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Abstract 

This paper studies the effect of warp sizing and scheduling 

on peiformance and efficiency in GP Us. We propose Vari­

able Warp Sizing (VWS) which improves the peiformance of 

divergent applications by using a small base warp size in the 

presence of control flow and memory divergence. When appro­

priate, our proposed technique groups sets of these smaller 

warps together by ganging their execution in the warp sched­

uler, improving peiformance and energy efficiency for regu­

lar applications. Warp ganging is necessary to prevent per­

formance degradation on regular workloads due to memory 

convergence slip, which results from the inability of smaller 

warps to exploit the same intra-warp memory locality as larger 

warps. This paper explores the effect of warp sizing on control 

flow divergence, memory divergence, and locality. For an 

estimated 5% area cost, our ganged scheduling microarchitec­

ture results in a simulated 35% peiformance improvement on 

divergent workloads by allowing smaller groups of threads to 

proceed independently, and eliminates the peiformance degra­

dation due to memory convergence slip that is observed when 

convergent applications are executed with smaller warp sizes. 

1. Introduction 

Contemporary Graphics Processing Units (GPUs) group col­

lections of scalar threads into warps [ 1 9] or wavefronts [ 1 5 ]  

and execute them in  Single Instruction Multiple Thread 

(SIMT) fashion. The number of threads in a warp is defined by 

the machine architecture. Grouping threads into warps amor­

tizes the fetch, decode, and scheduling overhead associated 

with managing thousands of threads on a single Streaming 

Multiprocessor (SM) core. However, grouping threads into 

warps creates performance challenges when threads within 

the same warp execute different control flow paths (control 

flow divergence) or access non-contiguous regions in memory 

(memory divergence). 
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Application 

(a) Performance of 165 real world applications using a warp size of 4, 
normalized to a warp size of 32. 
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(b) Performance versus warp size using a representative subset of applica­
tions presented in 1 a. These applications are described in more detail in 
Section 5. 

Figure 1 :  A survey of performance versus warp size. 

Figure 1 plots the Instructions Per Cycle (IPC) resulting 

from shrinking warp size from 32 threads to 4 threads while 

keeping the machine's  total thread-issue throughput and mem­

ory bandwidth constant. Figure la  shows the effect of shrink­

ing the warp size on a large suite of real world applications, 

while Figure 1b  plots the harmonic mean performance of 1 5  

applications which are selected to represent the 3 classes of 

workloads we study throughout this paper. We classify a work­

load as being divergent when performance increases as the 

warp size decreases,  convergent when performance decreases 

as the warp size decreases, and warp-size insensitive when per­

formance is independent of warp size. Figure 1 demonstrates 

that application performance is not universally improved when 

the warp size is decreased. This data indicates that imposing 

a constant machine-dependent warp size for the varied work­

loads running on GPUs can degrade performance on divergent 

applications, convergent applications , or both. 

A large set of existing, highly regular GPU applications do 

not see any performance improvement at a smaller warp size. 

However, the divergent applications which do see a perfor­

mance improvement represent a class of workloads that are 

important for future GPUs. Prior work such as [6, 7 ,  22, 25] 

has shown great potential for increasing the performance and 

energy efficiency of these types of workloads by accelerating 

them on a GPU. These applications include future rendering al­

gorithms such as ray tracing, molecular dynamics simulations, 
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Figure 2: Normalized IPC (top) and the average number of ac­

tive thread lanes on cycles when an i nstruction is issued (bot­

tom). Al l  configurations can issue 32 thread i nstructions per 

cycle.  

advanced game physics simulations, and graph processing 

algorithms among many others. The goal of our proposed 

architecture is to evolve GPUs into a more approachable target 

for these parallel, but irregular, applications while maintaining 

the efficiency advantages of GPUs for existing codes. 

Figure 2 plots the performance and resulting SIMT lane 

utilization of different warp sizes for each of the applications 

we study. Control-divergent applications have a low utiliza­

tion rate at a warp size of 32 and see utilization increase as 

the warp size is decreased. These workloads are able to take 

advantage of executing different control flow paths simultane­

ously by using a smaller warp size. Convergent applications 

have a high lane utilization rate at a warp size of 32  and see 

their utilization decrease as the warp size is reduced. This 

reduction in utilization occurs because of increased pressure 

on the memory system caused by destroying horizontal lo­

cality across  a larger warp. Horizontal locality occurs when 

threads within a warp or thread block access similar memory 

locations. Modern GPUs coalesce memory requests from the 

same warp instruction that access the same cache line. By al­

lowing smaller groups of threads to proceed at different rates, 

the locality that existed across  the same static instruction is 

spread over multiple cycles, causing additional contention for 

memory resources . We call this effect memory convergence 

slip. 

In addition to the performance benefit convergent applica­

tions experience with larger warps, convergent and warp-size 

insensitive applications gain energy efficiency from executing 

with larger warps .  A larger warp size amortizes the energy 

consumed by fetch, decode, and warp scheduling across more 

threads .  When there is no performance benefit to executing 

490 

with smaller warps, the most energy-efficient solution is to 

execute with as large a warp size as possible. 

Our paper first examines the effect of providing a variable 

warp size, which can be static ally adjusted to meet the perfor­

mance and energy efficiency demands of the workload. We 

then propose Variable Warp Sizing, which gangs groups of 

small warps together to create a wider warp and dynamically 

adjusts the size of each gang running in the machine based on 

the observed divergence characteristics of the workload. 

Prior work such as [ 1 1 , 12 , 5 , 29, 30, 26, 3 1 , 9 , 24] proposes 

various techniques to improve Single Instruction Multiple Data 

(SIMD) efficiency or increase thread level parallelism for di­

vergent applications on GPUs. However, the use of small 

warps is the only way to improve both SIMD efficiency and 

thread level parallelism in divergent code. These prior works 

focus on repacking, splitting, and scheduling warps under 

the constraint of a fixed-size warp. Our work approaches the 

problem from the other direction. We simplify the accelera­

tion of divergent workloads by starting with a small warp size 

and propose a straightforward ganging architecture to regain 

the efficiencies of a larger warp. Prior work can improve the 

performance of divergent applications when the total number 

of unique control paths is limited and the number of threads 

traversing each respective path is large. Starting with smaller 

warps allows our microarchitecture to natively execute many 

more concurrent control flow paths, removing this restriction. 

Section 7 presents a more detailed quantitative and qualitative 

comparison to prior work. 

In this paper, we make the following contributions : 

• We characterize the performance, control flow/memory di­

vergence, and fetch/decode effects of different warp sizes on 

a large number of graphics and compute GPU workloads . 

- We demonstrate that reducing the warp size of modern 

GPUs does not provide a universal performance advantage 

due to interference in the memory system and an increase 

in detrimental scheduling effects . 

- We explore the design space uncovered by enabling a dy­

namic, variable warp size. We quantify the effects of 

scheduling and gang combination techniques when the ma­

chine has the flexibility to issue from multiple control flow 

paths concurrently. 

- We propose a novel warp ganging microarchitecture that 

makes use of a hierarchical warp scheduler, enabling di­

vergent applications to execute multiple control flow paths 

while forcing convergent ones to operate in lock-step. 

2. Baseline Architecture 

Figure 3 depicts our model of a modern GPU, consisting of 

several streaming mUltiprocessor cores (SMs) connected to 

the main memory system via an interconnection network. This 

paper studies the detailed design of an SM. 

Our pipeline decouples the fetch/decode stages from the 

issue logic and execution stage by storing decoded instructions 

in per-warp instruction buffers (similar to the pipeline model 
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Figure 3: Basel ine GPU arch itecture. 

in GPGPU-Sim [ 1 ] ) .  Each warp stores one decoded instruction 

in the instruction buffer. Each instruction entry in the buffer 

also contains a valid bit, which is set when an instruction is 

filled into the buffer, and a ready bit, which is  set when the 

in-order scoreboard indicates the instruction is able to execute. 

The front-end of each SM includes an L1 instruction cache 

which is probed once per cycle by the warp fetch scheduler. 

The warp fetch scheduler determines which empty entry in the 

instruction buffer is to be filled. On the execution side, a warp 

issue scheduler selects one decoded, ready instruction to issue 

each cycle. The register file consists of one bank per lane and 

the datapath executes 32 threads per cycle in SIMT fashion. 

Our memory system is similar to that used in modern Ke­

pier [28] GPUs. Each SM has a software-managed scratchpad 

(known as shared memory in CUDA [27]) ,  an L l  data cache, 

and a texture unit. Access to the memory unit is shared by 

all lanes.  To reduce the number of memory accesses gener­

ated from each warp, GPUs coalesce memory requests into 

cache line sized chunks when there is spatial locality across  

the warp. A single instruction that touches only one cache 

line will generate one transaction that services all 32 lanes . 

Our main memory system includes a variable latency, fixed 

bandwidth DRAM model. 

Program Counters (PCs) and control flow divergence in­

formation for each warp are stored on a compiler-managed 

call return stack (CRS) .  The stack' s  operation is similar to 

the post dominator reconvergence stack presented by Fung et 

al. [ 1 1 ] .  Our baseline SM is heavily multithreaded and is able 

to schedule up to 32 warps ( 1 024 threads) . 

3. Trade-offs of Warp Sizing 

This section details the effect of warp size on both the memory 

system and SM front-end. This data motivates an architecture 

that is able to dynamically vary warp size. 

3.1. Warp Size and Memory Locality 

Figure 4 shows the effect warp size has on L 1  data cache 

locality in terms of hits , misses, and Miss Status Holding Reg­

ister (MSHR) merges Per Thousand Instructions (PKI) for the 

applications we study. As the warp size is decreased, some 

applications see an increase in the number of L1 data cache ac-
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cesses. This phenomenon occurs when memory accesses that 

were coalesced using a larger warp size become distributed 

over multiple cycles when smaller warps are used, an effect 

we term memory convergence slip. 

In the divergent applications, memory convergence slip does 

not significantly degrade performance for two reasons. First, 

an application that is control flow diverged has less opportunity 

for converged accesses because fewer threads are participating 

in each memory instruction. Second, even when convergence 

slip occurs on a divergent application, as it does in CoMD, 

ObjClassifier, and Ray tracing, it also often results in more 

cache hits , mitigating the effect on performance. While the 

control-divergent Ray tracing application also sees an increase 

in misses, the performance cost of these misses is offset by 

the increased lane utilization observed with smaller warps.  

In the convergent applications, memory convergence slip 

has a greater effect on performance. All of these applications 

see both an increase in the total number of memory accesses 

and cache misses at smaller warp sizes. Radix Sort and Game 

2 also see an increase in MSHR merges . The loss in throughput 

caused by additional traffic to the L2 data cache and DRAM in 

these applications is not offset by any increase in lane utiliza­

tion, as these applications already have high SIMT utilization 

at larger warp sizes.  Perhaps not surprisingly, L 1  locality for 

the warp-size insensitive applications is insensitive to the warp 

size. 

3.2. Warp Size and SM Front-end Pressure 

Figure 5 plots the average number of instructions fetched per 

cycle at various warp sizes .  Decreasing the warp size places 

increasing pressure on the SM's  front-end. Convergent and 

warp-size insensitive applications see a nearly linear increase 

in fetch requests as the warp size is reduced. This data indi­

cates that a fixed 4-wide warp architecture increases front-end 

energy consumption for non-divergent applications, even if the 

performance does not suffer. While divergent applications also 

see increased front-end activity, the ability of the architecture 

to exploit many more independent control paths is fundamen­

tal to increasing the performance of these applications. Our 

design focuses on creating a flexible machine that is able to 

expand and contract the size of warps executing in the sys­

tem. The best warp size for a given application balances the 

demands for independent control flow with the limitations due 

to memory convergence slip. 

4. Variable Warp Sizing 

This section describes the high level operation of Variable 

Warp Sizing, discusses the key design decisions, and details 

the operation of each architectural component. We selected 

four threads as the minimum warp size for three reasons : ( 1 )  

graphics workloads commonly process threads i n  groups of 

four known as quads, (2) the performance opportunity for the 

compute workloads we examined reaches diminishing returns 

at warp sizes smaller than four, and (3) the area overhead rises 
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Figure 5: Average instructions fetched per cycle.  Fetch band­

width is scaled to match issue bandwidth for each warp size. 

notably at warp sizes smaller than four. We discuss the area 

trade-offs of different warp sizes in Section 6 .7 .  

4.1.  High-level Operation 

The goal of VWS is to create a machine that is able to dy­

namically trade off MIMD-Iike performance with SIMD-Iike 

efficiencies depending on the application. Our proposed vari­

able warp sized machine shrinks the minimum warp size to 

four threads by splitting the traditional GPU datapath into 

eight unique slices . Each slice can fetch, decode, and issue 

instructions independent of other slices . Figure 6 presents 

the microarchitecture of our proposed design. Each slice is 

static ally assigned threads in a linear fashion: threads 0-3 are 

assigned to slice 0, 4-7 to slice 1 ,  and so on. Threads cannot 

migrate between slices. 

VWS does not change the number of register file banks 

in the SM or impose any additional communication between 

them. As in our baseline, each four-lane slice of the datapath 

receives its own set of four register file banks (0 in Figure 6). 

VWS requires no changes to the memory unit (f), which 

includes the shared scratchpad memory, Ll data cache, and 

texture cache. All memory requests generated by any slices in 

the same cycle are presented to the memory unit as a single 32-

thread access in the same manner as when executing 32-wide 

warps.  The coalescing unit also operates in the same fashion 

as the baseline; multiple threads accessing the same cache line 

in the same cycle generate only one memory request. 
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To facilitate warp sizes greater than four, we introduce the 

warp ganging unit (0), which is able to override local per-slice 

fetch/decode (e) and issue (e) decisions. The gang front­

end (0) performs instruction fetch and decode once for all 

small warps participating in a gang. The gang issue scheduler 

enforces lock-step execution of all slices participating in a 

given gang. The warp ganging unit is discussed in more detail 

in Section 4.2 .  

When VWS is operating in ganged-only mode, the per-slice 

front-end logic (f) and warp issue scheduler (0) are disabled 

to save energy. When operating in slice-only mode, each 

SM slice uses its independent front-end to fetch and decode 

instructions. When both gangs and independent warps are 

present in the system at the same time, gangs are given both 

fetch and issue priority. This policy ensures that gangs remain 

in lock-step as long as possible. When possible, independent 

warps are used to fill in holes in the executing gang. Each slice 

front-end includes an LO I-cache (0) to reduce pressure on 

the larger Ll I-cache (CD) which is shared by all slices in the 

SM. Without LO I-caches, providing peak throughput in slice­

only mode would require 8x the Ll I-cache bandwidth. Our 

microarchitecture allows 9 separate fetch schedulers (one for 

each of eight slices and one for gangs) to request instructions 

from the Ll I-cache. We study the effects of scaling Ll 1-
cache bandwidth in Section 6. Arbitration to determine which 

scheduler is granted L l  access is done by the L l  fetch arbiter 

(4D), described in more detail in Section 4.6 

This microarchitecture can be run in gang-only or slice-only 

mode (effectively locking the warp size at 32 or 4 respectively) . 

However, our proposed solutions evaluated in Section 6 and 

described in the remainder of Section 4 operate by beginning 

execution in ganged mode. Sections 4.4 and 4.5 describe how 

gangs can be split and reformed on a per-gang basis .  

4.2. Warp Ganging Unit 

The goal of the warp ganging unit is to force independent 

slices to fetch, decode, and execute instructions in lock­

step gangs when threads across  multiple slices are control­

convergent. Several factors motivate such ganging. First, 

issuing memory accesses from convergent applications with­

out lock-step execution places significantly more pressure on 

the memory system and degrades performance. Second, the 
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system can amortize front-end energy consumption across  

more threads when some or all small warps across the slices 

in an SM are executing the same instruction. 

When a kernel begins and thread blocks are assigned to 

an SM, gangs are created from the thread blocks in the same 

fashion as 32-wide warps are created in our baseline system. 

Each gang is statically assigned eight 4-wide warps, one from 

each slice. Information about which warps are participating 

in which gang is stored in the gang table (e). Each entry in 

the gang table contains a GangID, an 8-bit GangMask (indi­

cating which slices are participating in the gang) , the current 

PC of the gang, a valid bit (which is cleared when the gang' s  

instruction buffer entries are empty), and a ReadyMask which 

indicates which warps in the gang can issue. To simplify the 

design of the gang unit, warps are not allowed to migrate be­

tween gangs.  We implemented more complex gang forming 

and reforming schemes, but saw no significant performance or 

energy advantage for our workloads . All warps not participat­

ing in a gang (unganged warps) are managed independently 

by their respective slice. Each slice stores an independent 

warp mask (e) indicating which of its warps are managed 

independent of the warp ganging unit. 

4.3. Gang Table 

The gang table tracks all information necessary for scheduling 

gangs as well as for managing gang splitting and reformation. 

The baseline SM described in Section 2 has a capacity of 1024 

schedulable threads organized into 32 warps of 32 threads 

each. The VWS SM has the same total thread capacity, but 

organized into a total of 256 warps of 4-threads each, or 32  

4-thread warps per slice. At  kernel launch, the threads are 

aggregated into maximally-sized gangs of eight 4-wide warps, 

or 32 threads per gang to match the baseline architecture. The 

term original gang is used throughout this paper to describe a 

gang of warps that is created when a thread block is initially 

assigned to an SM. 

When a gang splits, more entries in the gang table become 
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necessary. Because individual warps are not managed by the 

warp ganging unit, a gang of 8 warps can split into at most 

4 gangs, with a minimum of two warps per gang. Further 

subdivision yields singleton warps which are managed within 

each slice. Thus the maximum number of entries needed in the 

gang table to track the smallest gangs is 128 (32 original gangs 

x 4).  These 128  entries can be organized in a set-associative 

manner with 32 sets , one set per original gang and four entries 

representing up to 4 different gang splits. 

Each entry in the gang table contains a unique GangID 

identifier and GangMask that indicates which slices are par­

ticipating in this gang. Since warps can only be ganged with 

other members of their original gang, all warps from the same 

original gang access the same set in the gang table and must 

have GangIDs that are in the same group. For example, warp 

o in each slice can only be a member of gangs 0-3 . With this 

organization, each warp ' s  index in the GangMask is simply 

the warp's  slice number. 

To perform fetch and issue scheduling, the warp ganging 

unit requires information from the slices . Specifically, the 

gang front-end must know the next PC for each gang, and the 

gang issue scheduler must know when all warps in a gang have 

cleared the scoreboard. Per warp call return stack (or recon­

vergence stack) tracking is done locally in each slice. To track 

per-gang PCs and handle gang splitting when control flow 

divergence is encountered, each slice signals the warp ganging 

unit when the PC at the top of a warp ' s  stack changes (e). 
Instruction dependence tracking is also done in each slice, 

even when operating in gang-only mode. Keeping the depen­

dence information local to each slice makes transferring warps 

from ganged to unganged simpler and decreases the distance 

scoreboard control signals must travel. The warp ganging unit 

tracks dependencies for an entire gang in a ReadyMask by 

receiving scoreboard ready signals from each slice (e). 
The gang table also contains a per-entry valid bit to track 

instruction buffer (I-Buffer) status .  The warp gang unit is 

responsible for both fetching and issuing of gangs .  The gang 



unit front-end stores decoded instructions in each member 

warp 's per-slice I-Buffer. The valid bit is set by the gang fetch 

scheduler when a gang' s  per-slice I-Butler entries are filled 

and is cleared by the gang issue scheduler when the associated 

instruction has been issued. All member warps in a gang issue 

their instructions in lock step from their respective slice-local 

I-Buffers. This bit is managed internally by the warp ganging 

unit and does not require any input from the slices .  

4.4. Gang Splitting 

The warp ganging unit decides when gangs are split and re­

formed based on a set of heuristics evaluated in Section 6. To 

make splitting decisions, the warp gang unit observes when 

control flow and memory divergence occurs . Control flow di­

vergence is detected by observing the PCs sent to the ganging 

unit by each slice. PCs from the slices undergo a coalescing 

process similar to global memory accesses. If all warps in a 

gang access  the same PC, no splitting is done. If any warp 

in the gang accesses a ditlerent PC, the gang is split. If more 

than one warp accesses a common PC, a new gang is formed 

for these warps .  If only one warp accesses a given PC, that 

warp is removed from the control of the ganging unit and a 

signal is sent to that warp ' s  slice, transferring scheduling to 

the local slice. All VWS configurations explored in this work 

split gangs whenever control flow divergence is detected. 

In addition to control flow divergence, memory latency di­

vergence is another motivation for gang splitting . Memory 

latency divergence can occur when some threads in a warp 

hit in the data cache while other threads must wait for a long­

latency memory operation to complete. Prior work such as 

Dynamic Warp Subdivision [24] has suggested warp subdivi­

sion to tolerate memory latency divergence. 

Section 6 evaluates VWS architecture configurations that 

can split gangs when memory latency divergence is observed 

among member warps. Memory latency divergence is detected 

when scoreboard ready bits for different warps in a gang are 

set at different times when completing memory instructions. 

Tracking which warps in a gang are ready is done through the 

ReadyMask. We evaluate VWS with two different types of 

gang splitting on memory divergence. Impatient Splitting is 

the simplest form of gang splitting on memory divergence. If 

any warp in a gang sets its ready bit before any other member 

warps, the gang is completely split; all members participating 

in the gang become independent warps .  Impatient splitting 

simplifies the splitting process and allows highly memory 

divergent workloads to begin independent execution as quickly 

as possible. Group Splitting enables warps that depend on 

the same memory access  to proceed together as a new gang. 

When more than one warp in a gang has its ready bit set in 

the same cycle, a new gang is created from those warps.  Any 

singleton warps that result from this process are placed under 

independent, per-slice control. 
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4.5. Gang Reformation 

In addition to splitting gangs, VWS supports the reformation 

of gangs that have been split. The warp ganging unit decides 

if warps or gangs from the same original gang should be re­

ganged. While we explored numerous policies, two simple 

but effective choices emerged: ( 1 )  opportunistic reformation 

and (2) no reformation. To simplify the re-ganging hardware, 

only one gang can be reformed each cycle. To perform oppor­

tunistic gang reformation, one original gang is selected each 

cycle, in round-robin order. The hardware compares the PCs 

from each of the original gang' s  new gangs or independent 

warps, with a worst-case 8-way comparison if the gang has 

completely split apart. If any groups of two or more of these 

warps or gangs have the same PC, they are merged. Section 6 

describes policies to promote more gang reformation by forc­

ing gangs and warps to wait at common control flow post 

dominator points in the code. 

4.6. Instruction Supply 

To avoid building a machine with 8x the global fetch band­

width when VWS is operating in completely independent slice 

mode, the fetch bandwidth of the Ll instruction cache is lim­

ited. We evaluated several different LI-I cache bandwidths 

and determined that with modestly sized LO I-caches ,  L l  1-
cache bandwidth can be scaled back to two fetches per cycle 

and achieve most of the performance of allowing 8 fetches 

per cycle. The global fetch arbiter determines which fetch 

schedulers access the Ll  I-cache's  2 ports on any given cycle. 

The gang fetch scheduler is always given priority to maximize 

the number of lanes serviced. The remaining fetch bandwidth 

is divided among the per-slice warp fetch schedulers. Individ­

ual warps are distributed to the slices in round-robin fashion 

(warp 0 is assigned to slice 0, warp 1 to slice 1 ,  and so on) . 

An arbitration scheme prioritizes slice requests to ensure that 

each slice gets fair access to the L l  I-cache. 

5. Experimental Methodology 

The results in this paper are collected using a proprietary, cycle­

level timing simulator that models a modern GPU streaming 

multiprocessor (SM) and memory hierarchy similar to that 

presented in Section 2. The simulator is derived from a product 

development simulator used to architect contemporary GPUs. 

Table 1 describes the key simulation parameters . The simulator 

processes instruction traces encoded in NVIDIA's native ISA 

and generated by a modern NVIDIA compiler. Traces were 

generated using an execution-driven, functional simulator and 

include dynamic information such as memory addresses and 

control flow behavior. We simulate a single SM with 32 SIMT 

execution lanes that execute 32-wide warps as our baseline, 

similar to that described in [ 1 3 ] .  For warps smaller than 32, we 

use the same memory system but maintain a fixed count of 32 

execution lanes sliced into the appropriate number of groups.  

We model a cache hierarchy and memory system similar to 



Table 1 :  Basel ine simulator config uration.  

# Streaming Multiprocessors I 
Execution Model In-order 

Warp Size 32 
SLMD Pipeline Width 32 
Shared Memory / SM 48KB 

L I Data Cache 64KB, 1 28B line, 8-way LRU 
L2 Unified Cache 1 28KB ,  1 28B line, 8-way LRU 

DRAM Bandwidth 32 bytes / core cycle 
Branch Divergence Method [SA Controlled Call Return Stack 

Warp Issue Scheduler Greedy- Then-Oldest (GTO) [32] 
Warp Fetch Scheduler Loose Round-Robin (LRR) 

ALU Latency 1 0  cycles 

contemporary GPUs, with capacity and bandwidth scaled to 

match the portion available to a single SM. 

The trace set presented was selected to encompass a wide 

variety of behaviors, Traces are drawn from a variety of cate­

gories , including High Performance Computing (HPC), games, 

and professional/consumer compute application domains such 

as computer vision. A third of the selected traces belong to 

each of the three categories described in Section 1 :  ( 1 )  diver­

gent codes that prefer narrow warps, (2) convergent codes that 

prefer wider warps, and (3) codes that are mostly insensitive 

to warp size. 

6. Experimental Results 

This section details experimental results for the Variable Warp 

Sizing microarchitecture. First, we quantify performance for 

several configurations of VWS and then characterize instruc­

tion fetch and decode overhead and the effectiveness of mit­

igation techniques . We perform several sensitivity studies 

exploring various design decisions for gang scheduling, split­

ting, and reforming. We demonstrate how gang membership 

evolves over time for some sample workloads . Finally, we 

examine area overheads for the proposed design. 

6.1. Performance 

Figure 7 plots the performance of multiple warp sizes and 

VWS, using different warp ganging techniques . All techniques 

can issue 32 thread instructions per cycle. Fetch and decode 

rates are scaled with the base warp size ; WS4 and WS32 

can fetch and decode eight instructions per cycle and one 

instruction per cycle, respectively. The VWS configurations 

use a base warp size of 4 and can fetch up to 8 instructions per 

cycle from the L1 I-cache. Simulating our ganging techniques 

with 8 times the L 1  I-cache fetch throughput allows us to 

explore the maximum pressure placed on the global fetch unit 

without artificially constraining it. Section 6 .2  demonstrates 

that VWS using the LO I-caches described in Section 4 and 

an L 1  I-cache with only 2x the bandwidth achieves 95% of 

the performance of using 8x the L 1  I-cache bandwidth on 

divergent applications . Warp-size insensitive and convergent 

applications are insensitive to L1 I-cache bandwidth. We chose 

the following VWS configurations based on an exploration of 

the design space detailed in the rest of this section. 
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Figure 7: Performance (normal ized to WS 32) of large warps, 

small  warps, and different warp ganging techniques. 

WS 32: The baseline architecture described in Section 2 with 

a warp size of 32. 

WS 4: The baseline architecture described in Section 2 with 

a warp size of 4. 

I-VWS: Inelastic Variable Warp Sizing with a base warp size 

of 4, where gangs are split only on control flow divergence. 

Warps are initially grouped together into gangs of 8 warps 

(32 threads total) .  Upon control flow divergence, gangs are 

split based on each warp's control flow path. Once split, they 

are never recombined. The ganging unit selects up to two 

gangs to issue each cycle. Slices that do not receive a ganged 

instruction pick the next available warp from their pool of 

unganged warps.  The ganged scheduler uses a Big-Gang­

Then-Oldest (BGTO) scheduling algorithm, where gangs 

with the most warps are selected first. Gangs with the same 

number of warps are prioritized in a Greedy-Then-Oldest 

(GTO) fashion. Per-slice schedulers manage independent 

warps using a GTO scheduling mechanism. 

E-VWS: Elastic Variable Warp Sizing. Warps are split on 

control flow divergence and combined in an opportunistic 

fashion when multiple gangs or singleton warps arrive at the 

same PC on the same cycle. Gangs can only be created from 

members of an original gang. A maximum of 2 gangs or 

warps can be combined per cycle. 

E-VWS-ImpatientMem: Warp ganging similar to E-VWS, 

except that gangs are also split when memory divergence 

occurs across warps in the same gang. Whenever any memory 

divergence occurs in a gang, the entire gang is split. Gangs 

are recombined in the same opportunistic fashion as E-VWS . 

Figure 7 shows that the I-VWS warp ganging microarchi­

tecture is able to achieve a 35% performance improvement on 

divergent applications over a static warp size of 32 .  This im­

provement is within 3% of using a warp size of 4 on divergent 

applications and it results in no performance loss on conver­

gent applications where simply using a warp size of 4 results 

in a 27% slowdown. This data also demonstrates that splitting 

gangs on control flow divergence without performing any gang 

recombining, the simplest solution, provides the best overall 
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Figure 8: Performance (normalized to WS 32) of I-VWS and WS 

4 on al l  the applications from in Figure 1 a. 

performance for these workloads . Adding opportunistic gang 

recombining (E-VWS in Figure 7) actually results in a small 

performance decrease on divergent applications . This decrease 

is caused by scheduling and packing problems associated with 

attempting to issue across more slices at once. When gangs are 

larger, there is a greater likelihood that multiple gangs need to 

issue to the same slice on the same cycle. 

Elastically splitting and regrouping makes no performance 

difference on convergent and warp-size insensitive applica­

tions because these applications experience little or no control 

flow divergence. Recombining gangs for the divergent work­

loads makes little performance difference when the hardware 

has the ability to issue many smaller gangs (or single 4-sized 

warps) because remaining unganged is unlikely to result in 

a loss of utilization. Having the ability to concurrently issue 

multiple paths at the slice granularity makes control flow re­

convergence less performance critical than when only one path 

can be executed concurrently. 

Figure 7 also quantifies the effect of splitting gangs on mem­

ory divergence (E-VWS-ImpatientMem) . Reducing the effect 

of memory divergence helps some of the divergent applica­

tions like Lighting, ObjClassifier, and Ray tracing and provides 

a modest 2% performance increase over I-VWS on the diver­

gent applications. However, allowing gangs to split based on 

memory divergence results in significant performance degra­

dation on Game 1 ,  Game 2, and Radix Sort in the convergent 

application suite, resulting in an average slowdown of 22% 

on the convergent applications. Like 4-sized warps, this loss 

in performance can be attributed to memory convergence slip. 

Formerly coalesced accesses become uncoalesced and create 

excessive pressure on the memory system causing unnecessary 

stalls .  

Figure 8 shows the performance of all 1 65 applications. 

The figure demonstrates that the ganging techniques used in 

1-VWS are effective for all the applications studied. 1-VWS 

tracks warp size 4 performance on the divergent applications 

and eliminates warp size 4 slowdown on the convergent appli­

cations at the left side of the graph. 

6.2. Front-end Pressure 

Figure 9 plots the fetch pressure of several warp sizes and 

ganging configurations. For the divergent applications, 1-VWS 

results in 57% fewer fetch/decode operations required each cy-
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Figure 9: Average fetches per cycle with different warp sizes 

and ganging techniq ues. 
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Figure 1 0: Average performance of I-VWS at different L 1 1-

cache bandwidths and LO I-cache sizes. Normalized to I-VWS 

with 8x L 1 -1 cache bandwidth . 

c1e versus a warp size of 4. This reduction in fetch/decode rep­

resents a significant energy savings while providing almost all 

of the performance of 4-sized warps.  By opportunistically re­

combining gangs for divergent applications, E-VWS requires 

a further 55% less fetch/decode bandwidth than I-VWS, at 

the cost of some performance. On divergent applications, E­

VWS-ImpatientMem increases fetch/decode pressure versus 

E-VWS but not more than I-VWS . 

On the convergent and warp-size insensitive applications, 

the ganging configurations that do not split on memory di­

vergence show fetch pressure equal to that of warp size 32.  

Because these applications lack control flow divergence, gangs 

rarely split and 1-VWS operates exclusively in ganged mode. 

However, when gangs are split on memory divergence, the 

skewing of memory access returns causes a significant increase 

in the number of fetch/decodes per cycle. 

Figure 1 0  plots the performance of 1-VWS at different L 1  

I-cache bandwidths and LO I-cache sizes.  Because the diver­

gent applications traverse multiple independent control flow 

paths, restricting L1 I-cache bandwidth results in a signifi­

cant performance loss.  However, the inclusion of per-slice 

LO I-caches, which are probed first when independent warps 

fetch instructions, vastly decreases the performance loss. With 

only 2 x the L 1  I-cache bandwidth of the baseline architec­

ture, the addition of small 256B LOs are able to cover most 

of the bandwidth deficiency at the L l .  Since they remain in 

ganged operation, the warp-size insensitive and convergent 

applications are insensitive to L 1  I-cache fetch bandwidth. 
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Figure 1 1 :  Performance (normal ized to WS 32) of warp gang­

ing with different schedulers_ 
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Figure 1 2: Averages fetches per cycle with different sched­

ulers_ 

6.3. Gang Scheduling Policies 

We measured the sensitivity of perfonnance and instruction 

fetch bandwidth to several different gang scheduling policies, 

All gang schedulers attempt to issue up to two gangs per 

cycle, and local per-slice schedulers attempt to issue on any 

remaining idle slices. We examine the following policies :  

1 -VWS: As described in  Section 6. 1 ,  the gang issue scheduler 

prioritizes the largest gangs first Big-Gangs-Then-Oldest 

(BGTO) and per-slice schedulers are Greedy-Then-Oldest 

(GTO). 

I-VWS-GTO: Similar to I-VWS, except the gang issue 

scheduler uses a greedy-then-oldest policy, 

I-VWS-LRR: Similar to I-VWS, except both the gang issue 

scheduler and per-slice schedulers use a Loose-Round-Robin 

(LRR) scheduling policy. 

I-VWS-LPC: Similar to I-VWS, except both the gang issue 

scheduler and per-slice schedulers prioritize gangs/warps 

with the lowest PC first. 

I-VWS-LGTO: Similar to I-VWS, except the gang issue 

scheduler prioritizes gangs with the fewest warps first Little­

Gangs-Then-Oldest (LGTO) . Per-slice schedulers use a GTO 

policy, 

Figure 1 1  shows that the performance of the divergent appli­

cations is sensitive to the gang scheduler choice. The lowest­

PC-first configuration results in a universal performance re­

duction across all the applications . Little-Gangs-Then-Oldest 
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Figure 1 3: Performance (normal ized to WS 32) when the num­

ber of gangs able to issue each cycle is changed_ 

(1-VWS-LGTO) creates a scheduling pathology on the diver­

gent applications. Prioritizing the smallest gangs first is bad 

for performance because the gang issue scheduler can only 

select a maximum of 2 gangs for execution each cycle; giving 

the smallest ones priority can limit utilization by delaying 

the execution of gangs with many warps.  We also observed 

that prioritizing little gangs was detrimental even when more 

than two gangs could be scheduled per cycle because little 

gangs block the execution of larger gangs.  Figure 1 2  shows 

the resulting fetch and decode requirements for different gang 

scheduling policies. Although the choice of gang scheduler 

has a significant effect on performance, it has little effect on 

fetch/decode bandwidth. This insensitivity occurs because 

gang scheduling has nothing to do with gang splitting when 

gangs are split only for control flow divergence and are not 

recombined. When splitting gangs on memory divergence is 

enabled, the effect of scheduling on the fetch rate is much 

greater. 

Figure 1 3  plots performance when the number of gangs 

selectable per cycle by the gang issue scheduler is set to one, 

two, or unlimited (up to four) . This data shows that limiting 

the gang scheduler to a single gang per cycle reduces the 

performance of the divergent applications by 10% versus the 

baseline of two gangs per cycle. Allowing the gang scheduler 

to pick unlimited gangs per cycle results in perfonnance that 

is within 1 % of two gangs per cycle. Any slices not consumed 

by the gang scheduler may be used whenever possible by any 

singleton warps managed by local slice schedulers, We choose 

to limit the gang scheduler to two gangs per cycle to balance 

performance and scheduler complexity. 

6.4. Gang Reformation Policies 

Figures 1 4  and 1 5  plot perfonnance and instruction fetches 

per cycle when the following policies are used to reform gangs 

after they have been split: 

E-VWS: As described in Section 6, 1 ,  gangs are reformed on 

an opportunistic basis only. 

E-VWS-Sync<xx>: Similar to E-VWS, except that when 

warps reach a compiler-inserted call-return stack sync in­

struction, they wait for recombination. These instructions are 



1 .8 
1 .6 

I _ WS 4 o E-VWS o E-VWS-Sync1 0  " E-VWS-Sync50 o E-VWS-Sync1001 

c Cl oil 
.! 

Cl > .; M C ... .... in � ;.. N <l 1:: Z 
:!! c u c C? 2 .. 0 .. IL � .. � .. .!i 0 0 0 � 'iij 'iij 'u E :s E IL E E '" l? ;.. Il. .. U Cl .c oil i z .. "0 .. z .. :; .. c >< z .. « .. Cl Cl « Cl Cl :c ::; Il. Cl > :!! I!! « .. <3 w w >< .. .. :!! .. c E w 

E "E 0: .§ 0 :!! ." 0: 
:!! .. :z: u :z: ... .. 0 .. :z: Cl :!! IL 

Divergent Appl ications Wa rp-Size Insensitive Convergent Appl ications 
Appl ications 

Figure 1 4: Performance (normal ized to WS 32) of elastic gang 

reformation tech niques_ 
I -ws 32 ows 4 0 E-VWS " E-VWS-Sync10 0 E-VWS-Sync50 '" E-VWS-Sync1 0� 

1 .8 
1 .6 
1 .4 
1 .2 

1 
0.8 
0.6 
0.4 
0.2 

0 

I - WS 4 o l-VWS o l-VWS-GroupMem " 1-VWS-lmpatientMem I 

� � � � � � � � � � � m � � � � m � 
c Cl oil .. Cl � .; M C ... .... in � ;.. N <l 1:: Z 
:!! c u '" c 'i' 2 .. 0 .. IL � .. Q. .. .!i 0 0 0 � 'iij 'iij 'u E :s E IL E E E '" u ;.. � Z Il. .. U Cl .c oil .. "0 .. z .. " .. c >< Z .. « .. Cl Cl Cl Cl :c ::; Il. >. Cl > « :!! I!! « .. <3 .. w .. c w >< � .. w 

E "E 0: :!! .§ 0 :!! ." 0: 
:!! C; 0 :z: u :z: ... .. :z: :!! IL 

Divergent Applications Warp-Size Insensitive Convergent Applications 
Applications 

Figure 1 6: Performance (normal ized to WS 32) of different 

gang spl itting pol icies_ 

llll1l l llllLlll i1 I ·
w

"' "w" " '-�' . ' ���, •• m " ' _�","�.ml 

.. >< � .2 �, " en :c .... � > � .§ � � � � " 0 0 0 � � � 8 � j 8 � 
Divergent Applications Warp-Size Insensitive Convergent Appl ications 

Appl ications 

Figure 1 5: Average fetches per cycle with different gang refor­

mation techniques_ 

already inserted, typically at basic block post-dominators, to 

enforce the NVIDIA call-return stack architecture_ <XX> 
indicates how many cycles a warp will wait at the sync point 

for potential reganging. 

Forcing warps to wait at control flow post-dominator points 

can potentially improve gang reformation, leading to more or 

larger gangs and reduced front-end energy while hopefully 

resulting in minimal performance degradation. Figures 1 4  

and 1 5  demonstrate that waiting at sync points results in a per­

formance loss on our divergent applications_ We see minimal 

decrease in the number of fetches per cycle as waiting time 

is increased, and any energy efficiency gained from this re­

duction would be more than offset by the loss in performance_ 

The warp-size insensitive and convergent applications contain 

fewer compiler-inserted sync points, experience little or no 

control flow divergence, and may spend much or all of their 

execution time fully ganged. As a result, their performance is 

largely unaffected by wait time at infrequent sync points . Thus 

we conclude that forcing warps to wait at post-dominators pro­

vides little to no benefit; most of the reduction in fetch pressure 

is captured by opportunistic reganging in E-VWS . 

6.S. Gang Splitting Policies 

Figure 1 6  explores the use of the following gang splitting 

policies without any gang reformation: 

I-VWS: As described in Section 6. 1 .  Warps are split only on 

control flow divergence_ 
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Figure 1 7: Average fetches per cycle using different gang spl it­

ting policies_ 

1-VWS-GroupMem: Warp ganging similar to 1-VWS except 

gangs are also split on memory divergence. As memory 

results return for a gang, all warps in a gang that are able to 

proceed based on the newly returned value form a new gang. 

Gangs are never recombined_ 

I-VWS-ImpatientMem: Warp ganging similar to I-VWS­

GroupMem except gangs that experience any memory diver­

gence are completely subdivided into individual warps.  

As in Section 6 . 1 ,  Figure 16 demonstrates that splitting 

on memory latency divergence can have a small perfor­

mance advantage on some divergent applications, but has 

a large performance cost on convergent ones_  Minimizing 

the amount of splitting that occurs on memory divergence 

(1-VWS-GroupMem) gains back some of the performance lost 

for Game 2 but creates problems in Radix Sort. Overall, split­

ting on memory divergence is a net performance loss due to 

its negative effect on convergent applications . 

Figure 1 7  plots the resulting number of instructions fetched 

per cycle when different gang splitting policies are used. This 

data demonstrates that even though splitting on memory diver­

gence may be a small performance win for divergent applica­

tions, the number of instructions fetched increases greatly as a 

result, by 4 1  % and 69% for 1-VWS-GroupMem and 1-VWS­

ImpatientMem, respectively. 
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Figure 1 8: Gang sizes versus time for I-VWS. 

6.6. Gang Size Distribution 

Figure 1 8  visualizes how gang sizes change over time for 

two example divergent workloads, GamePhysics and Lighting. 

Each warp assigned to the SM on any given cycle is classified 

according to the size of the gang to which it belongs.  For 

example in the Lighting application, execution begins with 

120 4-wide warps assigned to the SM. The black bar at cycle 0 

indicates that all warps start out in their original gangs of size 8 .  

As  time progresses, the original gangs split apart into smaller 

gangs until eventually most warps in the SM are executing 

independently. In contrast, GamePhysics exhibits much more 

structured divergence. The SM begins execution with 300 

warps all in their original gangs.  Over time, the warps split 

in two (the grey color in the GamePhysics graph represents 

warps participating in a gang of 4) .  One half of the gang 

exits , while the other half continues executing in lock step. 

These two plots illustrate how 1-VWS reacts to different kinds 

divergence. Most of the divergent workloads studied react 

similar to Lighting. Similar plots for E-VWS show gangs 

splitting and reforming as time progresses . The plots collected 

for the convergent applications show that warps stay in their 

original gang throughout execution. 

6.7. Area Overheads 

Table 2 presents an estimate of the area required to implement 

I-VWS in a 40nm process.  Column two presents the raw area 

estimate for each 1-VWS component, while columns three 

and four present a rolled-up incremental SM area increase 

for 4-wide and 8-wide warps, respectively. We model the L l  

I-cache using CACTI [36] at 40nm. The LO I-cache, decoded 

I-Buffers, and the gang table are small but dominated by the 

storage cells required to implement them. We estimate the 

area of these structures by using the area of a latch cell from 

the NanGate 45nm Open Cell library and scaling it to 40nm. 

We multiply the resulting cell area (2 . 1 }1m2) by the number 

of bits and a factor of 1 .5 to account for area overheads in­

cluding control logic . For the per-slice scoreboards, we use a 

larger FlipFlop cell (3 .6}1m2 scaled to 40nm) from the Nan­

Gate library and 3 x area overhead factor to account for the 

comparators necessary for an associative lookup. Compared 

to the scoreboard described in [9] , ours has fewer bits and 

noticeably less area. Finally, to estimate the area cost of the 

additional control logic required for slicing the SIMD datap­

ath, we examine published literature on the percentage of total 
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Table 2: Area overhead estimates. 

Component Additional SM Area 
Component Area 4-wide warps S-wide warps 

Single-ported Ll I-cache (64KB) 0.OS7mm" 
Dual-ported L l  I-cache (64KB) 0 . 1 94mm" O . I OSmmL O . I OSmmL 
LO I-cache (256B) 0.006mm" 0.052mmL 0.026mmL 
Decoded I-Buffers (4Kbits) O .01 3mm" 0 . 1 03mmL 0.052mmL 
Gang Table ( l 2S entries) 0.026mm" 0.026mmL 0.026mmL 
Scoreboard ( l SOO bits) 0 .01 9mm" 0 . 1 54mmL O.077mmL 
Additional control 0 . 1 60mm" 1 .2S0mmL 0.640nunL 
Total S M area increase 1 .7mmL 0.93mmL 
Percent SM area increase 1 1 %  6% 

I Total GPU area increase 25.8mm" l 3 .9mm" 
I Percent GPU area increase 5% 2.5% 

core area other processors devote to control [34, 4, 2 1 ,  20] . 

Based on these studies and the high datapath densities found 

in GPUs, we estimate that 1 % of the Fermi SM area ( l 6mm2) 

is devoted to the datapath control logic that needs to be repli­

cated in each slice. In total, we estimate that I-VWS adds 

approximately 1 1  % and 6% to the area of an SM for 4-wide 

and 8-wide warps, respectively. For a Fermi-sized 15 SM GPU 

(529mm2) ,  1-VWS adds approximately 5 %  and 2 .5% more 

area for 4-wide and 8-wide warps, respectively. 

7. Related Work 

This section first presents a quantitative comparison of 1-VWS 

against two previously proposed techniques which address 

the effect of branch divergence on GPUs. It  then presents a 

qualitative characterization of our work and prior art in the 

branch and memory divergence mitigation design space. 

7.1. Quantitative Comparison 

We compare I-VWS to two previously proposed divergence 

mitigation techniques : Thread Block Compaction (TBC) [ 1 2] 

and Dynamic Warp Formation (DWF) [ 1 1 ] .  This data was col­

lected using TBe' s  published simulation infrastructure [ lO] , 

which is based on GPGPU-Sim 2.x [3] . We run TBC and 

DWF with the exact configuration specified in [ l0] and im­

plement 1-VWS with a warp size of 4 on top of their infras­

tructure. Figure 19 plots the result of this study on 5 divergent 

applications taken from the TBC simulation studies : raytrac­

ing (NVRT) [2] , face detection (FCDT) [2 1 ] ,  breadth first 

search (BFS) [8] , merge sort (MGST) [8] ,  and nearest neigh­

bor (NNC) [8] . NVRT does not run when using DWF [ 1 2] . 

We chose these applications because their divergence behavior 

highlights the advantages of 1-VWS . We also ran 1-VWS on 

the rest of the applications in the TBC paper and observed 

little performance difference. On the five applications , 1-VWS 

achieves an average 34% and 15% performance improvement 

over the baseline 32-wide warp and TBC respectively. The 

increased issue bandwidth and scheduling flexibility of 1-VWS 

enables divergent applications to better utilize the GPu. 



1 .5 

0.5 

o 
BFS FCDT MGST NNC NVRT 

Figure 1 9: Performance (normalized to the 32-wide warp base­

l i ne) using the released TBC infrastructu re [1 0] . 

7.2. Qualitative Comparison 

Table 3 presents a qualitative characterization of previously 

proposed divergence mitigation techniques versus small warps 

and 1-VWS . We classify previous work into three categories:  

( 1 )  techniques that dynamically form or compact warps to 

regain SIMD efficiency [ 1 1 , 12 , 26, 29, 30] ; (2) techniques that 

subdivide warps in the presence of memory and control flow 

divergence to expose more thread level parallelism [24, 33] ; 

and (3) techniques that allow the interleaved execution of 

multiple branch paths within a warp by scheduling multiple 

paths from the control flow stack [3 1 ,  9] . 

The fundamental characteristic that sets 1-VWS and the use 

of small warps apart from prior work is the ability to concur­

rently issue many more unique PCs by scaling and distributing 

instruction fetch bandwidth. Additionally, 1-VWS can seam­

lessly adapt to memory latency divergence by breaking gangs. 

Dynamic Warp Subdivision (DWS) is also able to break lock­

step warp execution on memory divergence [24] . However, 

DWS does this with a loss of SIMD efficiency and requires 

additional entries to be added to a centralized warp scheduler 

for each subdivided warp. In contrast, 1-VWS allows smaller 

warps to continue independently, without losing SIMD ef­

ficiency; management of these smaller warps is distributed 

among many smaller scheduling entities. 

While formation and compaction techniques increase SIMD 

efficiency, they pay for this increase with a reduction in avail­

able thread level parallelism, since forming and compacting 

warps decreases the number of schedulable entities . This de­

crease in TLP degrades the SM's ability to tolerate latencies . 

Conversely, subdivision and multipath stack techniques can 

increase latency tolerance but are limited by the number of 

scheduling entities in a monolithic warp scheduler and the 

number of concurrent entries on the call return stack. 

All of the techniques perform well on convergent applica­

tions with the exception of small warps which suffer from 

memory convergence slip. We consider two classes of diver­

gent applications : those that have a limited number of unique 

control flow (CF) paths and those that have many unique con­

trol flow paths. All of the proposed techniques perform well 

on applications that have a limited number of control flow 

paths.  However, only smaller warps and 1-VWS can main­

tain good performance when the number of unique control 

flow paths is high. Compaction and formation techniques re­

quire candidate threads to be executing the same instruction 

(PC).  Subdivision and mUltipath stack techniques increase 
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Table 3: Characterization of divergence mitigation techniq ues. 

Characteristic Forml Subdivide Multipath Small I-VWS 
Compact Warps 

# PCs per Cycle I I I Many Many 
Mem. Divergence Adaptive No Yes No Yes Yes 
Latency Tolerance Low Limited Limited High High 
Performance 

Convergent apps High High High Low High 
Divergent apps, limited CF High High High High High 
Divergent apps, many CF Limited Limited Limited High High 

Energy Efficiency 
Convergent apps High High High Low High 
Divergent apps, limited CF High High High Medium Medium 
Divergent apps, many CF Low Low Low High High 

the number of schedulable entities in the SM, but do not im­

prove lane utilization and become limited by the number of 

entries in a large, centralized structure when the number of 

unique control flow paths is  large. Energy efficiency largely 

follows performance. On diverged applications with limited 

control flow paths, small warps and 1-VWS lose some en­

ergy efficiency by fetching and decoding multiple times from 

smaller distributed fetch/decode structures,  while prior work 

fetches one instruction from a larger structure. However, on 

divergent applications with many control flow paths, prior 

work inefficiently fetches one instruction repeatedly from a 

larger structure, while small warps and 1-VWS distribute this 

repeated fetching over smaller structures .  The smaller warps 

in I-VWS make it the only technique which improves both 

SIMD efficiency and thread level parallelism, while still ex­

ploiting the performance and energy efficiencies presented by 

convergent and warp-size insensitive code. 

7.3. Further Related Work 

Other architectures have been proposed which support nar­

row SIMT execution, but lack the ganging features of 1-
VWS [ 1 4, 16 ,  1 8] .  Simultaneous Branch and Warp Interleav­

ing explores warp reconvergence and scheduling techniques 

using a modified SIMD pipeline that is  able to execute two 

different instructions on the same cycle without scaling the 

fetch/decode bandwidth [5] . Meng et al. describe an approach 

called Robust SIMD that determines whether an application 

would be best served with a given SIMD width [23 ] .  Wang 

et al . describe a "Multiple-SIMD, Multiple Data (MSMD)" 

architecture that supports flexible-sized warps with multiple si­

multaneous issue from different control-flow paths [35] . Lash­

gar et al . perform an investigation on the effects of warp size 

on performance [ 17 ] .  

8. Conclusion 

This paper explores the design space of a GPU SM with the 

capability to natively issue from multiple execution paths in 

a single cycle. Our exploration concludes that convergent 

applications require threads to issue in lock-step to avoid detri­

mental memory system effects . We also find that the ability to 

execute many control flow paths at once vastly decreases a di­

vergent application's  sensitivity to reconvergence techniques .  



We propose Variable Warp Sizing (VWS) which takes ad­

vantage of the many control flow paths in divergent applica­

tions to improve performance by 35% over a 32-wide machine 

at an estimated 5 %  area cost when using 4-wide warps .  An 

8-wide design point provides most of that performance benefit, 

while increasing area by only 2 .5%.  VWS evolves GPUs into 

a more approachable target for irregular applications by pro­

viding the TLP and SIMD efficiency benefits of small warps, 

while exploiting the regularity in many existing GPU applica­

tions to improve performance and energy efficiency. 
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