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Abstract – Booth Encoding is a common technique 
utilized in the design of high-speed multipliers.  These 
multipliers typically encode just one operand of the 
multiplier, and this asymmetry results in different power 
characteristics as each input transitions to the next value 
in a pipelined design.  Relative to the non-encoded input, 
changes on the Booth-encoded input induce more signal 
transitions requiring ~73% more multiplier array energy. 
This paper proposes low-overhead approaches to take 
advantage of this asymmetric behavior to reduce the 
energy of multiplication operations in pipelined SIMD 
architectures like GPUs.  Compiler-based approaches 
that apply constant or uniform inputs to the 
Booth-encoded input of the multiplier can save 4.8% of 
multiplier energy on average.  An additional 1.5% 
savings can be achieved with dynamic detection and 
steering of uniform inputs.   

I.  INTRODUCTION 
 

The energy required to perform multiplication operations 

is a significant source of power consumption in many 

important applications, ranging from deeply embedded DSPs 

to GPU-based accelerators used in the largest supercomputers. 

Booth Encoding  [4] is a commonly employed technique in 

multiplier implementations because is reduces the number of 

partial products that must be summed using the carry-save 

adder tree.  Radix-4 Modified Booth Encoding is often used 

in commercial multiplier designs [13], and it reduces the 

number of partial products by approximately a factor of two.  

The goals of these optimizations are primarily to minimize 

the delay and to reduce the area of the multiplier.  One 

consequence of this approach, however, is that changes to the 

Booth-encoded input of the multiplier can induce 

significantly more switching activity than changes on the 

other, non-encoded, input.  Earlier research [8] also 

observed this energy asymmetry in Booth-encoded 

multipliers. 

Prior research has proposed some approaches to 

constructing reduced power multipliers based on reducing the 

switching activity resulting from Booth-encoded operands [6, 

15].  Selecting the operand for encoding that results in the 

greatest number of encoded “zero” terms, described by [6], is 

well suited to integer and some fixed-point applications, but 

not widely applicable to floating point values which don’t 

typically exhibit long strings of 0’s or 1’s.  The approach 

described by [15] introduces latches to reduce spurious 

transitions generated by switching in the encoding path, but 

does not address the intrinsic additional switching that 

changes in the Booth-encoded input can induce. 

This work explores techniques to minimize multiplier 

energy by optimizing the assignment of multiplier input 

parameters to the Booth-encoded operand.  In particular, 

this work focuses on low-overhead techniques that can be 

exploited by pipelined, SIMD architectures like those found 

in many GPUs. 

II.  MULTIPLIER DESIGN 
 

  The multiplier design considered in this paper is 

commonly used in single-precision floating-point fused 

multiply-add units.  In this work, only the 24×24-bit 

multiplication of the significand is considered.  The 

additional exponent arithmetic, normalization, addition, and 

rounding logic found in these units is not considered.  The 

approach described can be extended to larger (e.g. 

double-precision floating point or 32-bit integers) or smaller 

(e.g. 16-bit floating-point formats) multipliers in a 

straightforward manner. 

 The multiply operation takes two 24-bit values, A and B, 

and computes a 48-bit product.  Generally, the multiplier 

logic consists of two primary components: Partial Product 

generation and a Carry-Save Adder.   

 

A.  Partial Product Generation 

A Radix-4 Modified Booth Encoding scheme is assumed 

for partial product generation.  The primary benefit of this 

approach is reducing the number of partial products that must 

be summed using the carry-save adder by a factor of two. The 

B input operand is encoded to determine the corresponding 

term by which the A input is multiplied.  The encoder 

considers three bits at a time (bi+1, bi, and bi-1) of the B 

operand, and generates three signals – Neg, NotZero, and 

Shift – according to Table I.  Only the values where i is even 

are considered, and bit positions that fall “outside” the 

operand (e.g. b-1, b24, and b25) are treated as having the value 

0.   

In the 24×24-bit multiplier, 13 partial product terms result 

from this radix-4 encoding.  Each bit, i, of each term, j, of 

the partial product is then generated as:  

 

  A_maskedi,j = (ai XOR Negj) AND NotZeroj 

 Partial_producti,j = Shiftj ? A_maskedi-1,j : A_maskedi,j 
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In order to handle the negative partial product rows 

generated by the Booth encoder, the Sign-Generate 

Sign-Extension scheme described by [2] is used.  The 

“single zero” Booth encoding scheme described in [2] is also 

used to reduce switching that would have been created by a 

“-0” term for the 111 pattern.    

 

B.  Carry-Save Adder Generation 

The Carry-Save adder in the multiplier is generated with a 

Reduced Area Multiplier tree [3] using 3:2 (and 2:1) 

compressors.  The inputs at each layer of the tree are 

selected in order to minimize spurious transitions.  The 

design strives to match the delays of various inputs to each 

stage of the reduction.  Sakuta, et al. [14] actively inserted 

delay elements to balance delays of the inputs to each stage.  

Rather than add gates with their associated area and power, a 

heuristic is employed that attempts select 2:1 compressor 

inputs that are at the same delay to that point, or 3:2 

compressor inputs which two inputs are at the same level, 

and a third (corresponding to the “carry-in” term) is 

somewhat delayed.  If no inputs meet these criteria, 

candidate inputs that have the least “spread” in estimated 

delay are selected.  If multiple input sets meet the criteria, 

the lowest delay input set to that point is selected. 

Alternative heuristics to determine the configuration of the 

CSA tree were evaluated including a transition-minimizing 

scheme suggested by Oskuii, et al. [12]. They select inputs at 

the upper levels of the CSA tree that are predicted to have the 

lowest likelihood of seeing a transition.  Their approach 

searches the large number of permutations of possible 

mappings to find an optimal solution.  This time-consuming 

approach is not well-suited for larger multipliers studied here.  

Instead, a greedy heuristic was employed that simply seeks to 

select the inputs with the lowest predicted probability of 

transition at each stage of the reduction is used.  This 

scheme was determined to be most beneficial when it was 

used to “break ties” in the delay-balancing scheme described 

above. 

These heuristics are applied at each level of the carry-save 

reduction before proceeding to the next.  As a result, it is 

possible that some opportunities are missed.  For instance, 

in the scheme used for this work, a subsequent level of 

reduction might expose a better opportunity for a balanced 

delay choice that was not possible at the earlier level, and 

that result might have been mapped to the input of another 

 

TABLE II 

24×24 MULTIPLIER OVERVIEW 
 

Multiplier Avg. Power (pJ) Area (µm2) 

Radix-4 Modified 
Booth Encoding 

18.17 3650.29 

 

compressor which would have been better left to pair-up in 

the next reduction stage.  The final carry-propagate addition 

is performed with a Kogge-Stone adder [9]. 

III.  POWER ASYMMETRY OF BOOTH-ENCODED OPERANDS 

   

The multiplier design is implemented using an 

open-source 45nm standard-cell library [11].  Using a 

simple wire-load model and the input-capacitance for each 

gate, the cells are appropriately sized such that high fan-out 

gates keep output transition times within acceptable limits.  

Power information based this standard-cell library is used to 

compute leakage and dynamic switching power for each gate.  

A gate-level discrete-event simulator simulates this multiplier 

for a sequence of pseudo-random numbers in a pipelined 

fashion, and captures signal transition and power information 

for each operation. 

Using this infrastructure, the impact on the energy of the 

multiplier is evaluated as different input operands change at 

various rates.  Figure 1 shows that when new 

pseudo-random inputs are applied to both inputs on each 

cycle, the Radix-4 multiplier requires an average 18.17 pJ of 

energy per multiply.  If the rate at which the non-encoded, A, 

input operand changes is reduced such that a new 

pseudo-random value is provided only every 4 cycles (while 

the B input continues to change each cycle), the average 

energy of each multiply drops 13% to 15.82 pJ.  If, on the 

other hand, the rate at which the Booth-encoded, B, input 

operand changes is reduced such that a new pseudo-random 

value is provided only every 4 cycles (while the A input 

continues to change each cycle), the average energy of each 

multiply sharply drops 41% to 10.81 pJ.   

 

 

 
 

Fig. 1: Energy of 24×24 multiply as each operand varies 
 at different rates. 

TABLE I 

RADIX-4 MODIFIED BOOTH ENCODING 
 

Pattern Result Neg NotZero Shift 

000 0 0 0 0 

001 +1 0 1 0 

010 +1 0 1 0 

011 +2 0 1 1 

100 -2 1 1 1 

101 -1 1 1 0 

110 -1 1 1 0 

111 0 0 0 0 

 



 

        
 

Fig. 2: Dynamic operand selection and steering. 

 

Relative to the non-encoded input, changes on the Radix-4 

Booth-encoded input induce ~73% more multiplier energy 

due to increased switching activity.  A flip in a single bit in 

the Radix-4 Booth-encoded operand changes the encoded 

value of up to two partial product terms, potentially including 

shifts and negations of the non-encoded operand.  Thus, a 

single bit in the Booth-encoded input operand can affect up to 

54 bits in the partial-product inputs to the carry-save adder 

tree.  Conversely, a flip of a single bit in the non-encoded 

input operand can flip at most 13 bits in the resulting 

partial-products.  In addition, changes in the encoded input 

alter the values of the Neg, NotZero, and Shift outputs of the 

encoders.  These signals fan-out to every bit in a 

partial-product term, requiring higher drive-strength gates, 

additional buffers, and longer wire.  Variations in the arrival 

time of some of these signals also tend to introduce 

disproportionally more spurious transitions during the 

evaluation of the result.  Thus, transitions in these signals 

are more expensive than the transitions in the partial product 

terms themselves.  

IV.  EXPLOITING MULTIPLIER POWER ASYMMETRY 
 

Given the substantial asymmetry in the energy cost of 

changing the Booth-encoded operand relative to the 

non-encoded operand, higher-level architectural techniques 

exploiting this behavior are potentially attractive.  Generally, 

schemes that minimize the switching activity on the 

Booth-encoded input will minimize the total multiplier 

power. 

 

A.  Dynamic Operand Selection and Steering 

The most straight-forward “brute-force” approach to 

minimize the switching on the encoded input is simply 

comparing the Hamming distance of the new A and B input 

operands to the previous B input.  If the Hamming distance 

of the new A input is less than the Hamming distance of the 

new B input, the A and B inputs are swapped.  This 

approach is somewhat similar to a scheme described by Chen, 

et al. [5], in which the A or B input resulting in the fewest 

number of non-zero Booth-encoded terms is used as the 

Booth-encoded B input. 

  

 

 
 

Fig. 3: Pipelined execution of SIMD operations in a GPU. 

 

This approach requires additional latency and energy to 

compute the Hamming distance, reducing the potential 

savings within the multiplier.  The design shown in Figure 2 

was implemented and evaluated using the same infrastructure 

as the 24×24-bit multiplier.  The computation and 

comparison of the Hamming distance, and the muxing of the 

operands requires 1.31pJ of additional energy per multiply.  

However, with pseudo-random inputs, this approach only 

saves an average of 0.44 pJ of multiplier power.  This 

results for a net increase of 0.87 pJ per multiply.  Clearly, 

techniques that require lower overheads to steer relatively 

static inputs to the Booth-encoded input of the multiplier are 

needed if this opportunity is to be exploited. 

 

B.  Finding Static Opportunities 

The overheads of per-operation dynamic detection and 

selection of the best Booth-encoded operand make an 

approach that can statically determine the best operands 

attractive.  Potential opportunities arise for this static 

approach in pipelined SIMD implementations, such as those 

found in GPUs, in which a multiply instruction is performed 

across the values in a SIMD (or vector) register.   

As shown in Figure 3, GPU implementations may execute 

portions of a SIMD operation over several cycles in a 

pipelined manner.  For instance, AMD’s recent GPUs 

execute a 64-element SIMD instruction on a 16-wide 

execution pipeline over four cycles [1].  Proposed future 

GPU architectures use a temporal SIMT approach that 

execute the entire 32-thread GPU warp in a pipelined manner 

on a single execution unit over 32 cycles [16].  Thus, if a 

constant value or a uniform vector can be steered to the 

Booth-encoded multiplier input in these implementations, 

energy reductions similar to the 5.0 or 6.3 pJ/multiply 

savings shown in Figure 1 between the two bars at the 

columns labeled “4” and “32” can be realized. 

Prior research has noted that within the SIMD execution 

engines of a GPU, a significant number of operands are 

scalar (uniform) across all the lanes of execution within a 

GPU [7].  Utilizing a cycle-accurate simulation framework 

designed for architectural exploration and performance 

analysis of current and future NVIDIA GPUs, statistics were 

gathered from 168 GPU application traces in which more 

than 5% of the dynamic instruction count consists of 

single-precision multiplications (or multiply-accumulates).  

These applications range across the various domains in which 

GPUs are applied.  They include supercomputing, mobile, 



 

Fig. 4: Prevalence of single-precision multiplies with one uniform operand. 

(Overall average = 27.6%) 

workstation, PC gaming, and embedded image-processing 

workloads.  Figure 4 shows, for each workload, the 

frequency of single-precision multiplies in which one 

operand is uniform across all 32-elements of a warp.  One 

common reason for this situation is simply the case in which, 

for example, all elements in a vector are being multiplied by 

a constant value (e.g. π).  The workloads that see ~100% of 

the multiplications as having one uniform input are either 

convolutions with a constant set of filter weights, or a kernel 

operating on a very sparse matrix in which the great majority 

of data values are all zero.  Overall, an average of 27.6% of 

all single-precision multiplications have one uniform operand.     

If each of these can be steered to the Booth-encoded input of 

the multiplier, up to 12% of multiplication energy could be 

potentially saved. 

 

C.  Compiler Selection of the Booth-encoded Input  

Given the opportunity, a low-overhead approach to 

identify and steer these uniform inputs to the encoded 

multiplier input is needed.  Ideally, the compiler can 

determine which inputs are uniform or likely to be uniform.  

It can then specify these inputs as the Booth-encoded operand 

in the multiply instructions.  This approach requires no 

additional hardware and no incremental energy cost to make 

the operand selection decision. 

The first requirement to enable this compiler-driven 

operand steering technique is that the implementation must 

expose which multiplier source operand in the instruction-set 

architecture is mapped to the Booth-encoded input.  Ideally, 

this would remain constant across different implementations 

of the ISA, allowing the same binary to be optimized for a 

variety of implementations. Instruction set architectures that 

allow constants to be specified as one operand of a 

multiplication operation should, obviously, also direct the 

constant value to the Booth-encoded input of the multiplier. 

Next, the compiler must identify the scalar/uniform 

operands across a warp.  Prior research [10] describes a 

compiler technique for scalarization.  The scalarization 

optimization tries to identify instructions that produce 

identical results across for every element in a warp, and 

replace these instructions with a single scalar operation rather 

 

Fig. 5: Multiplier energy savings with compiler-driven steering.  

(Overall average = 4.8% w/ pipeline depth 4, 6.5% w/ pipeline depth 32) 

than the redundant warp-wide SIMD instruction.  This 

occurs when the compiler can ensure that all the input 

registers to a warp-wide instruction are uniform.  The same 

analysis that identifies these uniform registers can be 

leveraged to determine which multiplication operands are 

uniform and best suited to be applied to the Booth-encoded 

input of the multiplier.   

This compiler approach was implemented to statically 

select uniform inputs to be steered to the Booth-encoded 

multiplier input.  Figure 5 shows the potential energy 

savings across the 168 GPU workloads.  The baseline to 

which it is compared is one in which there is a 50% chance 

that a given uniform input register happens to be applied to 

the Booth-encoded input.  With an architecture that executes 

a warp pipelined over four cycles, the average energy savings 

is 4.8%.  With a temporal SIMT implementation that 

pipelines a warp over 32 cycles, the energy savings is 6.5% 

on average. 

 

D.  Dynamically Detecting Uniform Inputs 

Additional benefit can be gained from dynamic detection 

of uniform data.  After steering data known at compile-time 

to be constant to the Booth-encoded input, additional 

opportunity remains.  For example, data loaded from a 

sparse array may consist entirely of zeros, but the compiler 

will be unable to prove the result of the load operation is 

always uniform.   

If logic exists to dynamically detect and flag uniform 

warp-wide registers (e.g. when data is returned from a load 

operation), then simple operand-muxing hardware can be 

added in front of the multiplier to ensure that uniform input 

registers are steered to the Booth-encoded input as shown in 

Figure 6.  Using this approach provides additional 

opportunity to save multiplier energy.  Figure 7 shows the 

additional savings beyond the compiler-only selection 

technique.  Multiplier energy can be reduced another 1.5% 

on average in an implementation with warp execution 

pipelined over four cycles.  An additional 2.1% savings can 

be achieved in a temporal SIMT implementation with a warp 

pipelined over 32 cycles.   

 



       
 

Fig. 6: Dynamic uniform input steering. 

 

The additional logic that detects and marks uniform 

warp-wide registers requires additional area and energy, and 

the relatively minor additional savings in multiplier energy 

may not justify these overheads.  The dynamic detection 

logic is also useful in scalarization [7], however.  If this 

logic is present for other reasons, it can be easily leveraged to 

provide incremental multiplier energy benefits.   

V.  CONCLUSIONS 
 

In this paper, the energy asymmetry of Booth-encoded 

multipliers is characterized in pipelined scenarios, showing 

that holding the Booth-encoded input constant rather than the 

other input can save up to 42% of multiplier energy. 

Exploiting this property in the context of pipelined SIMD 

processors like GPUs, a zero-overhead compiler-based 

approach for identifying uniform inputs and steering them to 

the Booth-encoded multiplier input is described.  This 

approach saves up to 6.5% of single-precision multiplier 

energy on average in a temporal SIMT architecture which 

executes all 32-elements in a warp on a single, pipelined 

execution unit.  An additional 2.1% reduction, for a total of 

8.3% savings in this implementation, can be achieved if the 

architecture supports dynamic detection of uniform 

warp-wide registers. 

 

Fig. 7: Additional multiplier energy savings with dynamic detection and 

steering of scalar/uniform inputs.  

(Overall average = 1.5% w/ pipeline depth 4, 2.1% w/ pipeline depth 32) 

 

Additional benefits can also be gained by applying similar 

techniques to double-precision and integer multipliers.  Also, 

while steering uniform data to the Booth-encoded input was 

the focus of this paper, potential other benefits can be derived 

from steering affine or other slowly varying data to the 

Booth-encoded input.  Extending this approach to these 

areas and to traditional CPU architectures remains future 

work. 
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