SIMD Width and Multi-Threading Depth," in Proceedings
of the International Parallel and Distributed Processing Symposium
(IPDPS), May 20 12, pp. 1 07-1 1 S .

[24] J . Meng, D . Tarj an, and K . Skadron, "Dynamic Warp Subdivision for
Integrated Branch and Memory Divergence Tolerance," in Proceedings
of the International Symposium on Computer Architecture (ISCA), June
20 10, pp. 235-246.

[25] D. Merrill, M. Garland, and A. Grimshaw, "Scalable GPU Graph
Traversal," in Proceedings of the Symposium on Principles and Practice
of Parallel Programming (PPOPP), August 20 12, pp. 1 1 7-1 2 8 .

[26] Y. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, "Improving GPU Performance via Large Warps and
Two-Level Warp Scheduling," in Proceedings of the International
Symposium on Microarchitecture (MICRO), December 201 1 , pp. 30S-
3 1 7 .

[27] "NVIDIA CUDA C Programming Guide v4.2," NVIDIA, 2012.
[28] "NVIDIA' s Next Generation CUDA Compute Architecture:

Kepler GK- l l O," http://www.nvidia.ca/contentlPDFlkepler/
NVIDIA- Kepler- GKl l O- Architecture- Whitepaper.pdf, NVIDIA,
20 1 2 .

[29] M. Rhu and M. Erez, "CAPRI: Prediction o f Compaction-adequacy for
Handling Control-divergence in GPGPU Architectures," in Proceed­
ings of the International Symposium on Computer Architecture (ISCA),
June 20 12, pp. 6 1 -7 1 .

[30] M . Rhu and M. Erez, "Maximizing SIMD Resource Utilization in
GPGPUs with SIMD Lane Permutation," in Proceedings of the Inter­
national Symposium on Computer Architecture (ISCA), June 20 1 3 , pp.
356-367 .

[3 1] M. Rhu and M. Erez, "The Dual-Path Execution Model for Efficient
GPU Control Flow," in Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA), February 20 1 3 ,
pp. 235-246.

[32] T. G. Rogers, M. O ' Connor, and T. M. Aamodt, "Cache-Conscious
Wavefront Scheduling;' in Proceedings of the International Symposium
on Microarchitecture (MICRO), December 20 12, pp. 72-83 .

[33] D. Tarj an, J. Meng, and K . Skadron, "Increasing Memory Miss Toler­
ance for SIMD Cores," in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis
(SC), November 2009.

[34] "Diamond Standard I OSMini Controller: A Small, Low-Power, Cache­
less RISC CPU," http://ip.cadence.comluploads/pdf/I OSMini.pdf, Ten­
silica.

[35] Y. Wang, S. Chen, J . Wan, J. Meng, K. Zhang, W. Liu, and X. Ning,
"A Multiple SIMD, Multiple Data (MSMD) Architecture: Parallel Exe­
cution of Dynamic and Static SIMD Fragments;' in Proceedings of the
International Symposium on High-Petformance Computer Architecture
(HPCA), February 20 1 3 , pp. 603-6 14.

[36] S . Wilton and N. Jouppi, "CACTI: An Enhanced Cache Access and
Cycle Time Model," IEEE lournal of Solid-State Circuits, vo!. 3 1 ,
no. 5 , pp. 677-688, May 1 996.

