
A Phenomenological Scattering Model for Order-Independent Transparency

Morgan McGuire
Williams College and NVIDIA

Michael Mara
Stanford and NVIDIA

c ©
20

15
N

V
ID

IA

Figure 1: Three scenes rendered in real-time by our method, none of which were possible under previous real-time transparency algorithms.
Left) Distance-based diffusion by a frosted glass door. Center) Colored transmission with multiple layers of refraction and reflection and
colored shadows with caustics. Right) Diffusion and shadowing in a participating medium with partial coverage and varying density.

Abstract
Translucent objects such as fog, smoke, glass, ice, and liquids are
pervasive in cinematic environments because they frame scenes in
depth and create visually compelling shots. Unfortunately, they are
hard to simulate in real-time and have thus previously been ren-
dered poorly compared to opaque surfaces in games.

This paper introduces the first model for a real-time rasterization
algorithm that can simultaneously approximate the following trans-
parency phenomena: wavelength-varying (“colored”) transmission,
translucent colored shadows, caustics, partial coverage, diffusion,
and refraction. All render efficiently on modern GPUs by us-
ing order-independent draw calls and low bandwidth. We include
source code for the transparency and resolve shaders.

Keywords: transparency, transmission, refraction, caustic, particle

Concepts: •Computing methodologies→ Rendering;

1 Introduction

Occlusion is the most powerful depth cue, surpassing even perspec-
tive and shadows. Partial occlusion due to various forms of trans-
parency gives a strong perception of depth without the limitation of
concealing shape. This is one reason that film directors rely heavily
on fog, smoke, and glass in cinematic composition. Another reason
is that effects such as rolling fog and layered glass refraction create
interesting visual complexity.

Beyond just layering, such transparent surfaces present a variety of
important phenomena seen in figure 1. These include diffusion by

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org. c© 2016 Copyright
held by the owner/author(s). Publication rights licensed to ACM.
I3D ’16, 2016-February-27
ISBN: 978-1-4503-4043-4/16/03
DOI: http://dx.doi.org/10.1145/2856400.2856418

frosted glass and fog, wavelength-varying transmission in colored
glass, colored and translucent shadows, multiple layers of refrac-
tion, self-shadowing within dense media such as clouds, and rela-
tively bright caustics in shadows.

Many of these phenomena have previously been hard to render effi-
ciently under rasterization. Although there are some good special-
case solutions, there is no previous real-time rasterization method
that models all of them simultaneously, let alone efficiently. Thus,
these important visual elements from film been absent from real-
time rendering 3D applications. This absence is particularly unfor-
tunate because depth cues are even more important in an interactive
context than in film. Game players, CAD engineers, and 3D artists
need to understand depth relationships to perform tasks in 3D. Fur-
thermore, today’s stereo screens and head-mounted virtual reality
(VR) displays lack the depth cue of focal accommodation. Robust
transparency by ray tracing allows ocular vergence to partly com-
pensate for the lack of focus in pre-rendered VR content by pre-
senting multiple viable vergences at each pixel. Our approximation
brings complex transparency to real-time VR for the first time (see
figure 13).

We introduce a new order-independent transparency (OIT) model
for light scattering, and algorithm for rendering with it in real-time
on modern GPUs. These emulate the real physical phenomena de-
scribed in this section through empirically-derived methods. Our
model extends previous stochastic and order-independent trans-
parency methods that reduce complex scenes to a single amalga-
mated layer per pixel. This provides for efficient unordered sub-
mission of draw calls, avoids costly primitive and fragment sort-
ing, and limits per-pixel bandwidth and storage requirements. It
also has the advantage of smoothly transitioning when primitives
abruptly change order, for example, eliminating the “popping” as-
sociated with particle systems under ordered transparency. Quan-
titatively, we demonstrate increased visual effects while achieving
a 10× reduction in memory traffic compared to previous colored
shadows [McGuire and Enderton 2011] alone and transparency at a
2× reduction compared to α-only k-buffering [Vasilakis and Fudos
2014; Salvi and Vaidyanathan 2014].

Each approximation that we introduce contains radiometric error,
compared to a ray tracer. We contend that for many real-time appli-
cations, radiometric error is less important than perceptual error. By
emulating physical phenomena, our model significantly improves

http://dx.doi.org/10.1145/2856400.2856418

the perception of transparency in many scenes compared to the al-
ternative of no approximation of those phenomena at all.

This paper contributes new effects and demonstrates real-time per-
formance. However, this research targets not just good performance
today, but scaling with upcoming hardware architectures. After
properly presenting and evaluating the method, we explain this as-
pect of the paper’s contribution in section 7.1.

2 Related Work

For each of the transparency phenomena that we model, the lit-
erature includes many real-time solutions for rendering that phe-
nomenon in isolation, typically with more accuracy and higher cost
than our model and with greater constraints on the scene. We re-
view some of the most recent below. Our approach is better suited
to cases where a coarser approximation is acceptable in exchange
for a significant performance increase and reduction in implemen-
tation complexity, and integration of all of these phenomena into a
unified transparency model.

Sorted transparency operates by the “painter’s algorithm,” render-
ing surfaces in back-to-front order. In addition to the sorting and
ordered submission costs, it is undesirable because it requires slic-
ing or simply fails when no consistent ordering exists between sur-
faces. In scenes for which a perfect ordering exists, a two-pass1

implementation that first modulates the background by transmis-
sion and then adds reflected and emitted light can accurately model
non-refractive transmission and partial coverage. We use that as a
reference solution for those effects in our results.

k-buffers Carpenter’s [1984] A-buffer was the first method for al-
lowing order-independent submission of partial-coverage surfaces
to a renderer, albeit at unbounded space and time costs for n
surfaces. The Z3 method [Jouppi and Chang 1999] stores only
bounded k transparent surfaces and merges the other n − k ones.
Z3 hardware has never been built, but a variety of related k-buffer
methods were devised for increasingly programmable, real-world
GPUs [Bavoil et al. 2007; Maule et al. 2013; Salvi et al. 2011;
Vasilakis and Fudos 2014; Salvi and Vaidyanathan 2014].

Parallel to the visible surface k-buffer work are methods for model-
ing partial coverage in the light’s view for shadowing [Lokovic and
Veach 2000; Sintorn and Assarsson 2009; Jansen and Bavoil 2010]
in various cumulative-opacity vs. depth curve representations.

Stochastic Transparency A stochastic, a.k.a. “screen door”
transparency algorithm stores only one layer per sample. These
methods are good for primary visibility and shadow partial cover-
age, but expensive because they require high (e.g., 128× MSAA)
sample counts or wide filters [Enderton et al. 2010; McGuire and
Enderton 2011]. We combine this idea for shadows with the pre-
filtering of Variance Shadow Maps (VSM) [Donnelly and Lauritzen
2006] to solve the performance problem.

Blended Transparency A key idea in the k-buffer meth-
ods is that they all aggregate the n − k overflow fragments.
Meshkin [2007] proposed a blended transparency method that is
essentially a k = 1-buffer, aggregating all fragments. He redefined
the compositing operator to estimate all order-dependent terms as
zero. Subsequent work [Bavoil and Myers 2008; Kluczek 2012;
McGuire and Bavoil 2013] extended this through more accurate

1This can be done in one pass for monochrome transmission or on hard-
ware with programmable blending. Fixed-function blending cannot simul-
taneously modulate and accumulate with λ-varying constants.

approximations and normalization terms. The core blending of our
method advances this line of research.

Realistic Scattering The real-time methods we’ve described so
far were all designed for simple Porter-Duff partial coverage (α-
blending). That’s a good model for monochrome transmission
through a single-scattering medium, and is sufficient for some ap-
plications, such as rendering thin smoke and antialiasing opaque
edges. However, it fails to model other real-world situations, such
as color modulation of objects viewed through colored glass and
the blurring seen when an object is in thick fog.

We are aware of no previous real-time diffusion solution, how-
ever there is much work on offline diffusion simulation. Nishita
et al. [1998] derived early models of scattering in participating me-
dia at planetary scale. Narasimhan et al. [2003; 2004] describe how
to compute a spatially-varying point spread function for diffusion
in participating media based on the Legendre approximation of the
Henyey-Greenstein phase function. They note that a single Gaus-
sian blur is an insufficient model because it must vary at every pixel
and take occlusion into account; we present exactly those exten-
sions. Premože et al. [2004] give a derivation for the screen-space
Gaussian from physical parameters.

Refraction The simplest refraction model is to render a dynamic
environment map for each object and compute single-surface re-
fraction of distant light. This obviously does not scale to large
scenes or multiple refractions. More sophisticated recent methods
include models of distant light through rough surfaces [de Rousiers
et al. 2012] and screen-space layered G-buffer ray tracing [McGuire
and Mara 2014; Ganestam and Doggett 2015].

Caustics Caustic methods have been developed for limited cir-
cumstances such as flat receivers [Yuksel and Keyser 2009], indi-
vidual transmissive surfaces [Shah et al. 2007], and exactly two lay-
ers [Wyman 2005]. Wyman et al.’s [2009] recent work is extremely
accurate for monochrome caustics in isolation.

3 Algorithm

We compute transparent phenomena in three stages. First, for each
light source, we produce a colored stochastic shadow map of trans-
missive surfaces that is affected by caustics.

Second (after opaque surfaces have been rendered), we perform
an order-independent transparency (OIT) pass. This iterates over
all transparent surfaces with a pixel shader that outputs each sur-
face’s contribution to accumulated reflected light Argba, trans-
mission βrgb, diffusion factor D, and refractive displacement δxy
buffers. Section 4 derives these. The appendix details configuring
fixed-function blending for the required sums and products.

For surfaces such as fog particles that lack fine detail, the second
stage can be performed at low resolution. We then upsample the
results with a bilateral filter and combine them with full-resolution
ones, allowing mixed-resolution results.

Third, we iterate over pixels in screen space that were affected by
transparent surfaces to resolve the output of the second stage into
the image of the opaque surfaces in the framebuffer.

4 Scattering Model

4.1 Material Parameters

We model transparent materials with a reflective BRDF (lamber-
tian and microfacet + Fresnel glossy terms), emission term, partial

coverage (α), and a BTDF. Our BTDF parameters are refractive
index (η), wavelength-varying transmission coefficient at normal
incidence (T (λ)), and a collimation factor (c ∈ [0, 1]). Unit col-
limation describes an optically homogeneous material like perfect
glass that exhibits no multiple-scattering within its volume. Zero
collimation describes a dense, isotropic participating medium such
as muddy water or fog.

The transmission coefficient t(λ) used in shading is T (λ) modu-
lated by one minus the BRDF, both evaluated for the actual angle
of incidence. Our shading model also uses t̄, the mean of t(λ) over
wavelength.

Both the transmission coefficient and collimation factor assume that
light travels a fixed distance through a medium after the surface
before exiting; otherwise one would have to apply Beer’s law to
accumulate their impact per pixel. This is a common real-time ren-
dering assumption that is reasonable for drinking glasses, windows,
and particles. It is a poor approximation for something like an ice
sculpture that has significantly varying thickness.

Refractive index is specified once per material instead of per texel.
We pack the three-channel T (λ) and scalar c into an sRGBA8 tex-
ture. Because c is encoded in the A channel, unspecified collima-
tion conveniently defaults to c = 1 for legacy texture maps.

4.2 Wavelength-Varying Blending

Consider a series of n translucent surfaces ordered from back to
front towards the viewer at a pixel and an opaque backing surface
that scatters radiance L(X0, λ) towards the camera. (This ordering
is only for the derivation. Our algorithm accepts surfaces in any
order.)

The outgoing radiance towards the camera at surface point Xi and
wavelength λ is the sum of the reflected2 and transmitted light at
the point [Glassner 2015]:

L(Xi, λ) = αi ·
[
Lr(Xi, λ) + ti(λ)L(X(i−1), λ)

]
+

(1− αi)·L(X(i−1), λ). (1)

Here, we express the radiance that would exist with full coverage
and then scale it for the actual coverage αi to make explicit the
blending structure. The transmission coefficient ti may vary with
wavelength, and with orientation due to Fresnel effects. For the mo-
ment, we ignore refraction. No direction variable appears because
we’re explicitly only measuring radiance towards the camera.

The net modulation of the background L(X0, λ) after transmis-
sion through, and partial-coverage by, all translucent surfaces is
exactly [McGuire and Enderton 2011]

β(λ) =
∏

[1− αi + αiti(λ)] . (2)

(β for background.) Because β is a product and includes all sur-
faces, order is irrelevant. Since our goal is to aggregate all surfaces
into a single-layer, i.e., (k = 1)-buffer, for later composition, the
net solution must be expressed in the form

L(Xn, λ) ≈ β(λ) · L(X0, λ) + (1− β(λ)) · U(λ), (3)

where U(λ) is a weighted sum of the radiance emitted and reflected
by the translucent surfaces whose form is unknown a priori.

Note that the weight wi of the contribution from layer i transmitted
through, and partially covered by, surfaces (i+1)...n is independent
of the order of those other layers [Meshkin 2007].

2we include emitted light in the “reflected” term to simplify notation

If the space between Xi and the camera were filled with a homo-
geneous participating medium instead of inhomogenous discrete
surfaces, then by Beer’s law, the radiance αi · Lr(Xi, λ) scattered
from surface i along the camera-space z-axis that reached the cam-
era would be wi = e−q|zi| [Kluczek 2012]. In that equation, q is
the absorption coefficient of the medium. We can normalize by to-
tal weight to limit its influence, since we’re only computing color
and the magnitude of transmission from all surfaces is known to be
(1− β). This gives a solution weakly dependent on an implicit q:

U(λ) =
Argb(λ)

Aa
=

∑
i wi · αi · Lr(Xi, λ)∑
i wi · αi · (1− t̄i)

(4)

We name the numerator and denominator accumulationsA for later
reference in the OIT stage implementation, where they are explicit
RGBA buffers.

Thus far, our derivation assumed a uniform medium. Since the
scene is actually filled with inhomogeneous discrete surfaces,
weight wi should not actually follow from Beer’s law but instead
some scene-dependent function that is also monotonic and super-
linearly decreasing in depth (because it is a product). We use

wi = min
(
max

(
[10 · (1− 0.99 · f) · αi · (1− t̄i)]3, 0.01

)
, 30
)

(5)

with f = gl_FragCoord.z, which is McGuire and Bavoil’s equa-
tion 10 scaled for an infinite far plane and float16 precision.

The sums and products in β and A can all be computed in a sin-
gle pass over transparent surfaces using multiple render targets and
fixed-function blending. The appendix contains the OpenGL con-
figuration and shaders.

4.3 Multiple Forward Scattering Approximation

Diffusion Diffusion of the background occurs when transmissive
surfaces decollimate light due to repeated scattering, or due to an
extremely rough transmissive interface. We explicitly model the
former case and also allow artists to approximate the latter.

As depicted in the figure on the right, re-
peated scattering in a uniform medium pro-
duces a random walk. In screen space, this
means that there is a Gaussian distribution
of pixel offsets between where light enters and emerges from a sur-
face [Premože et al. 2004]. The standard deviation of the Gaussian,
and thus the diffusion in pixels, decreases with distance from the
camera |zi| (due to perspective) and with collimation ci.

Following previous work, we estimate the total diffusion standard
deviation D (in pixels) at each pixel from all foreground surfaces
indexed by i, for an infinitely distant background, as

D =
W

2 tan(θ/2)

∑
i

k0(1− ci)αi
|zi|

, (6)

where θ is the field of view, W is screen width in pixels, and k0 is
the standard deviation (in meters) of the Gaussian due to a single
c = 0 surface at unit depth.

What about diffusion of background surfaces at finite distances? In-
tuitively, repeated scattering has the net effect of a collection of con-
cave lenses; the resulting Gaussian is the sum of their point spread
functions. The amount of defocus from this system increases with
the distance from the surface to the background and may be close
to zero. For example, a hand pressed against a frosted glass shower
door will be appear sharp, whereas the body behind it is diffused.

B
X

D

Image Plane

The figure on the right depicts the
cone of light from background ob-
ject B and its random-walk disper-
sion in the medium (B also scat-
ters light that never reaches the cam-
era, e.g., in directions shown in light
gray). Let zB,i be the depth of the
camera-space background B as read from the depth buffer, zX,i be
the depth of the surface X , and constant k1 the implied thickness
of the scattering surface (we simply use k1 = 0.5m for all scenes
in our results). Under this compound convex lens and the previous
background model, we approximate the diffusion standard devia-
tion for arbitrary B as:

D=
W · k0

2 tan(θ
2
)

√√√√∑
i

[
(1− ci)αi (1− (1 + |zX,i − zB,i|/k1)−1)

|zX,i|

]2
.

(7)

n̂

B
X

!̂i

!̂o
�z

Refraction of Primary Rays Many real-
time renderers approximate refraction by
exactly applying Snell’s law using a sim-
plified model of the scene: a homoge-
neous volume of transmissive medium ex-
tending backwards to a fixed-depth back-
ground plane. Some use screen-space ray
tracing to compute slightly more accurate refraction at increased
cost. Both produce an offset (δX, δY) in pixel coordinates by which
to distort the background objects already appearing in the frame-
buffer.

In the absence of a principled method for combining refraction vec-
tors from overlapping surfaces, we simply blend them. This pro-
duces a result that is as exact as previous methods for a single trans-
missive surface. For multiple surfaces, it is incorrect but captures
the displacement phenomenon of refraction.

Consider the (camera space) ray to the center of projection from a
surface point X with normal n̂ and relative refractive index η =
ηbefore
ηafter

, in direction ω̂o. By Snell’s law, that ray refracted from
direction

ω̂i = −ηω̂o − (η − n̂ · ω̂o +
√
k)n̂ (8)

if k = 1− η2[1− (n̂ · ω̂o)2] was non-negative (otherwise, the ray
had no transmissive transport). For a background approximated as
a plane at fixed depth ∆z beyond X , the observed point is given by

B = X + ω̂i∆z/(ω̂i · ẑ). (9)

To obtain the refractive pixel offset (δX, δY), we project B into
screen space and subtract the current pixel coordinate. ∆z is a per-
scene parameter; we used ∆z = 2m for all results.

n̂
!̂i

Caustics and Translucent Shadows In the
real world, focusing under refraction redis-
tributes light within the shadowed region, pro-
ducing lighter and darker areas. We approxi-
mate this by varying the density of a stochastic
shadow map as follows.

Colored stochastic shadow maps [McGuire
and Enderton 2011] model shadows from sur-
faces with wavelength-varying transmission us-
ing RGB values instead of a single depth map.
During shadow map generation, they write to
the shadow map for wavelength λ with probability ρ(λ) propor-
tional to partial coverage and 1 - transmission. This works because
a shadow map stores surfaces of primary visibility for a light source.

To extend stochastic shadow maps to mimic caustics, we decrease
shadowing where light strikes a transmissive surface at normal inci-
dence. We increase shadowing where the refractor is at a glancing
angle and thus has a low Fresnel transmission factor.

Specifically, during shadow map rendering, we increase ρ(λ) where
the magnitude of the dot product of the surface normal n̂ and the
vector to the light ω̂i is close to 1, and decrease ρ(λ) where the
dot product is close to zero. We also increase this effect with the
relative refractive index η. Including some contrast enhancement
and relevant clamping to the unit interval gives our empirically-
tuned equation:

s = min(max((1/η − 1)/2, 0), 1) (10)

g = 2 ·min(max(1− |n̂ · ω̂i|128·s
2

, 0), 1)− 1 (11)

ρ(λ) = (1 + g · s0.2) · α · (1− t(λ)) (12)

Intutively, s is the strength of the effect as determined by η, and g
remaps the measure of incidence to increase its contrast.

We render one stochastic shadow map per wavelength, or a sin-
gle map when the scene is known to have no wavelength-varying
transmission. Stochastic shadow maps are known to require large
filters to suppress noise during shading. In order to reduce the cost
of this filtering, we convert the shadow maps to Variance Shadow
Maps [Donnelly and Lauritzen 2006], filter them with a 15×15 tent
kernel (in two 1D passes), and downsample by a factor of four in
each dimension. The resulting shadow map costs 64 bits per texel
per wavelength and need only be sampled once per wavelength dur-
ing shading to produce noise-free shadows.

A known limitation of VSM is light leaking under certain geom-
etry. One could use Exponential VSM or other variants to reduce
this at increased bandwidth and filtering costs. We instead accept
the light leaking for transparent shadows (since the shadow is al-
ready translucent, the additional light is often acceptable) and use a
separate traditional Williams shadow map for opaque shadows.

5 Resolve Stage

The resolve stage comprises optional upsampling followed by a
full-screen pass implemented as pixel shading of a screen-space
quad, or as a compute shader. It performs the following steps:

Upsample When accumulating particles at low resolution, we
begin the resolve pass by joint-bilateral upsampling the low-
resolution buffers as if they were simply colors, using the
depth buffer as a key. See Tatarchuk [2013] for filtering de-
tails. We use a 7×7 tent filter kernel and composite the re-
sult of the upsample into the full-resolution buffers using the
same blending modes as for the transparency stage (see the ap-
pendix), except that the render target with index 1 (RT1) uses
glBlendFuncSeparatei(1,GL ZERO,GL SRC COLOR,GL ONE,GL ONE).

Refract For each pixel (x0, y0) in the output, we read from the
transparent buffers at (x0, y0) but sample the background with a
filter centered around (x, y) = (x0, y0)+δxy. Note that transparent
surfaces cannot refract one another under this model.

Diffuse We gather from the background according to a Gaus-
sian point spread function [Premože et al. 2004] with standard
deviation D (this is a single pixel when D = 0) for diffusion.
Some coefficients in the kernel must also be zeroed out to model
occlusion by nearer opaque objects. We do this by gathering
at output pixel (x, y) only from pixels (x + i, y + j) at which

min(D[x, y], D[x + i, y + j]) ≤ ||(i, j)||. This filter is unfor-
tunately not separable and is thus expensive when D is large. Rec-
ognizing that this is similar to depth-of-field (DoF) rendering with
the circle-of-confusion parameter replaced by D, we speculate that
techniques from DoF methods could accelerate diffusion.

Modulate and Combine Transmissive modulation of the opaque
background as captured in β is exact. However, transmissive sur-
faces don’t modulate each other in the A channels, so sometimes
they have an ambiguous appearance where they overlap in the im-
age. For example, a white glossy highlight on a distant glass surface
will not be colored in A by a foreground glass object with highly
saturated transmission color through which it is observed (see fig-
ure 8). To compensate for this, we blend 50% of the hue of β into
A when we normalize by the sum of the weights in Aa:

U ′ =
Argb

Aa

[
1

2
+

β

2 max(max(β), ε)

]
(13)

We call the term in brackets self-modulation because it applies a
portion of the β modulation to the transmissive surfaces themselves.

With the background value filtered by diffusion and refraction and
A and β sampled from the buffers, we compute U ′ and then simply
apply equation 3 to compute the final pixel radiance.

6 Results

6.1 Evaluation of Isolated Phenomena
Figure 2 shows a grid of two layers of colored transmissive glass
bars rendered with three algorithms. Like real glass, these glossy
reflect “white”, have no diffuse reflection, and transmit the color
that they appear. Previous recent OIT methods fail to model
transmission, so they can only approximate colored glass with
monochrome partial coverage (left). For this hard test case, our
results (center) exactly match two-pass sorted transparency (right).

Figure 3 shows a scene with a row of teapots behind panes of glass.
The panes have decreasing collimation from left to right. The top
row was rendered with offline path tracing in previous work by oth-
ers3. We attempted to recreate their scene from that image, and then
rendered our real-time result on the bottom, which captures similar
phenomena. Note also the decreased diffusion of the checkered box
compared to the teapots in both rows, which occurs because the box
is pressed against the glass.

Figure 4 compares shadows from three algorithms. The rightmost
two objects are our stochastic VSM shadows with caustics. They
match the expected phenomena for the cloud (translucency propor-
tional to distance traveled) and the refractive sphere (caustic in the
center). The correct darkening of the lower portion of the cloud it-
self is due to self-shadowing within that medium; the shading nor-
mals are identical on all particles.

Figure 5 shows how the caustic approximation varies as expected
with η. We use a sphere for clarity and then gives a example of
more complex geometry. Figure 6 shows a detail of the caustic
stochastic shadow map for this scene before conversion to VSM,
where its screen-door nature is apparent. The ground plane is a gra-
dient instead of constant because spotlight is inclined. For another
example, refer to the caustics from the glass tumblers and ice cubes
in figure 1(center).

Figure 8 shows overlapping colored transmission of plastic (i.e.,
nonrefracting) bottles under four methods. The yellow arrows point

3From the iRay developer blog at
http://blog.irayrender.com/post/19731699592/frosted-glass-part-ii

c ©
20

15
N

V
ID

IA

Figure 2: Colored transmission through two layers of glass bars.

Figure 3: Top: Decreasing collimation, rendered by offline path
tracing in iRay. Bottom: Our real-time result. c© 2015 NVIDIA

c ©
20

15
N

V
ID

IA

Figure 4: Left to right: Williams’ opaque shadow map, Enderton
et al.’s stochastic shadow map, and our phenomenological caustic
stochastic shadow map applied to a cloud (no refraction, no caus-
tic) and glass sphere (producing a refractive caustic).

c ©
20

15
N

V
ID

IA

Figure 5: Caustic stochastic shadow map shadows for varying re-
fractive indices. From left to right: η =1.0 (air), 1.3 (ice), 1.5
(glass), 1.5.

c ©
20

15
N

V
ID

IA

Figure 6: Visualization of a caustic stochastic shadow map.

Figure 7: A glass chess set rendered with two draw calls and naive blending vs. our method in a single draw call for all transmissive surfaces.
The δxy term is visualized as RGB color ((δx + 1)/2, (δy + 1)/2, 0). Arrows point to some errors in the naive rendering. Our result corrects
the ordering and captures the phenomena of colored shadows with caustics, refraction, and colored transmission. c© 2015 NVIDIA

Figure 8: Four plastic bottles on a table in the Uffizi rendered by
different methods (all using our shadowing). The overlaid yellow
arrows denote a challenging area. a) Two-pass blending with un-
ordered submission is obviously incorrect. b) Perfect sorting gives
an ideal but result in 2n draw calls. c) Our method without self-
modulation is efficient but has weak coloring in some areas. d)
Self-modulation improves overlaps. c© 2015 NVIDIA

to one challenging area. Subfigure (a) shows what two-pass sorted
blending produces with unordered primitive submission; the perfor-
mance is good and quality is unacceptable. Subfigure (b) shows that
2n draw calls for n objects with perfect sorting yield ideal quality,
albeit at low performance. Subfigure (c) shows our algorithm with
the self-modulation term disabled; some areas of colored overlap
give an ambiguous appearance. Subfigure (d) shows our final result,
in which β modulates A during the resolve pass using equation 13.
This result is qualitatively close to optimal (b) in terms of disam-
biguating overlaps, but slightly increases color saturation because
surfaces must also modulate their own reflections. The bottom row
shows the intermediate buffers.

6.2 Complex Scenes with Simultaneous Phenomena

The left and right subimages of figure 1 show diffusion in complex
noir scenes. Figures 10a and 10b visualize the diffusion channel D
for these. Both scenes exhibit diffusion increasing with depth, but
for different reasons. In the first scene, objects become more dif-
fused as the distance |zX,i−zB,i| from the single frosted glass sur-

face increases. The door frame and text have D = 0 because they
are in front of the glass. The man, woman, and far wall are progres-
sively distant behind the glass and therefore increasingly diffused.

In the second scene, objects become more diffused as the thickness
of the medium increases because there are more surfaces i in the
summation. The woman is not very diffused because very little
fog is between her and the camera. The man deep in fog is more
diffused and the buildings are blurred beyond recognition. As the
lamp posts recede into the fog, they become more diffused.

Figure 7 shows a red and clear glass chess set in a living room. On
the left is two-pass blending applied to objects. Because all chess
pieces with the same material are a single mesh, there is no correct
sorting order. Furthermore, shadows don’t capture transparency and
there is no refraction. Our result in the center fixes these problems
and is rendered in a single draw call for all transparent surfaces. A
visualization of the intermediate buffers is on the right.

Figure 9 shows a CAD model of an automobile engine rendered in
two orientations by our method. The orientation is clear in each
case due to weighted blending. This is a challenging case because
the surfaces are in close proximity and all have partial coverage.

c ©
20

15
N

V
ID

IA

Figure 9: CAD-style rendering of a car engine with many closely-
packed partial-coverage surfaces, in two orientations.

Figure 11 compares hair under three methods. We include this for
completeness, but do not claim it is a strongly-motivating case for
our method. A head of hair has a very narrow depth range, so all
weightswi are nearly uniform across it. Our model doesn’t produce
a result substantially better than unsorted blending. Because hair is
a special case in which a uniform partial-coverage material quickly
saturates to full opacity and in many cases covers a minority of the
screen, we propose using a k-buffer or other bandwidth-intensive
method (see Yuksel and Tariq’s survey [2010]) to render hair to
a small off-screen texture and then compositing that as a single ag-
gregate surface under our model. This would improve quality while
still integrating with a general method.

Figure 12 shows two versions of a scene with overlapping trans-
missive glass and partial-coverage smoke. The left image uses a
4 × 4 subsampling for the smoke buffers. Because the transparent

(a) One layer of glass

c ©
20

15
N

V
ID

IA

(b) Dense fog

Figure 10: Diffusion channel D for scenes from figure 1.

Figure 11: Heads with 50k α = 0.2 hairs totaling 24M polygons
each, rendered under three transparency strategies with stochastic
shadow maps for self-shadowing. c© 2015 NVIDIA

c ©
20

15
N

V
ID

IA

Figure 12: Overlapping glass and smoke at varying resolutions.

c ©
20

15
N

V
ID

IA

Figure 13: Chess scene rendered to the Oculus DK2 HMD.

pass rendering time is dominated by the smoke, this gives nearly a
16× bandwidth reduction and proportional speedup. Glass is at at
full resolution in both images. While some fine detail is of course
lost due to subsampling, note that opaque and transparent objects
meet at clean edges due to the bilateral upsampling and that in the
final images, areas where the glass and smoke overlap are nearly
identical even though smoke was processed separately on the left.

We also implemented our algorithm for the Oculus VR SDK. Fig-
ure 13 shows the head-mounted display (HMD) image with precor-

Table 1: Run time in milliseconds for each stage of our algorithm.

Scene Figure 1. Shadow 2. OIT 3. Resolve
Door 1 left 0.01 + 1.55 0.04 2.37
Glasses 1 center 0.73 + 4.65 1.53 0.09
Foggy Night 1 right 0.37 + 1.55 4.32 4.02

w/ 4×4 sub. - 0.37 + 1.55 0.37 5.01
Chess 7 0.24 + 4.65 6.21 0.09
Engine 9 0.48 + 1.55 10.0 0.07
Hair (24 Mtris) 11 28.13 + 1.55 19.21 0.06
Car 12 right 0.68 + 1.55 2.91 0.11

w/ 4×4 sub. 12 left 0.68 + 1.55 0.25 1.10
San Miguel 14 5.07 + 1.55 0.54 0.09

rection for its optical distortion. The overlaid yellow arrows mark a
red chess knight in the background seen directly by the left eye and
observed through the foreground clear piece by the right. Evaluat-
ing recent transparency methods for HMDs is future work, however
we report that the ability to “focus” one’s vergence on either the
foreground or the background knight felt surprisingly like true fo-
cal accomodation to us. Here and in the noir scenes, we had a much
stronger sense of depth and presence than when we removed the fog
or turned the glass objects opaque–those changes made the HMD’s
fixed focal plane more apparent and made depths more ambiguous.

Figure 14 shows the San Miguel scene, which has significant par-
tial coverage at foliage silhouettes as well as glass transmission on
windows, lamps, and wine glasses. Note that only the silhouettes of
leaves and not the interiors appear in the OIT buffers–those surfaces
render in the opaque rendering pass where α = 1.

Table 1 gives the run time for each stage of our algorithm on an
NVIDIA GeForce 980 GPU at 1920×1080 resolution. We render
shadow maps at 40962 resolution and filter them down to 10242

VSMs. The first number in the Shadow column is the geometry-
dependent depth map generation time. The second number is VSM
creation time, which depends only on the number of lights and
wavelengths.

The Order-Independent Transparency (OIT) stage 2 is dominated
by the cost of shading the surfaces themselves–the weighting and
refraction calculations in listing 1 add only about 25 arithmetic op-
erations and one texture fetch. Recall that the Hair scene has 24M
sub-pixel triangles and thus a high render time.

The Resolve stage 3 is extremely fast when there is no upsampling
or diffusion. Subsampling smoke and fog produces better than an
order of magnitude throughput increase at the OIT stage, with the
cost of a fixed≈1 ms overhead for upsampling in the Resolve stage.
Diffusion running time is linear in the number of non-zero elements
of the point-spread kernels (∝ D2).

7 Discussion

7.1 Impact in the Context of GPU Architecture

We described a method that extends the previous weighted-blended
transparency methods with several new effects and demonstrated
their visual impact and performance. Moreover, this research tar-
gets not just high performance today, but scaling with longer-term
trends in hardware architecture.

Our method requires only fixed-function blending during frame-
buffer writes. Thus, it avoids the pixel-synchronization overhead
of programmable blending on new GPUs. This is important be-
cause synchronization points limit parallelism, and scaling to up-
coming 4k TVs and head-mounted displays will require more par-
allelism than even today’s best GPUs. In the short term, avoiding

Figure 14: Several views in San Miguel and intermediate buffers.
Note overlapping partial coverage (leaves) and transmissive and
refractive (glass) surfaces. c© 2015 NVIDIA

synchronization also allows implementation on widely deployed
DX11/GL4-class GPUs, including consoles.

Memory bandwidth is a limiting constraint on high-performance
rendering [Whitted 2010]. That is because off-chip DRAM and
its physical interface have changed relatively little over the past
50 years. Hence, bandwidth increased slowly compared to the
Moore’s Law pace of arithmetic operations. In fact, the open se-
cret of early GPUs was that their advantages over CPUs were large
texture caches and wide memory interfaces, and not flop/s.

NVIDIA’s upcoming 2016 Pascal GPU architecture stacks DRAM
on top of the processor for a one-time higher-bandwidth inter-
face [Huang 2015]. However, because every surface on the package
is now occupied, we will never see another comparable increase un-
der DRAM with metal interconnects. Thus, while we predict a brief
upset for a few months, in the long term, increased performance will
be achieved only by decreasing memory traffic to take advantage of
the steady arithmetic scaling offered by massive parallelism.

Our full algorithm requires only 112 bits/pixel of framebuffer write
bandwidth and storage during the key Transparency stage 2. For
α-only scenes, this drops to 88 bits/pixel. In comparison, Salvi
and Viadyanathan’s method [2014] with a (k = 4)-buffer for α
requires 256 bits/pixel and Vasilakis and Fudos’s method [2014]
requires between 128 and 320 bits/pixel in the worst case. Thus,
our approach has strictly higher throughput for this stage by up to
3.6× for α-only, and our full model achieves a 2-3× increase vs.
previous α-only methods.

For casting transparent shadows on all scene elements, McGuire
and Enderton’s [2011] method requires around 176 texture fetches
for the 15×15 tent filter that eliminates stochastic noise. By com-
bining their method with VSM [Donnelly and Lauritzen 2006], we
reduced that to a single fetch per shaded fragment. Combined with
the geometry-independent prefiltering process, this is about a 15×
net bandwidth reduction for the scenes in our experiments.

7.2 Limitations and Future Work

Despite their run-time costs and limitations, we find the quality
of special-purpose hair and caustic methods compelling and desire
that quality combined with our method’s performance.

“Subsurface scattering” is the result of diffusion in a dense, highly-
scattering transparent medium. We’d like to reconcile transparency
and real-time subsurface scattering (e.g., [Jimenez et al. 2010])
models, and idealy unify their algorithms.

Ours and all other order-independent transparency methods inher-
ently interact poorly with screen-space effects such as reprojec-
tion antialiasing, ambient occlusion, screen-space reflection, mo-
tion blur, and depth of field because there is no single depth corre-
sponding to each pixel in the final framebuffer.

One obvious future direction is to replace both translucency and
screen-space effects with ray tracing. Today, a rasterization ren-
derer with our method and various screen-space effects is about
an order of magnitude faster than a comparable ray tracing one.
For games, rasterization-and-approximation performance trumps
the challenges that this poses for software engineering and artists
to work within the approximations. However, at some point the
opposite tradeoff may be worthwhile, using more machine time to
reduce the cost of authoring software and content. The natural ques-
tions for further research are what new algorithms and architectures
would enable this inflection point, and since there is unlikely to be
an instantaneous change, how they can smooth the transition from
an all-rasterization to an all-ray tracing pipeline.

References

BAVOIL, L., AND MYERS, K. 2008. Order independent trans-
parency with dual depth peeling. Tech. rep., NVIDIA.

BAVOIL, L., CALLAHAN, S. P., LEFOHN, A., COMBA, J. L. D.,
AND SILVA, C. T. 2007. Multi-fragment effects on the GPU
using the k-buffer. In Proc. of I3D, ACM, 97–104.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface
method. In Proc. of SIGGRAPH, ACM, 103–108.

DE ROUSIERS, C., BOUSSEAU, A., SUBR, K., HOLZSCHUCH,
N., AND RAMAMOORTHI, R. 2012. Real-time rendering of
rough refraction. IEEE Trans. on Vis. and Comp. Graph. (Feb).

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In Proc. of I3D, ACM, 161–165.

ENDERTON, E., SINTORN, E., SHIRLEY, P., AND LUEBKE, D.
2010. Stochastic transparency. In Proc. of I3D, ACM, 157–164.

GANESTAM, P., AND DOGGETT, M. 2015. Real-time multiply
recursive reflections and refractions using hybrid rendering. Vis.
Comput. 31, 10 (Oct.), 1395–1403.

GLASSNER, A. 2015. Interpreting alpha. JCGT 4, 2 (May), 30–44.

HUANG, J.-H., 2015. Keynote, March. GPU Technology Confer-
ence, San Jose, CA.

JANSEN, J., AND BAVOIL, L. 2010. Fourier opacity mapping. In
Proc. of I3D, ACM, 165–172.

JIMENEZ, J., WHELAN, D., SUNDSTEDT, V., AND GUTIERREZ,
D. 2010. Real-time realistic skin translucency. CG&A 30, 4,
32–41.

JOUPPI, N. P., AND CHANG, C.-F. 1999. Z3: an economical hard-
ware technique for high-quality antialiasing and transparency. In
Proc. of Graphics Hardware, ACM, 85–93.

KLUCZEK, K., 2012. Efficient rendering of intersecting soft parti-
cles, September. Talk at WGK, Poland.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps. In Proc.
of SIGGRAPH, ACM, 385–392.

MAULE, M., COMBA, J., TORCHELSEN, R., AND BASTOS, R.
2013. Hybrid transparency. In Proc. of I3D, ACM, 103–118.

MCGUIRE, M., AND BAVOIL, L. 2013. Weighted blended order-
independent transparency. JCGT 2, 2 (December), 122–141.

MCGUIRE, M., AND ENDERTON, E. 2011. Colored stochastic
shadow maps. In Proc. of I3D, ACM, 89–96.

MCGUIRE, M., AND MARA, M. 2014. Efficient GPU screen-
space ray tracing. JCGT 3, 4 (December), 73–85.

MESHKIN, H., 2007. Sort-independent alpha blending, March.
Perpetual Entertainment, GDC Session.

NARASIMHAN, S. G., AND NAYAR, S. K. 2003. Shedding light
on the weather. In Proc. of CVPR, IEEE, 665–672.

NARASIMHAN, S. G., RAMAMOORTHI, R., AND NAYAR, S. K.
2004. Analytic rendering of multiple scattering in participating
media. Tech. rep., Columbia University.

NISHITA, T. 1998. Light scattering models for the realistic render-
ing of natural scenes. In Proc. of E.G., Eurographics, 1–10.

PREMOŽE, S., ASHIKHMIN, M., TESSENDORF, J., RAMAMOOR-
THI, R., AND NAYAR, S. 2004. Practical rendering of multiple
scattering effects in participating media. In Proc. of EGSR, Eu-
rographics, 363–374.

SALVI, M., AND VAIDYANATHAN, K. 2014. Multi-layer alpha
blending. In Proc. of I3D, ACM, 151–158.

SALVI, M., MONTGOMERY, J., AND LEFOHN, A. 2011. Adaptive
transparency. In Proc. of HPG, ACM, 119–126.

SHAH, M. A., KONTINNEN, J., AND PATTANAIK, S. N. 2007.
Caustics mapping: An image-space technique for real-time caus-
tics. IEEE Trans. Vis. Comput. Graph. 13, 2, 272–280.

SINTORN, E., AND ASSARSSON, U. 2009. Hair self shadowing
and transparency depth ordering using occupancy maps. In Proc.
of I3D, ACM, 67–74.

TATARCHUK, N., TCHOU, C., AND VENZON, J., 2013. Mythic
science fiction in real-time: Destiny rendering engine, July. SIG-
GRAPH Advances in Real-Time Rendering in Games Course.

VASILAKIS, A. A., AND FUDOS, I. 2014. K+-buffer: Fragment
synchronized k-buffer. In Proc. of I3D, ACM, 143–150.

WHITTED, T., 2010. Disaggregated graphics: Rich clients for
clouds, June. Keynote at HPG.

WYMAN, C., AND NICHOLS, G. 2009. Adaptive caustic maps
using deferred shading. Computer Graphics Forum.

WYMAN, C. 2005. An approximate image-space approach for
interactive refraction. ACM Trans. Graph. 24, 3, 1050–1053.

YUKSEL, C., AND KEYSER, J. 2009. Fast real-time caustics from
height fields. Vis. Comput. 25, 5-7 (Apr.), 559–564.

YUKSEL, C., AND TARIQ, S. 2010. Advanced techniques in
real-time hair rendering and simulation. In SIGGRAPH Courses,
ACM, 1–168.

Appendix: Implementation Details

Render Targets Configure four OpenGL framebuffer
render target (RT) attachments as specified in table ??
for the OIT stage. All targets use the additive blend
equation glBlendEq(GL_ADD). For the blending func-
tion, RT1 uses glBlendFuncSeparatei(1, GL_ZERO,
GL_ONE_MINUS_SRC_COLOR, GL_ONE, GL_ONE) and RT0 and
RT2 use glBlendFunc(GL_ONE, GL_ONE).

On platforms without separate alpha blending, move D to the third
channel of RT2. Doing so intuitively packs all multiple scattering
terms into RT2, but costs another 16 bits because a modern GPU
will align each 24-bit texture to 32 bits per pixel. For platforms
without SNORM formats, scale and bias RT2.

Particle systems often contain many surfaces that each have low
coverage (α), which raises the issue of underflow in the Trans-
parency stage. We round non-zero values less than 1/255 up to
1/255 in the D channel, which creates slight over-diffusion but
avoids underflow. We find that underflow in β is often impercepti-
ble.

Table 2: Framebuffer layout. (1/63) factors give roughly 1
2

-pixel
precision on refraction and diffusion.

Encoding Format Bits/Pix Clear Value
RT0 (Ar, Ag, Ab, Aa) RGBA16F 64 (0, 0, 0, 0)
RT1 (βr, βg, βb, D

2/632) RGBA8 32 (1, 1, 1, 0)
RT2 (δx, δy)/63 RG8 SNORM 16 (0, 0)

Pixel Shader In our experiments, we used the standard G3D In-
novation Engine (http://g3d.cs.williams.edu) surface pixel shaders
for the Transparent stage, with the output changed to write to the
A, β,D, δ buffers instead of a single color framebuffer using the
code from listing 1. Position X and normal n are in camera space.
Variable names match section 4. Listing 2 is the GLSL implemen-
tation of the resolve stage.

void computeOutput(vec3 L_r, float alpha, vec3 t,
float c, float eta, vec3 X, vec3 n, out vec4 A,
out vec3 beta, out float D, out vec2 delta) {

float netCoverage =
alpha * (1.0 - dot(t, vec3(1.0/3.0)));

float tmp = (1.0 - gl_FragCoord.z * 0.99) *
netCoverage * 10.0;

float w = clamp(tmp * tmp * tmp, 0.01, 30.0);

float z_B = depthToZ(texelFetch(depthBuffer,
ivec2(gl_FragCoord.xy), 0).r, clipInfo);

vec2 refractPix = refractOffset(n, X, eta);
const float k_0 = 120.0 / 63.0, k_1 = 0.05;

A = vec4(L_r * alpha, netCoverage) * w;
beta = alpha * (vec3(1.0) - t) * (1.0 / 3.0);
D = k_0 * netCoverage * (1.0 - c) *
(1.0 - k_1 / (k_1 + X.z - z_B)) / abs(X.z);

delta = refractPix * netCoverage * (1.0 / 63.0);

D *= D; // Store D2, variance, during summation
if (D > 0.0) D = max(D, 1.0 / 256.0);

}

Listing 1: Pixel shader outputs for Transparency stage 2.

#version 330 compatibility
// Typical GLSL preprocessor and math helpers from
// http://g3d.cs.williams.edu
#include <compatibility.glsl>
#include <g3dmath.glsl>

uniform sampler2D ATex, BDTex, deltaTex;
uniform sampler2D bkgTexture;

out Color3 result;

// Pixels per unit diffusion std dev
const float PPD = 200.0;
const int maxDiffusionPixels = 16;

#define fetch(a, b) texelFetch(a, b, 0)

void main() {
vec2 bkgSize = textureSize(bkgTexture, 0).xy;
int2 C = int2(gl_FragCoord.xy);
vec4 BD = texelFetch(BDTex, C, 0);
vec3 B = BD.rgb;
if (minComponent(B) == 1.0) {

// No transparency
result = fetch(bkgTexture, C).rgb;
return;

}

float D2 = BD.a * square(PPD);
vec2 delta = fetch(deltaTex, C).xy * 0.375;

vec4 A = fetch(ATex, C);
// Suppress under- and over-flow
if (isinf(A.a)) A.a = maxComponent(A.rgb);
if (isinf(maxComponent(A.rgb)))

A = vec4(isinf(A.a) ? 1.0 : A.a);

// Self-modulation
A.rgb *= vec3(0.5) +
0.5 * B / max(0.01, maxComponent(B));

// Refraction
vec3 bkg = vec3(0);

if (D2 > 0) { // Diffusion

C += int2(delta * bkgSize);
// Tap spacing
const float stride = 2;
// Kernel radius
int R = int(min(sqrt(D2), maxDiffusionPixels) /

float(stride)) * stride;

float weightSum = 0;
for (vec2 q = vec2(-R); q.x<=R; q.x+=stride) {
for (q.y = -R; q.y<=R; q.y+=stride) {
float radius2 = dot(q, q);

if (radius2 <= D2) {
int2 tap = C + ivec2(q);
float t = fetch(BDTex, tap).a;
float bkgRadius2 = t * PPD*PPD;

if (radius2 <= bkgRadius2) {
// Disk filter (faster, looks similar)
float w = 1.0 / bkgRadius2 + 1e-5;

// True Gaussian filter
//float w=exp(-radius2/(8*bkgRadius2)) /
// sqrt(4*PI * t);

bkg += w * fetch(bkgTexture, tap).rgb;
weightSum += w;

}}}}
bkg /= weightSum;

} else {
// No diffusion (+ fractional refraction)
bkg = textureLod(bkgTexture,
delta + gl_FragCoord.xy / bkgSize, 0).rgb;

}

result = bkg * B + (vec3(1) - B) * A.rgb /
max(A.a, 0.00001);

}

Listing 2: Pixel shader for Resolve stage 3 with common, constant-
time implementation optimizations.

Acknowledgements
We thank David Luebke, Dan Evangelakos, and our colleagues in
the architecture group at NVIDIA for their assistance; anonymous
reviewers for their suggestions; the ACM for requiring copyright
statements on each image; Cem Yuksel for the hair model; and
Guillermo Llaguno for San Miguel. Other scene elements were
purchased from TurboSquid.

