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Abstract

Registration of Point Cloud Data (PCD) forms a core
component of many 3D vision algorithms such as object
matching and environment reconstruction. In this paper, we
introduce a PCD registration algorithm that utilizes Gaus-
sian Mixture Models (GMM) and a novel dual-mode pa-
rameter optimization technique which we call mixture de-
coupling. We show how this decoupling technique facili-
tates both faster and more robust registration by first op-
timizing over the mixture parameters (decoupling the mix-
ture weights, means, and covariances from the points) be-
fore optimizing over the 6DOF registration parameters.
Furthermore, we frame both the decoupling and registra-
tion process inside a unified, dual-mode Expectation Maxi-
mization (EM) framework, for which we derive a Maximum
Likelihood Estimation (MLE) solution along with a parallel
implementation on the GPU. We evaluate our MLE-based
mixture decoupling (MLMD) registration method over both
synthetic and real data, showing better convergence for a
wider range of initial conditions and higher speeds than
previous state of the art methods.

1. Introduction

Estimation of the relative pose between two point clouds
forms the basis of many algorithms in 3D vision applica-
tions such as 3D object matching, SLAM, body/head pose
estimation, and medical imaging. Typically, many of these
applications use some form of the Iterative Closest Point
(ICP) algorithm [1, 4], an iterative procedure that cycles be-
tween trying to find correspondences from one cloud (or
mesh) to the other, and minimizing the summed distance
between all previously established correspondences. Since
the correspondences may not be correct, the algorithm it-
erates between matching and minimizing, with the hope
that successive iterations will provide more and more ac-
curate correspondences and therefore the minimization of
the summed distance will provide the correct pose displace-
ment.

However, in practice, the original ICP algorithms tend to

converge poorly when subjected to severe noise and large
pose displacements without a good initial guess. To make
the ICP algorithm robust to noise, outliers, and sampling
differences, many variants of the classic ICP algorithm have
been introduced over the last decade [22].

The Softassign algorithm [10] was the first in a new class
of methods that framed ICP into a statistical framework.
Developed as an effort to replace the ad hoc procedure of
correspondence matching and distance minimization with a
theoretical footing in statistics, algorithms in this class are
derived from general assumptions about the nature of point
clouds, their underlying noise properties, and how the min-
imization step relates to some type of energy function or
probabilistic estimate. Thus, these methods facilitate robust
outlier rejection, proofs of convergence, and various contin-
uous optimization procedures with differentiable objective
functions.

Under a statistical framework, the iteration of correspon-
dences and minimization of summed distances can be seen
as a type of Expectation Maximization (EM) procedure [6].
By establishing the connection between ICP’s point match-
ing step with calculating expectations over latent correspon-
dence variables (E Step), and ICP’s distance minimization
step with the maximization of some bound on the data like-
lihood (M Step), many of the EM-based formulations ac-
tually generalize back to ICP under various basic statisti-
cal assumptions about the input data [23, 11]. Additionally,
if each point is given a Gaussian noise parameter, the total
point cloud can be interpreted as a type of Gaussian Mixture
Model (GMM). Thus, most robust registration techniques
explicitly utilize a GMM representation for point cloud data
(PCD) to derive claims and proofs about robustness and
convergence [5, 8, 11, 12, 20]. Unfortunately, these algo-
rithms tend to be much more complex than ICP, and their
robustness often comes at a high computational and repre-
sentational cost.

Our main contribution is a novel statistical algorithm that
provides a fast, compact, and accurate solution for 3D PCD
registration. We build on the idea of using Gaussian Mix-
tures to represent point clouds and EM to find our regis-
tration solution. However, to reduce the computational and
representational cost of our method, we include an addi-
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tional optimization step before the actual registration occurs
to decouple the mixtures from the points (“mixture decou-
pling”). At the same time, we estimate non-uniform mix-
ture weights and anisotropic covariances, according to the
principle of maximum data likelihood. This is in contrast
to previous techniques that utilize per-point Gaussians, uni-
formly weight each mixture, and restrict covariances to be
the same isotropic value per point, which we show to be
ill-posed in the case of range data exhibiting high degrees
of anisotropic uncertainty. Finally, we show how the dual-
mode optimizations (mixture decoupling and registration)
can be unified under a common EM framework and how ex-
ploiting this relation can both improve robustness and drive
a highly parallel implementation on the GPU.

1.1. Background and Motivation

For most GMM-based methods, given a point cloud with
N points zi ∈ R3, the probability of an arbitrary point in
space x ∈ R3 is defined to be,

p(x) =
1

N

N∑
i=1

N (x|zi, σ2I) (1)

whereN (x|zi, σ2I) is the multivariate Gaussian with mean
and covariance {zi, σ2I}. Thus, the means are the point
locations of the modeled point cloud, and all covariances
are controlled by a single isotropic bandwidth parameter,
σ2. Implicit in this construction is that the mixture vec-
tor, πi is uniformly constant for every point (πi = 1

N ). In
other words, if each point has Gaussian uncertainty, then
the collection of these points as a PDF (the linear combi-
nation of their individual Gaussian PDF’s) forms a GMM.
The GMM, being a continuous and valid PDF, thus forms
the foundation for robust probability estimates, noise han-
dling, and EM-based energy minimization or likelihood
maximization methods for registration.

Though registration algorithms designed around the
GMM/EM concept have been established in the literature
to be much more robust than ICP [11], ICP still remains
the industry standard for 3D PCD alignment in vision algo-
rithms due to its simplicity and speed. One problematic as-
pect of existing GMM/EM registration methods stems from
the choice of representation. Though it is theoretically de-
sirable to assign a covariance around each point, this repre-
sentation is now much more complex than the original point
cloud and now has a number of means equal to the num-
ber of points. Furthermore, point-based GMM approaches
operate under the assumption that each point should have
a corresponding point (match) in the other cloud, when,
in fact, sampling differences make this unlikely. The fun-
damental assumption that a point is generated by a single
Gaussian source doesn’t actually correspond to the reality
of non-uniformly scanned geometry, which is that points
belong to surfaces, not other points.

Intuitively, it should be noted that point samples repre-
senting pieces of the same local geometry could be com-
pressed into smaller clusters, with the local geometry en-
coded inside the covariance of that cluster. Thus, if the point
cloud is of size N , it is possible to adequately describe it by
a smaller set of J means and covariances.

1.2. Mixture Decoupling

The former discussion motivates the need to add a pre-
processing step by first finding a compact but representa-
tive model before attempting to establish correspondences
or minimize log-likelihood. This is because, in terms of
computation, the complexity of EM is dependent on the size
of the model. Furthermore, the accuracy and descriptive
power of the model directly affects the convergence rate and
robustness of the algorithm. Therefore, we propose to opti-
mize with respect to the representation first for the express
purpose of aiding registration.

We do this by modifying the normal EM procedure to
first maximize the model data over the set of all possible
GMMs of a given size J , denoted as Θ, without restric-
tion to the structure of the covariance, the placement of
the means, and the mixture weighting. Given point clouds
Z1,Z2 and some unknown transformation T (·) represent-
ing the spatial relationship between them, this forms a dual-
step optimization problem for the form,

Step 1: Θ̂ = argmax
Θ

p(Z1|Θ) (2)

Step 2: T̂ = argmax
T

p(T (Z2)|Θ̂) (3)

After mixture decoupling (Eq. 2-Step 1), we end up with
a more descriptive, compact representation of the original
data. Though this preprocessing step does not come for free
(unlike the traditional approaches described in Section 1.1),
as long as the model is sufficiently compact and well-suited
to the data, the entire process can actually be sped up con-
siderably. Fig. 1 shows this situation pictorially. If each
point cloud is of size N , a typical GMM/EM registration
algorithm will contain N2 potential connections and thus
scale poorly. If we first compress our cloud to size J , where
J � N , then we have two different optimization proce-
dures of size NJ . Given that J � N , we will be able
to produce a method that is much more efficient overall
(O(N2) to O(N)). For the experiments in this paper we
have used J = 16, which is empirically chosen for the best
performance.

2. Related Work
Since the advent of ICP in 1992 [1, 4], there have been

hundreds of papers published on the topic of point cloud
registration. Much early work focused on the direct im-
provement of ICP itself [22] through more robust, nonlin-
ear optimization steps. Some notable works include point
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Figure 1: Mixture Decoupling Left: Given two similarly
sized point clouds of size N , point-based GMMs produce
N2 potential matches. Right: Decoupling points from mix-
tures into a smaller, more descriptive set of latent Θ pro-
duces two separate procedures of size O(JN). If J � N ,
this effectively linearizes the registration process with re-
spect to N .

to quadratic surface approximations [19] and robust M-
Estimators for Euclidean distance [9] solved by Levenberg-
Marquadt optimization. Since this paper is focused on
GMM and EM-based techniques, we will not cover the vast
amount of the ICP literature, but will focus instead only on
those techniques that use statistical models based on GMMs
and/or solved via EM, which we call GMM/EM techniques
as shorthand.

The first statistical algorithm to multiply link correspon-
dences was Softassign [10]. Softassign used a simulated
annealing scheme, borrowed from statistical physics to add
additional robustness. Shortly afterwards Mixture Points
Matching (MPM) [5] and EM-ICP [11] derived multiple
links from Gaussian noise assumptions. Both authors noted
how point sets with Gaussian noise were equivalent to a
Gaussian Mixtures if each point was interpreted as being
generated by some Gaussian with a set isotropic covariance.
Thus, the probability measure of another point cloud hav-
ing been generated by the same Gaussian Mixture set is
well-defined and its rigid transformation can be solved in
closed form for isotropic covariances. Also, using anneal-
ing for robustness, these methods established the process
of interpreting PCD as a Gaussian Mixture with each point
representing a mixture mean with an associated (isotropic)
covariance. It should be noted that, similar to our work,
EM-ICP also recognized the inherent scalability problems
of point-level GMMs and thus devised a very primitive form
of mixture decoupling using a sphere decimation technique.

Tsin and Kanade derived a correlation-based approach
called Kernel Correlation (KC) [27], followed by Jian and
Vemuri with GMMReg [15, 14]. The latter method mini-
mizes GMM-to-GMM L2 distance, a metric that is heavily
related to Tsin and Kanade’s correlation-based approach.
Instead of utilizing an EM-based framework, however, these
methods directly optimize over a cost function containing
all N2 point pairs. Since there is no explicit correspon-
dence step (as in EM), these methods have difficulty scal-
ing. Tsin and Kanade attempted to get around the scalabil-
ity problems by numerical differentiation over grids, while
GMMReg is restricted to small or subsampled point sets.

Maintaining all point-point correspondences, however, re-
sults in a very robust algorithm since Gaussian point-pair
“distances” act as robust loss functions.

Later, the Coherent Point Drift (CPD) [20, 21] algorithm
was introduced as a method similar to EM-ICP, having both
explicit E and M Steps, but with the addition of isotropic
covariance estimation into the M Step in lieu of the an-
nealing technique used by SoftAssign, MPM, EM-ICP, and
GMMReg. ECMPR [12] would later extend CPD’s covari-
ance estimation to fully anisotropic covariances, solving the
optimization via Expectation Conditional Maximization or
ECM [18], an EM-like framework that performs several M-
Steps in succession after each E Step, holding all parameters
but the variable to be optimized constant.

Like CPD and ECMPR, Generalized ICP (G-ICP) [23]
extended ICP to include covariance estimation. Function-
ing as a bridge between methods like ICP and EM-ICP, G-
ICP uses the nearest neighbor criterion of ICP along with
a generalized M Step that, depending on the choice of the
type of covariance estimation, behaves like point-to-point
ICP, point-to-plane ICP, or a plane-to-plane ICP. However,
instead of incorporating covariance estimation into their M
Step, they estimated it separately by looking at local (20-nn)
neighborhoods around each point.

Building off the work of [3, 2] for Normal Distance
Transforms (NDT), a 3D-NDT method for registration was
introduced, and later further refined in [24, 25]. Similar to
G-ICP’s data-driven covariance estimation apart from the
registration optimization itself, the NDT is a way to produce
a smaller set of means and covariances through voxeliza-
tion. Instead of neighborhoods around each point producing
a covariance estimate, as in G-ICP, NDT methods simply
voxelize and then record the mean and covariance of points
that fall within that voxel. As opposed to point-based GMM
constructions, the NDT is a voxel-based GMM construction
and thus can provide large time savings, which is especially
important for many time-critical applications. The 3D-NDT
shares similarities to our proposed work in that it first estab-
lishes a compact model from the data that is then operated
over for the purpose of registration. In contrast to our work,
however, they do not employ EM, but instead use the voxel
occupation of the projected scene or Euclidean distance to
voxels to establish correspondence (most versions therefore
are singly linked, though [25] uses the 4-nearest neighbors),
and then the implicit M-Step is solved through Newton’s
method over a modified GMM-to-GMM L2 distance. Thus,
one can then interpret the 3D-NDT methods in terms of a
GMMReg variant that first performs a type of mixture de-
coupling through voxelization.

More recently, REM-Seg [7] and JRMPC [8] were estab-
lished as algorithms that decouple the means from the points
and do so without resorting to voxelization like the NDT
methods. The former uses a small set of anisotropic covari-



Method Year
Mult.
Link

Prob.
Corr.

Cov.
Est.

Aniso-
tropic

Com-
pact

ICP [1] 1992
SoftAssign [10] 1998 X X
MPM [5] 2000 X X
EM-ICP [11] 2002 X X
KC [27] 2004 X
GMMReg [14] 2005 X
CPD [21] 2006 X X X
3D-NDT [17] 2007 X X X
G-ICP [23] 2009 X X
ECMPR [12] 2011 X X X X
NDT-D2D [24] 2012 X X X X
REM-Seg [7] 2013 X X X X
JRMPC [8] 2014 X X X
Ours (MLMD) X X X X X

Table 1: A Comparison of Probabilistic Registration
Methods. Multiply Linked: many-to-one or many-to-many
correspondences (robustness under non-uniform sampling),
Probabilistic Correspondences: fully probabilistic corre-
spondences or not (as opposed to kernel-based or nearest
neighbor approaches). Allows for application of EM, GEM,
or ECM. Covariance Estimation: Improves convergence as
opposed to statically set covariances or simulated anneal-
ing methods. Anisotropic: non-spherically shaped mixture
covariance. Most earlier methods restrict covariances to be
uniformly isotropic across all mixtures. This improves ro-
bustness through better local shape alignment. Compact-
ness: Given PCD of size N , compact models are those that
have a number of mixtures J � N . This addresses scala-
bility problems with point-based GMM representations.

ances (as we do), and the latter uses a much larger number
of isotropic mixtures (J=0.6N). REM-Seg follows a similar
preprocessing structure, using EM to derive a small set of
anisotropic mixtures, but unlike our method, does not uti-
lize the EM framework for registration, instead minimizing
the cost function directly using gradient descent (similar to
NDT, GMMReg, and KC). JRMPC finds the GMM jointly
from all available data in batch, interleaving the optimiza-
tion of the model with the calculation of the transformation
parameters under an ECM framework. In contrast, we per-
form the optimization of the model to completion first be-
fore recovering the pose transformation. We view our con-
struction to be more robust since, before the geometry has
been fully defined, the transformation calculation could be
ill-posed. Furthermore, JRMPC’s lack of anisotropy pre-
cludes compactness, a necessary component for scalability.

3. Approach
The GMM/EM formulation allows one to recast the cor-

respondence problem of ICP into probabilistic terms, open-
ing the door to soft correspondences based on relative like-

lihoods, as well as maximum likelihood optimization pro-
cedures or minimum energy functions. By explicitly intro-
ducing latent correspondences, the EM framework factor-
izes the joint likelihood so that the log likelihood has no
exponentials in it at all, thus greatly simplifying the opti-
mization procedure over methods that do not operate under
the EM framework [7, 24, 27, 14].

Our method builds on the GMM/EM concept, and
through mixture decoupling, offers large reductions in com-
putational expense for both representation and registration.
Furthermore, as we later show in Section 4, the added de-
scriptive power of using general anisotropic covariances,
mean-point decoupling, and floating mixture weights adds
robustness to pose displacements, noise, and offers a more
compact description of point cloud geometry.

In this Section, we discuss how mixture decoupling and
registration can be unified under a dual-mode EM frame-
work. Then, we derive several accurate MLE approxi-
mation techniques for models with general anisotropic co-
variance parameters since the exact MLE equation with
anisotropic covariances has no closed form solution. These
approximations along with our technique of mixture decou-
pling form a highly efficient Generalized EM (GEM) pro-
cedure [6] for maximum likelihood point cloud registration.

3.1. Overview

In general, directly optimizing over the GMM parame-
ters, Θ, and the registration parameters, T is intractable. To
solve this problem we introduce latent correspondence vari-
ables, enabling the EM algorithm as a means to iteratively
produce estimates of these parameters. The E Step finds
the maximum likelihood estimate of points-to-cluster cor-
respondences. The correspondences are then used to drive
a tractable optimization procedure over the both the model
and registration parameters in succession. We denote the M
Step over GMM parameters Θ as MΘ and the M Step over
registration parameters T asMT . Fig. 2 shows the diagram-
matic depiction of the proposed algorithm.

The process of decoupling cluster means from the points
is intimately related to the process of finding the pose trans-
formation for registration. Fig. 2 shows our dual-step pro-
cess: we perform the same E Step during both model opti-
mization and registration, but utilize two different M Steps
according to the state of convergence of the algorithm. We
first iterate over Θ̂ using MΘ. Once this process has con-
verged, we introduce the second point cloud, but now we
iterate over jointly coupled M Step that solves an MLE ap-
proximation for the registration parameters. For 3D PCD,
previous work has shown that MΘ can be solved efficiently
in parallel and in closed form ([7]). SinceMT is jointly cou-
pled to MΘ, as we will show, it too can be efficiently com-
puted in parallel. Note that for additional computational
efficiency, we transform Θ and not Z . Upon convergence,



Figure 2: Algorithm Flow The algorithm first iterates over
E and MΘ until convergence, a condition denoted by the
binary variable CΘ. Once MΘ converges under Z1, the al-
gorithm then switches to the second point cloud for input
(shown through the one-bit multiplexer). In order to pro-
duce an optimization criterion of size J , theMΘ Step result
then feeds into the MT Step along with the last Θ̂ from Z1

as Θfinal. The algorithm then iterates accordingly, finding
new transformation updates T̂ , which are applied to Θfinal.

the concatenation of all T̂ produce the correct relative trans-
formation between the two point clouds, Z1 and Z2.

3.2. E and MΘ Steps

The first E and MΘ Steps iterate over a point cloud
Z = {zi},∀i ∈ {1..N} in order to solve the maximum data
likelihood problem over a set of Gaussian Mixture param-
eters, Θ = {πj ,µj ,Σj},∀j ∈ {1..J}. Since we cannot
maximize this probability in closed form, we introduce la-
tent binary correspondences C = {cij} for each point, clus-
ter tuple {zi,Θj}. We adopt the parallelized EM algorithm
of Eckart and Kelly [7] to perform this optimization process
efficiently.

In the E Step, we calculate in parallel the posterior for all
cij ∈ C given Θ:

E[cij ] =
πjN (zi|Θj)∑J

j′=1 πj′p(zi|Θj′) + πJ+1

η

(4)

where η and πJ+1 control a special “noise cluster” to filter
outliers.

In the MΘ Step, we maximize the expected log-
likelihood with respect to Θ, using our current E[cij ]

def
=

γij :
max

Θ

∑
ij

γij{lnπj + ln p(zi|Θj)} (5)

Given a fixed set of expectations, one can solve for the
optimal parameters in parallel in closed form at iteration k:

µ̂j =

∑
i γijzi∑
i γij

(6)

Σ̂j =

∑
i γijziz

T
i∑

i γij
− µ̂jµ̂

T
j (7)

π̂j =
∑
i

γij
N

(8)

Thus, given a set number of mixtures, J , we can iterate
these two steps until convergence, leaving us with a com-
pact set of mixtures representing the original PCD, decou-
pled from the original points.

3.3. MT Step

In this section we show how the relationship between
MΘ and MT can provide an efficient technique for recov-
ering the registration parameters. As in the E-MΘ stage
(Sec. 3.2), we introduce correspondences to allow the op-
timization problem to factorize. For shorthand, we denote
our moving point cloud as Z̃ def

= T (Z). The full joint prob-
ability is then,

ln p(Z̃, C|Θ) =

N∑
i=1

J∑
j=1

cij{lnπj + lnN (z̃i|Θj)} (9)

We transform the problem into an iterative algorithm, alter-
nating between finding γij (the same E Step as before) and
the maximizing the expected likelihood,

T̂ = argmax
T

Ep(C|Z̃,Θ)[ln p(Z̃, C|Θ)] (10)

= argmax
T

∑
ij

γij{lnπj + lnN (z̃i|Θj)} (11)

= argmin
T

∑
ij

γij ||z̃i − µj ||2Σj
(12)

In other words, this represents that the most likely estimate
(MLE) of T is the one that minimizes the weighted squared
Mahalanobis distance between points and clusters, where
the weights are determined by calculating the expectation
of the correspondence w.r.t. the current guess T̂ .

Note that due to the double sum, this equation has NJ
terms. However, we can reduce this problem to an opti-
mization procedure of size J by deriving an explicit relation
between MΘ and MT .

To see how we can do this, we first make the simplifi-
cation that Σj = I, ∀j ∈ {1...J}. Now the Mahalanobis
distance reduces to the L2 norm,

T̂ = argmin
T

∑
ij

γij ||z̃i − µj ||2 (13)

Note that in the MΘ step, the solution for the mix-
ing parameters is π̂j =

∑
i γij
N , which we can rewrite as∑

i γij = Nπ̂j . Similarly, in the MΘ step, the optimal
mean is µ̂j =

∑
i γijzi∑
i γij

, which we can also rewrite as∑
i γijzi = (

∑
i γij)µ̂j = Nπ̂jµ̂j . Finally, let µ̃j

def
=

T (µ̂j). Given these equations, we can reduce the original
quantity to be minimized by first expanding it and then com-
pleting the square for only those parts that are vary with T .



We first expand,∑
i

∑
j

γij ||z̃i − µj ||2 (14)

=
∑
j

{
∑
i

γij z̃
T
i z̃i − 2µTj

∑
i

γij z̃i + µTj µj
∑
i

γij}

=
∑
j

{
∑
i

γij z̃
T
i z̃i − 2Nπ̂jµ

T
j µ̃j +Nπ̂jµ

T
j µj}

We can further break down the first term in order to com-
plete the square,∑

i

γij z̃
T
i z̃i =

∑
i

γij ||z̃i − µ̃j ||2 −Nπ̂jµ̃Tj µ̃j (15)

We then place this result back into Eq. 14:∑
j

{
∑
i

γij(z̃i − µ̃j)
T (z̃i − µ̃j)+

Nπ̂jµ̃
T
j µ̃j − 2Nπ̂jµ

T
j µ̃j +Nπ̂jµ

T
j µj}

= N
∑
j

{ 1

N

∑
i

γij(z̃i − µ̃j)
T (z̃i − µ̃j)+

π̂j ||µ̃j − µj ||2} (16)

The first term inside the summation over j represents the
weighted average of the squared distance of each point to its
(weighted) centroid, and is thus invariant under rigid trans-
formations so it can be dropped. Dropping this term then
transforms the problem into a weighted optimization crite-
rion of size J .

T̂ = argmin
T

∑
j

π̂j ||µ̃j − µj ||2 (17)

In contrast with Eq. 13, we now have J virtualized point
correspondences between the decoupled model means and
the maximum likelihood means of the new points with re-
spect to the model. Additionally, each pair is weighted by
its expected relative contribution among all J mixtures. Fi-
nally, it should be stressed that the calculations of π̂j and
µ̂j are exactly the same as in MΘ, and this property allows
us utilize the same optimized parallel computation for reg-
istration as for mixture decoupling.

Other GMM/EM methods have used similar transforma-
tions for reducing the problem size to a single sum over
points to virtualized points [11, 12, 8]. These constructions
can be viewed as transformations from a one-to-one point-
based criterion into a many-to-one or point-to-model crite-
rion. In contrast, our reduction can be viewed as a many-to-
many or model-to-model optimization criterion.

3.4. Closed Form Approximations

If we restrict T to include only the set of 6DOF rigid
transformations, parameterized by the set of all R ∈ SO(3)

and t ∈ R3, such that Z1 = RZ2 + t, then the minimiza-
tion of Eq. 17 can be solved by using a weighted version of
Horn’s method [13]:

aj = µj −
∑
j π̂jµj∑
j π̂j

, and bj = µ̂j −
∑
j π̂jµ̂j∑
j π̂j

(18)

and

K =
∑
j

π̂jajb
T
j (19)

where K is a 3x3 matrix containing all the elements re-
quired to construct a special 4x4 matrix, from which the
SVD solution gives the optimal rotation as a unit quater-
nion. See [13] for details.

The optimal translation is then,

t̂ =
∑
j

π̂j(aj −Rbj) (20)

However, in the preceding derivation we omitted the co-
variances by setting Σj = I, ∀j ∈ {1...J}. If we want
to retain a closed form solution in MT but do not want to
force our GMM in E andMΘ to have isotropic covariances,
one simple approximation strategy is to use the “closest”
isotropic inverse covariance in a Frobenius sense for the
MT Step. Note that we are still letting the covariance be
fully anisotropic for both the E Step and the MΘ Step. We
can solve this trivial approximation for MT by inspection,

σ̂j = argmin
σj

||Σ−1j − σ
2
j I||F =

√
Tr(Σ−1j )

d
(21)

Thus, the new MT criterion is,

∑
j

π̂j σ̂
2
j ||µj − µ̃j ||2 (22)

We denote the collection of σ̂j as shape weights. To dif-
ferentiate the shape weighting from isotropic weighting, we
define MT -points and MT -shape. MT -points is the M step
that does not have shape weights, and the MT -shape is the
one with shape weights. Note that the shape weights cor-
respond to the average inverse eigenvalue for each covari-
ance, thus scaling point distances inversely by the average
“spread” of the cluster covariance. This formulation marks
a significant departure to previous works that use just one
sigma for all J clusters. We use full anisotropy in both the
E steps for segmentation and registration, as well as for the
MΘ step. The only step that does not use full anisotropy is
the MT step, where it is approximated.



Figure 3: Datasets Left: Bunny [28], Right: Lounge [29]

4. Results

For our experimental results, we use both synthetic data
(Stanford Bunny [28]) and real-world data from the Stan-
ford Scene Datasets [29] (Fig. 3). The bunny contains
around 40k points, while the lounge data is taken from a
Kinect, and thus consists of 640x480 depth frames taken at
30 Hz. Our hardware testbed is a desktop computer with an
i5-3500 CPU and GTX660 GPU.

We compare our method versus other popular publicly
available open-source methods. For fairness, we use other
parallelized registration methods when available, including
optimized multicore implementations of ICP and EM-ICP
(using OpenMP), and GPU-accelerated versions of Softas-
sign and EM-ICP [26]. We also test using GMMReg [15],
a popular open source package.

4.1. Robustness to Large/Random
Rigid Transformations and Noise

To obtain a comparative measure of the convergence
properties between our proposed method and the state of
the art, we ran each registration algorithm 100 times while
varying the amount of rotation (overlap). Using two dif-
ferently subsampled cross-sections of the Stanford bunny
(N=2000), we applied pitch axis transformations from -180
to 180 degrees. Additionally, we added noise in the form of
500 outliers sampled uniformly inside a region twice the ex-
tent of the original data. Fig. 4 shows the results. We used
the Frobenius norm error between the recovered and real
rotation matrices as our measure of rotational error. Both
SoftAssign and our method were the only two algorithms
that did not diverge over the entire range of pitch transfor-
mations, though SoftAssign’s error is an order of magni-
tude higher than our method. As expected, ICP produced
the worst convergence, recovering angles of < 45 degrees
only. EM-ICP and GMMReg produced high quality results
when the angle was less than 90 degrees (about double the
range of ICP), but diverged to a local minimum for larger
transformations.

To obtain a more general result of robustness to trans-
formations on all axes, we randomly sampled 100 6DOF
transformations and applied them to the Stanford Bunny.
To sample from the space of rotations in SO(3) uniformly
and without bias, we used the method outlined in [16]. The

Recall Recall Avg. Std.
Method (≤ 0.01) (≤ 0.025) Time (s) Time (s)

ICP 0.00 0.00 0.196 0.050
SoftAssign 0.00 0.00 1.832 0.203
GMMReg 0.36 0.91 1.819 1.020

EM-ICP (CPU) 0.14 0.72 1.953 0.353
EM-ICP (GPU) 0.14 0.72 1.136 0.912

MT -points 0.53 0.92 0.107 0.034
MT -shape 0.61 0.92 0.121 0.037

Table 2: Accuracy of random rigid transformations
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Figure 4: Robustness to Large Transformations Pitch
axis transformations from -180 to 180 degrees were
performed over randomly sampled Stanford Bunnies
(N=2000). ICP has the smallest convergence radius, han-
dling transformations of -45 to 45 degrees. EM-ICP and
GMMReg approximately double the convergence region.
Due to sampling nonuniformity, SoftAssign often produced
poor registration accuracy though its worst-case solution
was the best of all the algorithms.

random rotations were bounded by 90 degrees in absolute
sum over each axis angle, and the random translations were
bounded by the extent of the dataset on each axis. As be-
fore, the bunny for both model and scene were randomly
subsampled without replacement down to 2000 points and
corrupted with 5% noise. In order to derive a simple accu-
racy measure, we looked at the percentage of solutions (%
recall) for which the Frobenius error between the real and
calculated rotation was acceptably small. For our method,
we set J = 16. The results are summarized in Table 2,
along with average execution times.

Due to the random subsampling and noise, ICP and Soft-
Assign could not obtain accurate solutions over the random
transformations tested. The GPU optimized EM-ICP was
the fastest previous method tested, though ours is roughly
an order of magnitude faster. GMMReg produced good re-
sults at an error threshold of 0.025, with a recall accuracy of
91%, but generated about a third of the solutions with error
under 0.01. In contrast, our methods faired better, recover-



25%
13.7dB

30%
11.8dB

35%
10.2dB

40%
8.9dB

45%
7.7dB

50%
6.7dB

Percentage Outliers / Signal to Noise Ratio

0.02

0.03

0.04

0.05

0.06

Fr
ob

en
iu

s 
Er

ro
r i

n 
Ro

ta
tio

n

GMMReg
Proposed
EM-ICP

Figure 5: Robustness to Noise We injected both outliers
and point-level Gaussian noise into two subsampled Bunny
point clouds (N=2000) separated by 15 degrees on all roll,
pitch, and yaw axes. Each iteration included both more out-
liers (shown as a percentage on the x-axis) and more point
noise (shown as a Signal-to-Noise dB value). We did not
include ICP or SoftAssign since any amount of noise and
outliers tested corrupted the result significantly.
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Figure 6: Computation Times Scaling the number of
points subsampled from each point cloud for registration.
Note that the scale is logarithmic on both x and y axes.

ing over half of the transformations at the 0.01 error level,
for both point-based and shape-based approximations. The
MT -shape method is about 10% slower in our current GPU
implementation thanMT -points due to the need to calculate
the shape parameters.

Fig. 5 shows how the proposed approach can handle the
point cloud data with additional noises. Notice that our
approach outperforms the other methods that can handles
noisy inputs.

4.2. Scalability

Many modern sensors generate many thousands to mil-
lions of 3D points per second. In general, the registration
methods reviewed in this paper greatly benefit from the ad-
dition of extra data in terms of accuracy and robustness.
Unfortunately, the construction of point-based GMMs pro-
vide scaling challenges. When scaling to large numbers of

points, even methods that have been optimized to be parallel
[26] fail to approach real-time speeds for large point clouds.
See Fig. 6 for details. We applied the same random trans-
formations as in Section 4.1, but increased the amount of
points sampled from the Stanford Bunny on every iteration.
Due to our process of mixture decoupling inside a unified
parallelized EM framework, Fig. 6 demonstrates orders of
magnitude improvement on large point clouds.

4.3. Real-World Data

To test our algorithm over real-world data, we chose to
use the Lounge scene from the Stanford Scene dataset (Fig
3). For ground truth, we used the authors’ pose calculations.
Below is a table summarizing the frame-to-frame rotation
error:

Method Avg. Err Std Dev
EM-ICP 0.890 1.109

SoftAssign 0.413 0.753
ICP 0.032 0.110

GMMReg 0.022 0.025
MT -shape (N=2k) 0.017 0.018
MT -shape (N=10k) 0.010 0.005

We subsampled down to 2000 points for each frame to
produce tractable running times. ICP faired somewhat bet-
ter on this real data since the rigid transformations remain
small due to the fast framerate of the Kinect and the small
amount of interframe motion. Suprisingly, EM-ICP often
diverged, which we attribute to a failure of the multilevel
registration process. We ran two versions of our algorithm,
one using the same number of points as the others (2k), and
the other using a much larger subsampling (10k). As shown
in Section 4.2, the parallel nature of our algorithm along
with the process of mixture decoupling allows us to incor-
porate much more data while still keeping running times
better than the state of the art. Thus, the 10k subsampled
PCD produces a better model and drives down the overall
average frame to frame registration error significantly.

5. Conclusion
In this paper, we introduced a novel 3D point cloud reg-

istration method that utilizes a preprocessing step to first op-
timize over the set of models for the purpose of aiding reg-
istration, a technique we refer to as mixture decoupling. We
first represent the input 3D PCD with a GMM, and decouple
the optimization of the model parameters and registration
(pose transformation) parameters. This dual-step optimiza-
tion provides more efficient and accurate registration per-
formance even over large rigid transformations without any
good initialization, as well as in conditions of high noise.
We also show that the proposed approach can provide a
more efficient and scalable solution compared to other state-
of-the-art registration algorithms.
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