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DESIGNING EFFICIENT HETEROGENEOUS
MEMORY ARCHITECTURES

.................................................................................................................................................................................................................

THE AUTHORS’ MODEL OF ENERGY, BANDWIDTH, AND LATENCY FOR DRAM

TECHNOLOGIES ENABLES EXPLORATION OF MEMORY HIERARCHIES THAT COMBINE

HETEROGENEOUS MEMORY TECHNOLOGIES WITH DIFFERENT ATTRIBUTES. ANALYSIS

SHOWS THAT THE GAP BETWEEN ON- AND OFF-PACKAGE DRAM TECHNOLOGIES IS

NARROWER THAN THAT FOUND BETWEEN CACHE LAYERS IN TRADITIONAL MEMORY

HIERARCHIES. THUS, HETEROGENEOUS MEMORY CACHES MUST ACHIEVE HIGH HIT RATES

OR RISK DEGRADING BOTH SYSTEM ENERGY AND BANDWIDTH EFFICIENCY.

......Recent packaging technologies
that enable DRAM chips to be stacked inside
the processor package or on top of the pro-
cessor chip can lower DRAM energy-per-bit
costs, provide wider interfaces, and deliver
substantially higher memory bandwidth.
However, these technologies are limited in
capacity and come at a higher price than tra-
ditional off-package memories, so system
designers must balance price, performance,
and capacity tradeoffs. The most obvious
means to achieve this balance is to employ
both on- and off-package memory in a heter-
ogeneous memory architecture. However,
designers must then decide whether to deploy
the on-package memory as an additional
cache hierarchy level (controlled by hardware
or software) or as a memory peer to the off-
package DRAM in a nonuniform memory
access (NUMA) configuration.

Figure 1 shows a generic memory hier-
archy with increasing capacities, access laten-
cies, and energy characteristics. Bandwidth
and cost per bit decrease with the increase in
distance from the computing core. Table 1

summarizes a memory hierarchy actual band-
width, latency, and capacity values for an
example quad-core CPU at 3 GHz. The gap
in bandwidth and capacity between on-chip
last-level caches and external DRAMs is usu-
ally higher than 10�. Tiers in the memory
hierarchy can be explicitly managed by soft-
ware (for example, CPU registers managed
by the compiler or file-system buffers man-
aged by the OS) or transparently managed by
hardware (for example, static RAM [SRAM]
caches). Hardware caches provide a graceful
mechanism to improve latency and band-
width without adding complexity in the soft-
ware needed to detect and exploit locality.
However, hardware caches introduce area
and energy overheads due to tag and data
management. With the introduction of on-
package memories, the question must be
reevaluated, yet again, to determine if the
memory hierarchy has sufficient room for
another tier of caching between these new
heterogeneous memory technologies.

This article presents a model and analysis
of energy, bandwidth, and latency for current
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and emerging DRAM technologies that ena-
ble an exploration of memory hierarchies
combining heterogeneous memory technolo-
gies with different attributes. We will show
that the gap between on- and off-package
DRAM technologies is narrower that what is
found between cache layers in legacy memory
systems. Because of these small differentials,
the overheads of hardware caching are magni-
fied. Our results show that unless these caches
can achieve high hit rates, they may degrade
the system’s energy efficiency. We also show
that the overhead of data movement between
the on-package cache and off-package mem-
ory can drastically reduce any potential band-
width advantage. Finally, we argue that
caching data in on-package memory provides
little to no latency advantage. Our analytical
model provides insight into the technology
and application performance characteristics
necessary to justify designing heterogeneous
memory architectures.

Heterogeneous memory design challenges
To better understand the current and

future heterogeneous memory design chal-
lenges, we present historical DRAM technol-
ogy trends and describe two specific state-of-
the-art use cases taken from high-perform-
ance computing and mobile systems on a
chip. We then define the two most common
options for heterogeneous memory organiza-
tion and discuss their architectural and effi-
ciency challenges.

DRAM technology trends
DRAM has seen steady capacity and

bandwidth improvements over successive
generations for several decades. Broadly gen-
eralizing, each new DRAM technology gen-
eration has enabled a 4� increase in capacity,
with a 2� increase in bandwidth and energy
efficiency, whereas DRAM latency has
remained relatively constant. Several DRAM
technologies have been developed for special-
ized markets that make different tradeoffs,
such as dropping multirank support and
optimizing for improved energy efficiency
(low-power DDR [LPDDR]) or bandwidth
(graphics GDDR [GDDR]). LPDDR mem-
ory devices offer 30 to 50 percent energy-effi-
ciency improvements over commodity DDR

memories, whereas GDDR memory devices
can provide 3 to 4� the bandwidth.

Different contemporary DRAM technol-
ogies have not provided a sufficient gap in
capabilities to justify using one DRAM tech-
nology to cache another. However, stacked
DRAM technologies, in which DRAMs are
stacked with through-silicon-vias on or adja-
cent to the processor chip could change this.
3D stacking enables significant increases in
bandwidth and energy efficiency but limits
on the available footprint for memory stacks,
as well as cost, will likely prevent the stacked
DRAM from completely replacing commod-
ity off-package DRAM.

Stacked DRAM systems can vary widely
in relative bandwidth compared to a non-
stacked DRAM system. In this article, we
explore a spectrum of these ratios and show
two specific use cases. In the first, a high-per-
formance computing node supports 1 Tbyte
per second of high-bandwidth memory
(HBM) stacked DRAM and 120 Gbytes per
second (GBps) of DDR4, providing a factor
of 8.3� in bandwidth between the two
classes of DRAM. This HBM memory is also
roughly 3� more energy efficient than the
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Figure 1. Capacity, latency, and bandwidth properties of a generic memory

hierarchy. Traditional memory tier capacities, access latencies, and energy

characteristics grow with the increase in distance from the computing core.

The bandwidth and cost per bit decrease with additional levels of the

hierarchy.
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DDR4. In the second use case, a mobile sys-
tem on a chip supports 51 GBps of stacked
WideIO2 memory and 24 GBps of
LPDDR4 memory, providing a bandwidth
ratio of only 2.1�. The energy-efficiency gap
is smaller as well, at roughly 1.8�. The laten-
cies of these different memories are all simi-
lar, with current stacked DRAM standards
providing minimal latency advantages over
off-package devices. These parameters are
considerably different from those of SRAM-
based caches, which typically have a many-
fold advantage in bandwidth, power, latency,
and energy compared to DRAM (often 10�
or more). This decreased differentiation war-
rants deeper investigation into when hetero-
geneous DRAM caching is appropriate.

Heterogeneous memory architectures
Figure 2 shows the two most common

memory architectures that introduce an addi-
tional memory tier beyond the last-level on-
chip SRAM cache. In Figure 2a, the stacked
DRAM is architecturally beside the existing
memory, resulting in a flat NUMA. In this
organization, memory accesses are explicitly
directed toward either the stacked or the bulk
memory as determined by the physical
address. In Figure 2b, the stacked DRAM is
placed in front of the main memory. All
memory requests will be serviced first by the
stacked DRAM, and only cache misses will
be routed to the main memory.

The NUMA organization provides the
highest potential bandwidth, because both
memories can be accessed in parallel. It also
provides the lowest latency and energy because
requests are never serialized between the two
memories. However, this approach depends
on the OS to allocate memory pages appropri-
ately.1 Furthermore, if the working set changes

over time, the OS must perform page migra-
tion to maintain optimal performance.2,3

In the cache organization, the software is
not aware of the two tiers of memory in the
system. Hardware logic is responsible for per-
forming the requested memory operation,
regardless of which physical location the data
may reside in. The replacement policy auto-
matically detects and manages data locality.
However, cache organizations are limited in
bandwidth, unless they introduce some form
of prediction to save unnecessary lookups and
fills. They also pay additional latency and
energy penalties if lookups are serialized.4

Cache implementations can also pay signifi-
cant tag area and energy overheads. Reducing
the tag management overhead while maintain-
ing high hit rates is an active research area.5–7

With on-package memories reaching multi-
gigabyte capacities, mixed organizations that
can expose the cache footprint to the OS as
part of memory are also an area of active
research.4,8 Despite the overheads and design
complexity inherent in caching solutions, com-
puter architects often gravitate toward them
because they do not require changes to the sys-
tem software, and because the data placement
in NUMA organizations is largely an unsolved
problem.1 However, our analytical model
shows that the shrinking energy and bandwidth
gaps between the two memory technologies
might not always provide the expected advan-
tages when adding a layer in the memory hier-
archy, and that NUMA organizations might
provide better efficiency in some scenarios.

Heterogeneous memory efficiency
To evaluate hierarchical DRAM archi-

tectures, we developed a parameterized,
analytical energy and bandwidth model for
memory-based caches. We examined and

Table 1. A typical example of a memory hierarchy with bandwidth, latency, and

capacity values for quad-core desktop CPU at 3 GHz.

Memory hierarchy Aggregate bandwidth Latency (cycles) Capacity

DRAM (DDR4) 25 Gbytes per second (GBps) 121 Up to 32 Gbytes

L3 (on-chip) 0.3 Tbytes per second (TBps) 33 8 Mbytes

L2 (on-chip) 0.7 TBps 16 1,024 Kbytes

L1 (on-chip) 1 TBps 4 128 Kbytes

Registers 2 TBps 1 22 Kbytes
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modeled flat NUMA and cache-like organi-
zations (see Figure 2). In the NUMA organi-
zation, we assumed that the data is efficiently
placed within the memories for optimal
bandwidth efficiency. This idealized NUMA
organization serves as an oracular memory
system that can provide the sum of both
external memory bandwidth and stacked
memory bandwidth Aþ B while not incur-
ring any overheads due to page migration.

For the DRAM cache organization, we
modeled a generic write-back cache architec-
ture, wherein entries in the cache are allo-
cated on read-miss and a modified entry is
written to memory only when being replaced
in the cache. On a write-miss, no data is
fetched from the memory, and the cache
merges multiple-writes for full and partial
line writes. This design wastes neither mem-
ory bandwidth nor energy for write-stream-
ing workloads with low hit rates.

Energy efficiency model
Our model focuses on data and tag

access energy and assumes that cache con-

trol energy costs are insignificant. First, all
cache accesses require a tag read and tag
matching regardless of hit or miss. Second,
there is a cache data access in case of a hit
and a memory access and cache write to
insert the new data in the case of a miss.
This cache fill can result in a loss of effi-
ciency if the cache line is not reused enough
times to amortize the allocation cost. Third,
when new data is allocated, a resident block
must be evicted. If the block is not modi-
fied, no additional energy is required. How-
ever, if the data is modified, the cache must
write it back to memory, requiring an extra
cache read and a memory write. We do not
consider other potential energy costs such
as coherence traffic or leakage.

The inputs to our model are the memory
and cache energy costs per data and tag access
(Ememory, Ecache�data, and Ecache�tag, accord-
ingly). Additional inputs are the cache hit
rates, Pread�hit and Pwrite�hit, and the proba-
bility for write, Pwrite. We define the energy
savings from adding the caching layer
(Esavings) as

Processor bandwidth = A + B

Stacked-DRAM memory
bandwidth = B

External-DRAM memory bandwidth = A

Writeback
bandwidth (Y)

Cache fill
bandwidth (Z)

WR miss
bandwidth (W )

Processor bandwidth = V + W + X + Z
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R
D

 m
is

s
b

an
d

w
id

th
 (

Z
)

W
R

 h
it

b
an

d
w

id
th

 (
V

 )

RD hit
bandwidth (X)

(a) (b)

Figure 2. Two logical organizations of an additional stacked-DRAM memory layer. (a) OS-

managed flat nonuniform memory access (NUMA) organization, where the stacked DRAM is

architecturally beside the external memory. (b) Hardware-managed cache organization

caching external DRAM, where stacked DRAM is placed in front of the external memory.
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Esavings ¼ ðPread�hit � ð1� PwriteÞ
þ Pwrite�hit � PwriteÞ
� ðEmemory � EhitÞ
þ ð1� Pread�hitÞ
� ð1� Pwrite)

� ðEmemory � Eread�missÞ
þ ð1� Pwrite�hitÞ � Pwrite

� ðEmemory � Ewrite�missÞ; ð1Þ

where Ehit, Eread�miss, and Ewrite�miss are the costs
of hit and miss calculated below:

Ehit ¼ Ecache�data þ Ecache�tag: ð2Þ

We developed a statistical model for the
probability of a line being dirty (Pdirty),
through the observation that a clean line in the
cache becomes dirty when a write either modi-
fies it (on hit) or replaces it and modifies it (on
miss), given by (Pwrite � (1 � Pdirty)). Simi-
larly, a dirty line becomes clean when a read
misses the cache and replaces a dirty line that
is written to memory: ((1 � Pwrite) �
Pread-miss � Pdirty). In a steady state, these
two opposite forces are equal, leading to

Pdirty ¼
Pwrite

Pwrite þ Pread�miss � Pwrite � Pread�miss
ð3Þ

In the case where the hit rate is 0 percent,
Pdirty ¼ Pwrite in steady state; when the hit
rate is 100 percent, all lines will eventually
become dirty because there are no read misses
to force write-backs to memory to clean
them (we make a simplifying assumption
that all cache lines will be eventually written).
Accounting for dirty line evictions, the cost
of a cache miss becomes

Eread�miss ¼ 2� Ecache�tag

þ Ememory

þ Ecache�data þ Pdirty

� Evictim;

Ewrite�miss ¼ 2� Ecache�tag

þ Ecache�data þ Pdirty

� ðEvictim � Ecache�tagÞ;
and

Evictim ¼ Ecache�tag

þ Ecache�data þ Ememory:

Eread�miss accounts for the miss tag check,
the memory access to get the data, and the
cache tag and data writes, plus the probability
of evicting a dirty line. For Ewrite�miss, we
assume that the entire cache line will be
replaced, so we do not need to read data from
memory before writing the new cache line.
Our approach for evaluating the energy effi-
ciency is generic and can be leveraged to sup-
port a range of cache microarchitectures,
assuming the correct set of input parameters is
used. For example, in the case of recently pro-
posed cache bypassing and hit-prediction
mechanisms5,6 that steer part of the traffic away
from the cache (according to its prediction
Pbypass�prediction), the improved hit and miss rate
values should be substituted accordingly in
Equations 1 and 3. The total energy gain in
Equation 1 would need to be multiplied by the
probability that the bandwidth is steered
toward cache ð1� Pbypass�predictionÞ as well.

Energy efficiency analysis
Using our analytical model, Figure 3 sum-

marizes the energy savings for a generic cache-
memory pair as a function of the hit rate, for
relative energy ratios between the two layers
of memory ranging from 1 to 10. The savings
are shown as a percentage of the main mem-
ory energy to show the energy improvement
or loss when adding a caching layer. We ana-
lyze a typical scenario wherein write requests
constitute 30 percent of memory accesses,
equal hit rate for reads and writes, and tag
access energy constitutes a modest 10 percent
of the cache data access energy.

Figure 3 shows that as the energy gap
between the memory and the cache shrinks,
the relative cost of caching overheads
increases, leading to diminishing (or nega-
tive) energy savings. Moreover, a system with
a narrow energy gap must achieve substan-
tially higher hit rates to reach positive energy
savings than a pairing with a large energy
gap. A cache that is 10� more energy effi-
cient than the memory saves energy starting
at an 18 percent hit rate, whereas an energy
gap of 1.8� must achieve a 78 percent hit
rate to break even on energy. The relative dif-
ference in energy savings is surprisingly small
for energy ratios larger than 4� (the incre-
mental difference is less than 5 percent), but
it deteriorates dramatically for ratios lower

..............................................................................................................................................................................................
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than 4�. With this observation, we derive an
energy-ratio rule of thumb of 4:1, as a design
guideline (instead of the former 10�) for
when it might be appropriate to build cache-
memory pairings.

Although SRAM-DRAM technology
pairings are attractive from an energy-effi-
ciency viewpoint, an HBM-DDR4 pairing is
borderline energy efficient and depends
highly on the achieved cache hit rate. The
combination of WideIO2-LPDRR4 will be
energy negative unless hit rates above 80 per-
cent are achieved. If tag access overheads of
the caching implementation bloat from 10 to
30 percent, the HBM-DDR4 pairing will
save energy only at greater than or equal to
70 percent hit rate; the WideIO2-LPDDR4
pair needs a hit rate above 90 percent to
break even. Moreover, applying a perfect hit
rate for writes does not strongly affect the
results, because it decreases the break-even
hit rate by only 10 percent for both technol-
ogy pairs. We conclude that on-package
DRAM organized as a cache is likely to be
attractive only when both high hit rates can
be achieved and tag overheads are minimized.
Otherwise, system architects could find a

NUMA organization more attractive for
optimizing energy efficiency.

Bandwidth efficiency model
Our bandwidth model quantifies the rela-

tive bandwidth efficiency of a cache-based
organization (Figure 2b) compared to an ideal
NUMA organization (Figure 2a). We assume
that the memory subsystem is fully loaded
and serves as a performance bottleneck for the
underlying processor. The model accounts for
the bandwidth overheads associated with the
management of data movement within the
cache but ignores tag bandwidth overhead.

Using the notation introduced in Figure 2,
we developed expressions for the variables X, Y,
Z, V, and Was a function of memory and cache
bandwidth (A and B, respectively), Pread�hit,
Pwrite�hit, Pwrite, and Pdirty. Equations 4 and 5
are derived from the definition of a hit rate:

Pread�hit ¼
X

X þ Z
ð4Þ

Pwrite�hit ¼
V

V þW
: ð5Þ
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The probability of a write operation is
defined as

Pwrite ¼
V þW

V þW þ X þ Z
: ð6Þ

Write-back bandwidth Y is defined as the
fill bandwidth multiplied by the probability
that a replaced line is dirty:

Y ¼ ðZ þW Þ � Pdirty: ð7Þ

Finally, we define two boundary conditions.
In Equation 8, the consumed cache bandwidth
is less than or equal to the available cache data
bandwidth, and in Equation 9, the consumed
memory bandwidth is less than or equal to the
overall available memory bandwidth:

V þW þ X þ Y þ Z � B ð8Þ
Y þ Z � A: ð9Þ

In a bandwidth-constrained scenario,
Equations 8 and 9 become mutually exclu-
sive, where either the cache or the memory
serves as the bandwidth bottleneck. By solv-
ing Equations 4 through 7, and imposing the
equality for either a cache (Equation 8) or a
memory (Equation 9), we can identify the
actual bandwidth limiter and compute the

bandwidth achieved by the processor to be
V þW þ X þ Z . Our approach for evalu-
ating the bandwidth efficiency is generic and
can easily be extended to evaluate other cache
microarchitectural innovations. To model the
recently proposed cache bypassing and hit-
prediction mechanisms that steer a portion of
the bandwidth away from the cache directly
into the memory, the improved hit-rate val-
ues should be used in Equations 4 and 5. In
addition, the direct processor-to-memory
read and write bandwidth components
should be added according to the probability
of bandwidth steering (Pbypass�prediction) in
Figure 2b and Equation 9.

Bandwidth efficiency analysis
Figure 4 shows the bandwidth achieved by

various cache pairings relative to the band-
width of a memory-only system. We show
results for several cache-to-memory band-
width ratios for a system with 30 percent write
requests and an equal hit rate for reads and
writes. The points on the far right of the graph
are the idealized NUMA bandwidths achiev-
able if both memories were fully utilized.

Figure 4 shows that cache-based solutions
can never achieve more than the cache band-
width (without using advanced bypassing
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techniques) because cache misses are always
filled into the cache and consume its band-
width. We also see that total bandwidth
grows with hit rate, and the maximum band-
width is only available in an idealized
NUMA organization. For low (1 to 3�) and
medium (4 to 7�) bandwidth ratios, the
achieved bandwidth quickly flattens out,
yields diminishing returns at different points,
and does not improve substantially at higher
hit rates. At this point, the cache becomes a
bandwidth bottleneck, and the memory can
fully supply the miss bandwidth demand.
For larger ratios (8 to 10�), bandwidth
improvements continue scaling as hit rates
approach 100 percent.

We conclude that cache-based heteroge-
neous memory organizations are appealing
only in systems that achieve sufficiently high
hit rates. Otherwise, the bandwidth resources
might not be sufficiently utilized. If high
cache hit rates can be achieved, the band-
width ratio between two layers must still be
sufficiently large; otherwise, cache-based or-
ganizations will be capped at low resource
utilization. Therefore, when the bandwidth
ratio is relatively low, system architects might
want to consider a NUMA memory organi-
zation rather than a cache organization. For
example, if the cache hit rate is higher than
70 percent, the cache-based solution can
achieve bandwidth utilization higher than 70
percent (when compared to idealized
NUMA) for cache-memory pairs only when
bandwidth ratios are larger than 4�, leading
to a bandwidth-ratio rule of thumb of 4:1.
These results indicate that SRAM-DRAM
and HBM-DDR4 cache-memory technology
pairs are attractive for obtaining bandwidth
efficiency, whereas WideIO2-LPDRR4 com-
bination is not; combined with a low energy
efficiency, this combination is unlikely to
make sense in a cache-like organization.

Latency efficiency
Typically, on-chip SRAM has a large (at

least 10�) latency advantage over off-chip
DRAM. As a result, SRAM caches improve
effective memory system latency substan-
tially, in addition to improving energy effi-
ciency and bandwidth. However, when
considering caches comprised of technologies
built from similar DRAM technologies, this

latency advantage all but disappears. As we
described earlier, DRAM latency is domi-
nated by the core DRAM cycle time, which
is largely unchanged between technologies.
When organizing DRAM memories as a
cache, the best latency achievable will be the
unloaded latency to one of the memories. If a
cache implementation requires lookups in
both memories, the average latency to mem-
ory will effectively increase owing to tag
lookup and potential misses in the cache.
Recent work on hit prediction has shown it is
possible to efficiently predict where your data
will be (in cache or memory) with high accu-
racy, thus limiting latency increases when
using DRAM caches. Unfortunately, even
with these techniques, there is little to no
improvement in effective latency, unlike tra-
ditional SRAM-based caches.

T he bandwidth and energy advantages of
emerging stacked DRAM memory

technologies offer new opportunities and
challenges to memory system architects. In
this article, we showed that cache architec-
tures can be feasible when a high cache hit
rate is achieved and the energy and band-
width ratios between stacked and on-package
DRAM are at least 4�. A smaller ratio of
those metrics could motivate the use of the
on-package or stacked memory as a peer
memory with external DRAM in a NUMA
architecture. Such an architecture eliminates
the hardware overhead and complexity of
caching approaches, which could make a
NUMA architecture more attractive in many
applications. However, effective use of these
memories will likely require innovations in
data placement and migration to simultane-
ously exploit the total bandwidth available in
the system and provide greater bandwidth
and lower energy to frequently accessed data
structures. MICRO
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