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Abstract

In this paper we develop a novel parallel spectral partitioning method
that takes advantage of an efficient implementation of a preconditioned
eigenvalue solver and a k-means algorithm on the GPU. We showcase the
performance of our novel scheme against standard spectral techniques.
Also, we use it to compare the ratio and normalized cut cost functions
often used to measure the quality of graph partitioning. Finally, we show
that the behavior of our spectral scheme and popular multi-level schemes is
starkly different for two classes of problems: (i) social network graphs that
often have power law-like distribution of edges per node and (ii) meshes
arising from discretization of partial differential equations. Although in our
numerical experiments the multi-level schemes are almost always faster, we
show that our spectral scheme can achieve a significantly higher quality of
partitioning for the former class of problems.

1 Introduction

The graph partitioning problem arises in many areas. For example, it can
be used to minimize communication and perform load balancing in parallel
computing [32, 35]. It can also improve and facilitate hierarchical design, layout
and testing of electronic circuits [7, 15, 44]. Further, it can be used to identify
clusters of elements which represent different communities in social networks
[26], among many other applications.
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There are many strategies to perform graph partitioning, starting from local
heuristics, such as Kernighan-Lin [23] and Fiduccia-Mattheyses [12], to global
spectral and multi-level techniques [6, 22].

In this paper we focus on the global spectral graph partitioning technique.
It constructs the Laplacian matrix and uses its smallest eigenpairs to perform
the partitioning. The relationship between the eigenpairs of a Laplacian matrix
and the connectivity of a graph was first noted by Donath and Hoffman [11]
and Fiedler [13]. The technique was later improved and used in many different
research areas, with some examples given in the first paragraph.

A comprehensive scientific literature review of spectral graph partitioning
is given in [8, 28]. We avoid repeating it and rather focus on reviewing the
mathematical theory behind the Laplacian matrix, spectral graph bisection and
spectral partitioning into an arbitrary number of partitions. We use this theory
to setup the eigenvalue problem and show how to use the k-means algorithm
to transform a continuous solution into a discrete one. The concise review of
this material unifies many different approaches used in mathematics, computer
science and engineering communities for it.

Also, we review different approaches available for the solution of the eigen-
value problem that arises in the spectral scheme. In particular, we propose the
use of a preconditioned eigenvalue solver [25, 24] that results in a significantly
better performance and quality of the graph partitioning. We take great care
in its implementation to preserve parallelism and maintain numerical stability
of the algorithm. We point out that Laplacian matrix is singular and therefore
it is relatively easy to obtain incorrect results when working with it.

Moreover, we use our spectral scheme to compare two different cost func-
tions often used to measure the quality of graph partitioning. We empirically
show that in our numerical experiments normalized cut cost function [36] often
requires less iterations to convergence than the ratio cut [44].

Finally, we compare our spectral scheme with other the state-of-the-art im-
plementations of spectral [17] and multi-level techniques [21]. In our numerical
experiments we point to trends that indicate that the behavior of spectral and
multi-level schemes is starkly different for two classes of problems: (i) social
network graphs that often have power law-like distribution of edges per node
and (ii) meshes arising from discretization of partial differential equations. Even
though multi-level schemes are considered part of global techniques, they often
rely on local information to construct a graph hierarchy that is used to partition
the graph. Therefore, we conjecture that this different behavior is driven by the
type of information used by the schemes to partition the graph.

Let us now formulate the graph partitioning problem.
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2 Graph Partitioning

Let a graph G = (V,E) be defined by its vertex V and edge E sets. The vertex
set V = {1, ..., n} represents n nodes in a graph, with each node identified by
a unique integer number i ∈ V . The edge set E = {(i1, j1, w1), ..., (ie, je, we)}
represents e weighted edges in a graph, with each directed edge from node i to
j of positive weight w > 0 ∈ R identified by a tuple (i, j, w) ∈ E.

Also, let the weighted adjacency matrix A = [ai,j ] of a graph G = (V,E) be
defined through its elements

ai,j =

{
w if (i, j, w) ∈ E
0 otherwise

(1)

Let us assume that if (i, j, w) ∈ E then (j, i, w) ∈ E, in other words, the matrix
A is symmetric. If it is not, we can always work with G̃ induced by A + AT .
An example of a graph G and weighted adjacency matrix A is shown below.

A =


0.0 1.0

0.0 1.0
1.0 0.0 3.0

1.0 3.0 0.0

 , G = (V,E) is

3

1

4

2

1. 1.

3.

V = {1, 2, 3, 4}
E = {(1, 3, 1.0),

(2, 4, 1.0), (3, 4, 3.0)}

Let a set of vertices S ⊆ V then its boundary is a set of edges ∂(S) ⊂ E
such that only one end point vertex of each edge is in S, in other words,

∂(S) = {(i, j, w) : i ∈ S ∧ j /∈ S} (2)

and let a cut C = (S, T ) of a graph be a partition of vertices V into two disjoint
sets S and T ⊆ V .

In graph partitioning we are often interested in finding a minimum balanced
cut C = (S, S̄) of a graph G = (V,E) in the sense that S is such that either

ρ(S) = min
S

vol(∂(S))

|S||S̄|
(3)

or

η(S) = min
S

vol(∂(S))

vol(S)vol(S̄)
(4)

where S̄ is the complement of set S with respect to V , |.| denotes the cardinality
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(number of elements) of a set, and

vol(∂(S)) =
∑

(i,j,w)∈∂(S)

w

vol(S) =
∑

i∈S ∧ (i,j,w)∈E

w (5)

The cost function ρ(S) is often referred to as ratio cut [44], while in the η(S) is
often referred to as normalized cut [36]. A sample graph partitioning indicated
by dashed line for ratio and normalized cuts is shown below.
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(a) ratio cut

ρ(S) = (1.0+1.0)
(2)(2) = 1
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(b) normalized cut

η(S) = (3.0)
(1.0+4.0)(1.0+4.0) = 3

25

Notice that in parallel computing these cost functions have a direct relation-
ship to minimizing communication (numerator), while keeping load balancing
(denominator). For example, in distributed sparse matrix-vector multiplication,
we can interpret the numerator as # of elements that needs to be sent between
partitions and denominator as the work, measured in terms of # of rows in (3)
or # of non-zero elements in (4), done per partition.

Also, notice that for unweighted graphs, the edge weights can be considered
to be all one (w = 1). Letting d(i) be the degree (# of edges) of node i, then

vol(∂(S)) = |∂(S)|
vol(S) =

∑
i∈S

d(i) (6)

In this case η(S) is related to the conductance φ(S) = vol(V )η(S), Cheeger
constant and isoperimetric number of a graph [38, 40].

The minimum balanced cut problem stated in (3) and (4) is NP-complete
[28]. However, there are algorithms that can often produce good enough approx-
imation of the minimum balanced cut in a reasonable amount of time [22, 39].
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3 Laplacian

We will once again assume that graph G = (V,E) has edges only with positive
weights w > 0 : ∀(i, j, w) ∈ E and that if edge (i, j, w) ∈ E then (j, i, w) ∈
E. Therefore, the graph has a symmetric weighted adjacency matrix A with
nonnegative elements aij ≥ 0. The treatment of graphs with negative weights
or that correspond to nonsymmetric matrices is beyond the scope of this paper.

Let us define Laplacian matrix for graph G = (V,E) as

L = D −A (7)

where A ∈ Rn×n is the weighted adjacency matrix of the graph and diagonal
matrix D = diag(Ae), where vector e = (1, ..., 1)T .

Notice that D is simply the diagonal matrix, with each i-th diagonal element
being the sum of all the elements in i-th row of A. Therefore, the Laplacian
matrix remains the same independent of whether or not we include self-edges,
diagonal elements, in the definition of the weighted adjacency matrix A.

The Laplacian matrix L is symmetric positive semi-definite. Notice that for
vector e we have

Le = 0 (8)

Therefore, if the graph G = (V,E) is connected (there is a path between every
pair of vertices in V ) then L has the smallest eigenvalue 0 with the corresponding
eigenvector being e.

Also, notice that we can associate a vector z = (z1, ..., zn)T with set S, by
letting elements

zi =

{
1 if i ∈ S
0 otherwise

(9)

Then, using (1), (2), (5) and the definition of Laplacian in (7) we obtain

zTLz =
∑

i∈S∧j /∈S

aij =
∑

(i,j,w)∈∂(S)

w = vol(∂(S)) (10)

zT z = |S| (11)

Notice that (10) corresponds to the numerator, while (11) is related to the
denominators of the minimization problems (3) and (4). Therefore, we may
be able to express these minimization problems as a combination of vector z
and another term, which does not affect (10). Fortunately, such term is readily
available based on the result in (8).
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Finally, we can state that the Laplacian matrix has the following property.
Let vector u = z−αe, where α ∈ R is some constant. Then, using (8) and (10)
we obtain

uTLu = zTLz = vol(∂(S)) (12)

and consequently using (6) for unweighted graphs uTLu = |∂(S)|.
Also, notice that for α = |S|/|V | we have

uTu = zT z− 2αzTe + α2eTe = |S| − 2α|S|+ α2|V | = |S|(1− α) =

=
|S|(|V | − |S|)

|V |
=
|S||S̄|
|V |

(13)

uTe = zTe− αeTe = |S| − α|V | = 0 (14)

and for α = vol(S)/vol(V ) we have

uTDu = zTDz− 2αzTDe + α2eTDe = vol(S)− 2αvol(S) + α2vol(V ) =

= vol(S)(1− α) =
vol(S)(vol(V )− vol(S))

vol(V )
=

vol(S)vol(S̄)

vol(V )
(15)

uTDe = zTDe− αeTDe = vol(S)− αvol(V ) = 0 (16)

Therefore, we may conclude that minimization problem (3) is equivalent to

ρ̃(S) = |V |ρ(S) = min
uT e=0

uTLu

uTu
(17)

and minimization problem (4) is equivalent to

η̃(S) = vol(V )η(S) = min
uTDe=0

uTLu

uTDu
(18)

Notice that since the vector u = z − αe and values of z are constrained to
be either 0 or 1 the integer programming problems (17) and (18) are still NP-
complete. The main idea of spectral partitioning is to relax the constraint on
vector u and let it take arbitrary real values, finding the solution of the relaxed
problem and then extracting the approximation to the discrete solution from it.

Let us now assume that we are working with the relaxed version of the above
optimization problems, where vector u ∈ Rn. Recall that (0, e) is the smallest
eigenpair of a Laplacian matrix L corresponding to a connected graph. Then,
using Courant-Fischer theorem in [19], we can conclude that the solution to
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the optimization problems (17) and (18) is the eigenvector associated with the
second smallest eigenvalue of the eigenvalue problem

Lu = λu and (19)

Lu = λDu, (20)

respectively.
Once we find the eigenvector of interest we can convert the real values to

discrete 0 and 1 using heuristics, such as scaling and looking for a sign change,
or sorting and looking for a gap in the values [32, 35]. There is no theoretical
guarantee that the obtained approximate solution will closely match the optimal
discrete solution, in fact there are known examples where this will not be the
case [20], but in practice we often do obtain a good approximation [39].

4 Multiple Partitions

Let us now generalize the spectral partitioning from bisection to multiple parti-
tions. We will closely follow the generalization proposed in [28], and we include
its derivation here mostly for completeness.

First, let us slightly reformulate the optimization problem (3) and (4) in
terms of partitions rather than cuts. Notice that vol(∂(S)) = vol(∂(S̄)), then
using |V | = |S|+ |S̄| we obtain

ρ̃(S) = min
S

|V |vol(∂(S))

|S||S̄|
= min

S

(
vol(∂(S))

|S|
+

vol(∂(S̄))

|S̄|

)
(21)

and using vol(V ) = vol(S) + vol(S̄) we have

η̃(S) = min
S

vol(V )vol(∂(S))

vol(S)vol(S̄)
= min

S

(
vol(∂(S))

vol(S)
+

vol(∂(S̄))

vol(S̄)

)
(22)

Therefore, it is natural to generalize the spectral partitioning for p partitions
as

ρ̃(S1, ..., Sp) = min
S1,...,Sp

p∑
k=1

vol(∂(Sk))

|Sk|
(23)

and

η̃(S1, ..., Sp) = min
S1,...,Sp

p∑
k=1

vol(∂(Sk))

vol(Sk)
(24)
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Let us define a tall matrix U = [ui,k], that can be interpreted as a set of vectors
U = [u1, ...,up] where each vector uk corresponds to set Sk, with elements

ui,k =

{
β if i ∈ Sk
0 otherwise

(25)

where β ∈ R is some constant. Notice that

uTkLuk = β2
∑

i∈S∧j /∈S

aij = β2
∑

(i,j,w)∈∂(Sk)

w = β2vol(∂(Sk)) (26)

then for β = 1√
|Sk|

we have

uTkLuk =
vol(∂(Sk))

|Sk|
for k = 1, ..., p

UTU = I (27)

and for β = 1√
vol(Sk)

we have

uTkLuk =
vol(∂(Sk))

vol(Sk)
for k = 1, ..., p

UTDU = I (28)

where I ∈ Rp×p is the identity matrix. Therefore using (27) and (28) we have

ρ̃(S1, ..., Sp) = min
S1,...,Sp

p∑
k=1

uTkLuk = min
UTU=I

Tr(UTLU) (29)

and

η̃(S1, ..., Sp) = min
S1,...,Sp

p∑
k=1

uTkLuk = min
UTDU=I

Tr(UTLU) (30)

where Tr(.) is the trace of a matrix (sum of its diagonal elements) [19].
These integer optimization problems are NP-hard, but as before this re-

quirement can be relaxed in order to find an approximate solution. If we let tall
matrix U ∈ Rn×p then following Courant-Fischer theorem in [19], we again can
conclude that the solution to the optimization problems (29) and (30) are the
eigenvectors associated with p smallest eigenvalues of the eigenvalue problem

LU = UΣ and (31)

LU = DUΣ, (32)

8



Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

where Σ = diag([λ1, ..., λp]) ∈ Rp×p, respectively.
When finding multiple partitions it is no longer clear how we could use

straightforward heuristics to identify the partitions of interest. Notice that we
are now looking for a pattern of 0 and 1 in two dimensions. Therefore, it is
difficult to find a single element from the row of matrix U to represent a graph
node. For example, if we pick the largest number in the row and make partition
assignments based on it, we neglect the interaction of numbers within columns.
The smaller number within a row could still be the largest within its column
and vice-versa.

Since we are working in multiple dimensions, it is natural to use the dis-
tance between points as a metric of how to group them. In this case, if we
interpret each row of the matrix U as a point in a p-dimensional space then
it becomes natural to use a clustering algorithm, such as k-means [1, 27] or
Voronoi diagrams [5, 43] to identify the p distinct partitions.

Notice that the number of partitions identified by the clustering algorithm
does not necessarily need to match the number of computed eigenvectors. Al-
though in theory they should be the same, recall that we are working with an
approximation to the discrete problem, therefore the real question is how good
is our approximation and if it has any particular meaning. For example, if we
compute log2(p) eigenvectors and later identify p partitions, the result can be
interpreted as an approximation to the problem of minimizing number of hops
performed during communication on hypercube network [16].

5 Spectral Graph Partitioning

We are now ready to describe an outline of the spectral graph partitioning
technique, shown in Alg. 1.

Algorithm 1 Spectral Graph Partitioning

1: Let G = (V,E) be an input graph and A be its weighted adjacency matrix.
2: Let B = I (ratio cut) or B = D (normalized cut), where D = diag(Ae).
3: Let p be the number of desired partitions.
4: Set the Laplacian matrix L = D −A.
5: Find p smallest eigenpairs of the eigenvalue problem LU = BUΣ.
6: Scale the p eigenvectors U by row or by column (optional).
7: Run clustering algorithm, such as k-means, on points defined by rows of U .

In our numerical experiments we have found that the eigenvalue solver is a
critical part of this technique. First, it is the most time consuming part of the
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computation, often taking up to 80% of the total time. Second, the accuracy
of the solution has a significant impact on the quality of the partitioning, with
insufficient accuracy usually resulting in poor approximation. Finally, a failure
in convergence of the eigenvalue solver results in failure of the entire algorithm.

Therefore, it is important to carefully analyse and implement the solution of
the eigenvalue problem (on line 5), which will be the focus of the next section.

5.1 Eigenvalue Problem

Let the Laplacian L ∈ Rn×n be symmetric positive semi-definite and B ∈ Rn×n
be symmetric positive definite diagonal matrix. We are interested in computing
p smallest eigenpairs of the generalized eigenvalue problem

Lu = λBu (33)

which corresponds to pencil (L,B) [41].
Let us assume that the eigenvalues of the Laplacian are ordered as shown in

0 = λ1 ≤ λ2 ≤ ... ≤ λn (34)

and examine a few approaches.
First, we can use a few iteration of the power method [2] to compute an

estimate of the largest eigenvalue λ̃n and then solve the shifted problem

(λ̃nI − L̄)ū = µū (35)

where L̄ = B−
1
2LB−

1
2 , ū = B

1
2u and µi = λ̃n − λi for i = 1, ..., n. Notice that

λ̃nI − L̄ is symmetric positive semi-definite and that the smallest eigenvalues
of (33) correspond to the largest eigenvalues of (35). Therefore, we are able
to use subspace iteration [10, 42] method which converges well for the largest
eigenvalues and require only matrix-vector multiplication per iteration. Unfor-
tunately, the convergence of this method is often governed by the ratio between
the eigenvalues, which becomes very poor after the shift.

Second, we can keep the original formulation in (33), but then in order to find
the solution quickly we need to solve a linear system per iteration. Solving linear
systems with Laplacian matrix L is both expensive and complicated because it
is singular. One could avoid some of the issues related to singularity by working
with the projected system of the form (I − uuT )L(I − uuT ), which is roughly
the approach followed by more advanced eigenvalue solvers, such as Tracemin
[34] and Jacobi-Davidson [37], but we have still found it to be too expensive.

To illustrate the tradeoffs consider an eigenvalue distribution where λ2 = 0.1,
λp+1 = 1.0 and λn = 10.0, which is not atypical for the Laplacian matrix.

10
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Consider the subspace iteration method with p vectors, where theoretically the
error in the second eigenvector is reduced by λp+1/λ2 per iteration. Then,
λp+1/λ2 = 10, while µp+1/µ2 = 1.1. In this case, the first approach will take
97 iterations (with each requiring a matrix-vector multiplication with L), while
the second will take 4 iterations (with each requiring a linear system solve with
L) to reduce the error by 10−4. In the first approach we perform many cheap
steps, while in the second we perform few computational intensive steps.

Third, is the approach taken by most people who have worked with spectral
graph partitioning. It is simply to run the Lanczos method [14] on the original
formulation (33) and extract the approximation to the smallest eigenvalues from
the Krylov subspace generated by it. In general, the Lanczos method will indeed
converge to both the largest and smallest eigenvalues, but it does so much more
slowly for the latter. Also, Lanczos can not handle eigenvalues with multiple
multiplicity and in some cases may converge to spurious eigenvalues [9]. These
characteristics make it dangerous to use for this particular problem.

To solve the above challenges we propose to use the LOBPCG method [4, 24].
It is in our opinion the preferred way to solve this problem for the following rea-
sons: (i) it works with the original eigenvalue problem and does not need to solve
a linear system with L, (ii) its convergence is similar to Lanczos, but the algo-
rithm can handle eigenvalues with multiple multiplicity and is more numerically
stable, and (iii) perhaps most import of all, it allows for preconditioning of the
eigenvalue problem [25]. The Laplacian matrix has a very particular structure
and properties and is well suited for preconditioning. These unique charac-
teristics allow LOBPCG to address all the challenges in solving the eigenvalue
problem arising in spectral partitioning.

There exist several variations of the LOBPCG algorithm proposed by Knyazev.
We present a scheme that was refined to specifically address the Laplacian (gen-
eralized) eigenvalue problem in Alg. 2. An experienced computational scientist
will immediately recognize the Rayleigh-Ritz method and formation of sections
of pencil (L,B) as some of the building blocks of the algorithm, but he will also
notice a particular restart strategy that is crucial to the numerical stability of
the algorithm. These will be discussed next.

For completeness, we recall that a section of a pencil (A,B) is a tall matrix
X that satisfies

XTAX = Σ

XTBX = I (36)

where Σ is a diagonal matrix. The reader will see the computations of sections
on lines 7-11 and 27-30 in Alg. 2.
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Algorithm 2 LOBPCG Eigenvalue Solver (Detailed Algorithm)

1: Let L ∈ Rn×n be a symmetric positive semi-definite Laplacian matrix
2: Let B ∈ Rn×n be an arbitrary symmetric positive definite matrix
3: We are interested in p eigenpairs of the eigenvalue problem Lu = λBu
4:

5: Let M ∈ Rn×n be a preconditioner matrix and constant κ̄1 = − log10(ε)/2
6: Let U0 ∈ Rn×p be a random initial guess and start with P ∈ Rn×p to 0
7: Compute G = UT0 BU0 . B-orthonormalize U
8: Compute Ū = U0S

−1, where Cholesky factorization of G = STS
9: Compute H = ŪTAŪ . Compute section U of pencil (L,B)

10: Compute eigenvalue decomposition H = WΣW T

11: Compute U = ŪW . Check UTBU = I and UTAU = Σ
12: for j = 1, 2, ...convergence do
13: Compute residual R = LU −BUΣ . Check convergence ||R||2 < tol.
14: Solve linear system MR̄ = R . Preconditioning
15: Compute G = R̄TBR̄ . B-orthonormalize R
16: Compute R = R̄S−1, where Cholesky factorization of G = STS
17: Compute G = Y TBY , with Y = [U,R, P ] . B-orthonormalize Y
18: Compute condition number κ̄j+1 = log10(κ(G)) + 1 . Restart strategy

19: Compute average γj =
(
∑j

l=i+1 κ̄l)
(j−i) , with i = max(0, j − 9− log(p))

20: if ((j = 1) or (κ̄j+1 > 8) or ((κ̄j+1/γj > 2) and (κ̄j+1 > 2))) then
21: Compute G = Y TBY , with Y = [U,R] . Remove P from Y and G
22: Compute κ̄j+1 = log10(κ(G)) + 1 . Recompute condition number
23: Set restart= j
24: else
25: Set restart= −1
26: end if
27: Compute Ȳ = Y S−1, where Cholesky factorization of G = STS
28: Compute H = Ȳ TAȲ . Compute section Y of pencil (L,B)
29: Compute eigenvalue decomposition H = WΣW T

30: Compute U = Ȳ W (1 : 3p, 1 : p) . Check UTBU = I and UTAU = Σ
31: if j = restart then
32: Compute P = RW (p+ 1 : 2p, 1 : p)
33: else
34: Compute P = RW (p+ 1 : 2p, 1 : p) + PW (2p+ 1 : 3p, 1 : p)
35: end if
36: Compute G = P TBP ; . B-orthonormalize P
37: Compute P = PS−1, where Cholesky factorization of G = STS
38: end for

12
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The algorithm implements a restarting strategy on lines 18-26 that was
proposed by Knyazev in his MATLAB code. This restarting strategy keeps
track of conditioning of matrix G through κ̄ and will restart the algorithm
if it is either very high or if it jumps significantly compared to an average γ
obtained from previous iterations. Notice that κ̄ is based on the condition
number κ(G) and machine precisio ε. The condition number κ(G) is defined as
ratio of largest and smallest singular values of G and is equivalent to the ratio
of its largest and smallest eigenvalues because G is symmetric positive semi-
definite [19]. Therefore, in our case κ(G) can be computed using an eigenvalue
decomposition. We point out that there exist other restarting strategies, such
as the ones suggested in [18].

The matrix Y ∈ Rn×3p on lines 17 and 21 need not be formed explicitly, as
it is sufficient to organize X ∈ Rn×p, R ∈ Rn×p and P ∈ Rn×p consecutively in
memory an then alias them with Y . Finally, the notation W (i : k, 1 : p) on lines
30-34 means that we are selecting a submatrix of W that is located in rows i
through k and columns 1 through p.

Also, it is implicitly assumed in the algorithm that the eigenvalue decompo-
sition H = WΣW T on lines 10 and 29 is such that eigenvalues are ordered from
smallest to largest in Σ = diag(λ1, ..., λ3p), therefore by selecting the submatrix
Σ(1 : p, 1 : p) we would obtain p smallest eigenvalues. Not all numerical soft-
ware packages return results ordered in this fashion, therefore additional sorting
might be needed to conform to this implicit assumption.

Finally, we point out that we do not implement filtering of eigenpairs that
have already converged to the required tolerance also proposed by Knyazev. The
implementation of this filtering would either require shuffling of the data so that
the active eigenvectors are located next to each other in memory or masking
of the computation for the inactive eigenvectors, which would prevent us from
using the standard libraries, such as CUBLAS [45]. The filtering might become
useful if one is looking for hundreds of eigenvectors, but in our case we have
experimented with less than 32 partitions. Therefore, given the computational
resource of the GPU, we have found that simply running with all eigenvectors
being active to completion is easier and has no adverse effects on numerical
stability of the algorithm.

5.2 Clustering Problem

At this point we have obtained the p smallest eigenvalues Σ = diag(λ1, ..., λn)
and corresponding eigenvectors U ∈ Rn×p of generalize eigenvalue problem (33).
In order, to solve solve the discrete problems (29) and (30) let us now find the
assignment of nodes into partitions.
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Let us interpret each row of U as a point xi in p-dimensional space, so that

U =


u11 . . . u1p

u21 . . . u2p
...

...
un1 . . . unp

 =


xT1
xT2
...
xTn

 (37)

Then, we will need to find cluster sets Sk for k = 1, ..., p, each with a centroid
(point in the center) ck, such that

min
Sk

p∑
k=1

∑
i∈Sk

||xi − ck||22 (38)

The exact solution of this problem is NP-complete, but we can find an approxi-
mation to its solution using many variations of the k-means clustering algorithm
[1, 27]. The outline of the k-means Lloyd algorithm is shown in Alg. 3.

Algorithm 3 K-means Lloyd Algorithm

1: Let centroids ck for k = 1, ..., p be an initial guess.
2: for j = 1, ..., p do . Assign points xi to clusters Sk
3: Compute distance dij = ||xi − cj ||2 for i = 1, ..., n
4: end for
5: Assign points xi, so that cluster Sk = {i : dik ≤ dij} for j = 1, ..., p
6: for l = 1, 2, ...convergence do
7: Compute error εl =

∑p
k=1

∑
i∈Sk

d2
ik . Check convergence εl

εl−1
< tol.

8: for k = 1, ..., p do . Update centroids ck of clusters Sk

9: Compute centroid ck =
(∑

i∈Sk
xi

)
/|Sk|

10: end for
11: for j = 1, ..., p do . Assign points xi to clusters Sk
12: Compute distance dij = ||xi − cj ||2 for i = 1, ..., n
13: end for
14: Assign points xi, so that cluster Sk = {i : dik ≤ dij} for j = 1, ..., p
15: end for

Finally, we point out that in practice we avoid performing scaling corre-
sponding to line 6 in Alg. 1 as suggested in [28, 31]. We have found them to be
detrimental to the quality of partitioning of graphs corresponding to social net-
works. Instead we use k-means++ clustering algorithm where starting points
for centroids are chosen based on a particular probability distribution [1].

14
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6 Numerical Experiments

Let us now study the performance and quality of the partitioning obtained by
the proposed spectral graph partitioning algorithm on a sample of graphs from
the DIMACS10 graph collection [46, 47], shown in Tab. 1. All numerical exper-
iments are performed on a workstation with Ubuntu 14.04 operating system,
gcc 4.8.4 compiler, CUDA Toolkit 8.0 software and Intel Core i7-3930K CPU
3.2 GHz and Nvidia Tesla K40c GPU hardware.

In order to avoid discrepancies between different software packages, we al-
ways set compiler optimization flags to -03 and when possible perform all com-
putations with 32-bit integer and double precision floating point types. In Alg.
1, on line 5 we let the stopping criteria for the eigenvalue solver be residual
||Lu1 − λBu1||2 ≤ 10−2 and max. # of iterations ≤ 512 (with 128 restart for
Lanczos). Also, on line 6 we do not use any scalings of the obtained eigen-
vectors. As mentioned earlier, we found them to be detrimental to partition
quality. Finally, on line 7 we let the stopping criteria for k-means++ algorithm
be error ratio εl

εl−1
≤ 10−2 and max. # of iterations ≤ 16.

Also, we always perform a reordering of the original matrix before starting
the computation. The reordering is based on the coloring of the associated
graph. It is performed using JPL algorithm implemented in the csrcolor rou-
tine in CUSPARSE [45]. It improves the parallelism available in the incomplete-
LU factorization (ILU0), which we use as a preconditioner for the LOBPCG [30].
We point out that this reordering does not change the structure of our graph,
it simply relabels its vertices. It is performed in all cases for consistency.

Let us now look at the effect of using different eigenvalue solvers in Alg. 1.
We compare the # of iterations (taken to convergence), performance (in terms
of time) as well as quality of the partitioning (as measured by cost function η̃)
for Lanczos, LOBPCG and LOBPCG preconditioned with ILU0 on Fig. 1 - 3.
Notice that Lanczos is the fastest algorithm, while unpreconditioned LOBPCG
almost always obtains superior quality. The LOBPCG(ILU0) algorithm is often
as fast as Lanczos and usually obtains the solution with the same or better
quality as its unpreconditioned version. In fact, the only reason for using the
latter might be the occasional failure to compute the incomplete-LU due to
singularity of the Laplacian, denoted by † in Tab. 2 - 5 in the Appendix.

We emphasize that in our spectral scheme we always solve a single eigenvalue
problem even when partitioning the graph into multiple partitions. We find
several eigenvectors and treat them as a continuous solution of the problem,
then we use k-means++ to transform it into a discrete solution. This is different
from recursive spectral bisection, where multiple eigenvalue problems are solved
at every level of the algorithm [35].

15



Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Figure 1: Time(s) consumed during spectral graph partitioning into 31 partitions

Figure 2: Cost η̃ obtained during spectral graph partitioning into 31 partitions

Figure 3: # of iterations performed during spectral graph partitioning into 31 partitions
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We point out that we choose to partition the graph into 31 partitions arbi-
trarily. Similar results hold for a different number of partitions as well. Notice
that since we do not recursively partition the graph, unlike multi-level graph
partitioning schemes, we have no preference for choosing # of partitions to be
p = 2k for some constant k and are able to find all of them at once.

Also, we choose to measure the quality of the partition using normalized
cut (24) rather than ratio cut (23). The normalized and ratio cut are similar,
but are formulated to solve slightly different discrete optimization problems
and one might be preferable over the other depending on the application. We
compare these approaches using LOBPCG(ILU0) and Lanczos algorithms for 2
partitions on Fig. 4 - 5. As a baseline we include a comparison with the spectral
graph partitioning implemented in CHACO [17]. In the latter case we are
mostly interested in the performance of the spectral partitioning using Lanczos,
therefore we disable local improvements using Kernighan-Lin algorithm [23].

Figure 4: Time(s) consumed during spectral graph partitioning into 2 partitions

Figure 5: Cost ρ̃ and η̃ obtained during spectral graph partitioning into 2 partitions
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Figure 6: # of iterations performed during spectral graph partitioning into 2 partitions

Also, we point out that CHACO attempts to provide a load balanced cut
within a fixed threshold ε, so that for instance |Sk| ≤ (1 + ε)|V |/p. Therefore,
CHACO’s cost function is similar to ratio cut, but the clustering at the end
is biased towards first of all providing a load balanced partitioning, while still
minimizing the edge cuts. We use CHACO version 2.2 and do not change these
default settings in our experiments.

Notice that in general our spectral graph partitioning using LOBPCG(ILU0)
outperforms CHACO spectral graph partitioning using Lanczos. In particular,
the shape of the curves representing the ratio cut performance (time) and quality
(in terms of cost ρ̃) resemble the ones obtained by CHACO. This is not surprising
given that they are both working on a similar formulation of the problem. On
the other hand, the shape of the curves representing the normalized cut η̃ on
Fig. 4 - 5 is somewhat different, but the approach still performs well. It is
interesting that in our experiments the number of eigenvalue solver iterations
needed to obtain normalized cut η̃ is always smaller than the ones needed to
obtain ratio cut ρ̃, see Fig. 6. Also, we conjecture that the quality of the solution
obtained by our Lanczos approach is not always as good as that of CHACO’s
Lanczos approach, because the latter uses selective orthogonalization to obtain
more accurate eigenvectors. Finally, we point out that all the approaches could
still benefit from local refinements, such as Kernighan-Lin algorithm.

It is also important to point out that our new spectral approach has been
implemented on the GPU, while CHACO is implemented on the CPU. The im-
plementation of LOBPCG eigenvalue solver in Alg. 2 relies on the CUSPARSE,
CUBLAS and CUSOLVER libraries from the CUDA Toolkit [45], while k-means
in Alg. 3 required custom implementation. The precise speedup obtained by
using GPU is difficult to calculate because it involves comparisons between large
and complex software packages, that even in the simple case implement slightly
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(a) Spectral scheme (b) Eigenvalue solver LOBPCG(ILU0)

Figure 7: Profiling of time spent in spectral graph partitioning on citationCiteseer graph

different variations of the algorithm. However, we can estimate the obtained
speedup. Recall that we have empirically found that up to 80% of spectral
graph partitioning time is spent in the eigenvalue solver, see a sample profil-
ing plot on Fig. 7a. Also, note that the time spent in the eigenvalue solver
is often governed by the sparse matrix-vector multiplication and the precondi-
tioning with incomplete-LU factorization, as shown in Fig. 7b. The behavior
of these algorithms have been extensively studied in [29, 30]. Therefore, based
on these studies, we can estimate with some confidence that we obtain a 2−4×
additional speedup by using GPUs.

Let us now compare the new spectral graph partitioning approach with
METIS [21], one of the most popular graph partitioning software package.
METIS implements a multi-level graph partitioning scheme, which works fun-
damentally differently from spectral graph partitioning. It agglomerates nodes
of the graph in order to create a hierarchy, where the fine level represents the
original graph and the coarse level represents its reduced form. The partitioning
is performed on the coarse level and results are propagated back to the fine level
[22]. The multi-level graph partitioning has many parameters. We use METIS
version 5.1.0 and choose the default parameters in our experiments.

In order to better understand the results of the experiments, we will separate
our graphs from Tab. 1 into two collections. The first is composed of graphs
generated from different networks (matrices 1−28). It includes graphs with low
maximum degree obtained from census data or road networks (matrices 25−28),
and graphs with high maximum degree that have been generated from star nodes
(matrices 1 − 16) or have been created based on citations (matrices 16 − 20).
Notice that the latter often resemble graphs with power law-like distribution
of edges per node and social networks. The second collection is composed of
graphs that result from discretization of partial differential equations (PDEs),
using finite-element or other similar methods (matrices 29− 32).
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Figure 8: Comparison of Spectral vs. METIS graph partitioning into 31 partitions (Networks)

Figure 9: Comparison of Spectral vs. METIS graph partitioning into 31 partitions (PDEs)

The performance and quality of the partitions generated by the spectral
graph partitioning and METIS for both collections is shown in Fig. 8 and 9.
Notice that the behavior of two partitioning schemes for these types of graphs
is strikingly different. The multi-level partitioning is always fast (see dash-
doted blue line), and finds good partitioning for the second collection of graphs.
The spectral graph partitioning is slow, but it often obtains significantly better
partitioning for the first collection (see solid yellow and dashed green lines),
especially when graphs resemble social networks (annotated in red in Fig. 8).
Notice that for social network-like graphs the spectral partitioning can be 10×
slower, but can also produce partitioning that has 10× higher quality (cost η̃).
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Our conjecture is that the agglomeration of nodes often works well for graphs
with low and more or less regular degree (# of edges per node), such as the ones
arising from PDEs. In this case the graph partitioning only needs access to local
information to construct a hierarchy such that the coarse level is representative
of the fine graph. On the other hand for social network-like graphs, which
contain star nodes with high and irregular degree, access to global information
is required to perform high quality partitioning. Therefore, the spectral graph
partitioning finds a better quality solution in this case.

Finally, we point out that Fig. 8 shows a trend, where the quality of parti-
tioning (cost η̃) improves with the increase in the maximum degree of nodes in
a graph, denoted by max. d(i). The latter quantity is plotted on the secondary
y-axis in order not to interfere with the rest of the plot, and the cost η̃ provides
an almost perfect trend for it. This once again points to the potential link
between degree of nodes in a graph and the quality of partitioning obtained by
different partitioning schemes.

The detailed results of all numerical experiments are shown in Tab. 1 - 5
in the Appendix. In these results † denotes failure of the method, which in
the case of spectral graph partitioning is due to failure of the incomplete-LU
factorization.

7 Conclusion and Future Work

In this paper we have reviewed the theory of spectral graph partitioning. Also,
we have developed a novel variation of the spectral technique that relies on pre-
conditioned eigenvalue solver LOBPCG and a k-means++ algorithm on GPUs.
This more numerically stable eigenvalue solver allowed us to achieve convergence
on a larger number of problems, and the use of incomplete-LU preconditioning
ultimately resulted in higher quality of graph partitioning.

We have compared our approach with spectral bisection in CHACO [17] and
multi-level techniques implemented in METIS [21] software packages. Also, we
have shown that the performance of spectral graph partitioning and multi-level
schemes is starkly different for two classes of problems: (i) social network graphs
that often have power law-like distribution of edges per node and (ii) meshes
arising from discretization of partial differential equations. Although, in our
numerical experiments it became clear that the multi-level schemes are almost
always faster, we have also shown that for the former class of problems the
spectral schemes can achieve a significantly higher quality of the partitioning.

An interesting characteristic of spectral graph partitioning is that we could
try to automatically detect the number of clusters into which we should partition
the graph. On one hand, we can look for a gap between p eigenvalues of (33).
On the other hand, we can use x-means algorithm to determine the best k to
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use in k-means [33]. Exploring these and other techniques for adaptive graph
partitioning is a subject of future work. Also, we have only experimented with
incomplete-LU as a preconditioner for the eigenvalue solver LOBPCG. However,
other choices are available, such as Jacobi or more advanced support graph
preconditioners [3]. In the future we would like to explore these in more detail.

Finally, many of the interesting social network-like graphs are very large and
do not fit into a memory of a single GPU or even of a single node. Therefore,
developing spectral graph partitioning on distributed platforms is critical for
these applications and we plan to pursue it in the future.
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9 Appendix - Numerical Experiments

# Matrix m,n nnz nnz/n max d(i) Application

1. vsp barth5 1Ksep ... 32212 203610 6.320 22 Star Mixtures
2. vsp bcsstk30 500 ... 58348 4033156 69.12 219 Star Mixtures
3. vsp befref fxm 2 ... 14109 196448 13.92 1531 Star Mixtures
4. vsp bump2 e18 aa ... 56438 601602 10.65 604 Star Mixtures
5. vsp c-30 data da ... 11023 124368 11.28 2109 Star Mixtures
6. vsp c-60 data ct ... 85830 482160 5.617 2207 Star Mixtures
7. vsp data and sey ... 9167 111732 12.18 229 Star Mixtures
8. vsp finan512 sca ... 139752 1104040 7.899 669 Star Mixtures
9. vsp mod2 pgp2 sl ... 101364 778736 7.682 1901 Star Mixtures
10. vsp model1 crew1 ... 45101 379952 8.424 17663 Star Mixtures
11. vsp msc10848 300 ... 21996 2442056 111.0 722 Star Mixtures
12. vsp p0291 seymou ... 10498 107736 10.26 229 Star Mixtures
13. vsp sctap1-2b an ... 40174 281662 7.011 1714 Star Mixtures
14. vsp south31 slpt ... 39668 379828 9.575 17663 Star Mixtures
15. vsp vibrobox sca ... 77328 871172 11.26 669 Star Mixtures

16. citationCiteseer 268495 2313294 8.615 1318 Citations
17. coAuthorsCiteseer 227320 1628268 7.162 1372 Citations
18. coAuthorsDBLP 299067 1955352 6.538 336 Citations
19. coPapersCiteseer 434102 32073440 73.88 1188 Citations
20. coPapersDBLP 540486 30491458 56.41 3299 Citations

21. G n pin pout 100000 1002396 10.02 25 Clustering
22. preferentialAttachment 100000 999970 9.999 983 Clustering
23. smallworld 100000 999996 9.999 17 Clustering
24. uk 4824 13674 2.834 3 Clustering

25. belgium osm 1441295 3099940 2.150 10 Street Network
26. luxembourg osm 114599 239332 2.088 6 Street Network

27. ca2010 710145 3489366 4.913 141 U.S. Census
28. in2010 267071 1281716 4.799 53 U.S. Census

29. auto 448695 6629222 14.77 37 Numerical Sim.
30. wing nodal 10937 150976 13.80 28 Numerical Sim.

31. fe tooth 78136 905182 11.58 39 Finite Element
32. fe rotor 99617 1324862 13.29 125 Finite Element

Table 1: A sample of graphs from DIMACS10 collection
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CHACO Spectral-Lanczos-K-means

# Time Edge Cost Time Edge Cost Lanczos K-means

(s) -cut ρ̃ (s) -cut ρ̃ It. It.

1. 0.099 9275 1.152 0.306 58287 7.238 380 2
2. 2.952 2852 0.196 0.831 617 0.042 512 2
3. 0.146 3920 1.111 0.390 3231 4.460 512 6
4. 0.660 54943 3.894 0.286 35689 19.70 380 2
5. 0.150 2827 1.026 0.270 12027 4.523 512 2
6. 0.740 20255 0.944 0.366 14982 0.765 512 2
7. 0.098 13697 5.977 0.271 20296 8.857 512 2
8. 2.049 35216 1.008 0.506 19836 0.883 512 2
9. 1.521 54886 2.166 0.433 4050 0.318 512 2
10. 0.801 65054 5.770 0.330 608 608.0 512 2
11. 0.770 743 0.135 0.410 742 0.135 380 2
12. 0.065 8300 3.163 0.206 833 0.353 380 2
13. 0.422 34546 3.440 0.419 5342 0.829 512 2
14. 0.748 79541 8.021 0.326 85825 8.670 512 3
15. 0.600 126433 6.540 0.337 6239 1.699 380 2

16. 6.457 328610 4.896 0.833 341844 5.244 512 2
17. 4.291 143009 2.516 0.592 105181 1.877 512 2
18. 5.672 237985 3.183 0.762 93413 1.747 512 3
19. 55.69 4.1e+6 38.30 7.112 255724 4.142 512 2
20. 49.40 5.0e+6 37.46 7.775 1.3e+6 12.70 512 2

21. 0.228 211384 8.455 0.480 0 0.000 512 7
22. 2.074 171700 6.868 0.473 212956 8.518 512 2
23. 0.259 82392 3.296 0.127 274832 10.99 128 2
24. 0.008 98 0.081 0.139 28 0.028 512 2

25. 4.655 13331 0.037 1.779 7043 0.020 512 2
26. 0.163 1076 0.038 0.446 465 0.016 512 2

27. † † † 1.391 2.4e+9 13903. 512 2
28. † † † 0.634 4.4e+8 6672. 512 2

29. 6.671 11364 0.101 2.027 11246 0.101 512 2
30. 0.110 1067 0.069 0.423 906 0.090 512 2
31. 1.786 2439 0.098 0.524 2702 0.112 512 2
32. 0.569 4983 0.255 0.433 4312 0.221 512 2

Table 2: Results for graph partitioning into 2 partitions (part I)
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ILU0 Spectral-LOBPCG(ILU0)-K-means Spectral-LOBPCG(ILU0)-K-means

# Time Time Edge Cost LOBPCG K-means Time Edge Cost LOBPCG K-means

(s) (s) -cut ρ̃ It. It. (s) -cut η̃ It. It.

1. 0.014 0.131 6370 1.160 39 1 0.094 5269 1.039 27 1
2. † † † † † † † † † † †
3. 1.803 0.077 1 0.500 13 1 0.056 3640 1.033 9 1
4. 0.351 0.176 27707 3.764 25 1 0.056 6545 0.790 7 1
5. 0.569 0.173 670 0.989 45 1 0.092 807 0.794 23 1
6. † † † † † † † † † † †
7. 0.056 0.090 1802 3.040 29 1 0.061 5984 3.324 19 1
8. 0.227 0.292 18458 1.353 27 1 0.314 22167 0.944 29 1
9. † † † † † † † † † † †
10. 17.44 0.284 5 1.667 37 1 0.150 18030 2.806 19 1
11. 1.408 0.398 742 0.135 31 1 0.349 743 0.135 27 1
12. 0.061 0.058 833 0.353 17 1 0.040 880 0.371 11 1
13. 0.598 0.109 4899 0.783 19 1 0.057 3295 0.558 9 1
14. † † † † † † † † † † †
15. 0.230 0.161 6022 1.643 19 1 0.113 11072 2.802 13 1

16. 0.688 0.503 33 0.243 23 1 0.294 37 0.349 13 1
17. 0.263 0.144 31 0.419 7 1 0.072 11 0.099 3 1
18. 0.259 0.270 19 0.250 11 1 0.179 28 0.424 7 1
19. 52.93 1.546 2 0.061 9 1 1.218 50 0.300 7 1
20. 13.56 1.106 1 0.053 9 1 0.878 7 0.066 7 1

21. † † † † † † † † † † †
22. † † † † † † † † † † †
23. 0.029 0.184 1508 3.702 25 1 0.171 1780 3.522 23 1
24. 0.006 0.059 87 0.072 33 1 0.043 82 0.068 23 1

25. 0.116 1.331 80 0.071 19 1 1.334 218 0.067 19 1
26. 0.020 0.167 1565 0.055 23 1 0.126 1868 0.065 17 1

27. 0.098 19.07 5.5e+7 325.2 511 1 7.247 9.7e+7 860.0 193 1
28. 0.043 7.719 3.6e+7 541.2 511 1 7.751 3.5e+7 531.3 511 1

29. 0.136 2.794 9972 0.092 79 1 1.191 35545 0.323 33 1
30. 0.015 0.153 1018 0.073 33 1 0.110 1854 0.168 23 1
31. 0.039 0.384 2516 0.102 47 1 0.227 9052 0.374 27 1
32. 0.027 0.203 4058 0.208 31 1 0.166 5050 0.260 25 1

Table 3: Results for graph partitioning into 2 partitions (part II)
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Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

METIS Spectral-Lanczos-K-means

# Time Edge Cost Time Edge Cost Lanczos K-means

(s) -cut η̃ (s) -cut η̃ It. It.

1. 0.05 12200 23.49 0.58 18287 25.85 512 16
2. 0.12 154850 164.3 1.00 100712 100.1 512 9
3. 0.15 65072 283.1 0.46 34590 131.6 512 12
4. 0.52 160453 175.4 0.61 78313 81.01 512 13
5. 0.05 23364 129.2 0.35 51633 1005. 512 16
6. 0.10 22697 16.47 0.71 205070 2096. 512 13
7. 0.08 27489 183.6 0.31 4672 64.56 512 9
8. 0.35 87194 38.84 1.18 250624 87.57 512 16
9. 0.66 125259 76.87 0.92 249934 132.8 512 16
10. 0.35 105354 143.5 0.28 165638 43913. 275 6
11. 0.09 183525 517.5 0.61 86944 185.4 512 7
12. 0.10 30360 178.1 0.35 4111 44.62 512 16
13. 0.24 60059 92.38 0.62 123874 425.7 512 16
14. 0.31 100458 155.4 0.31 154341 46838. 153 16
15. 0.30 149825 120.9 0.81 163863 89.37 512 16

16. 0.59 191124 44.28 2.12 556370 110.4 512 16
17. 0.28 73750 20.10 1.30 615237 1795. 512 10
18. 0.55 150532 31.19 2.11 205389 42.70 512 15
19. 1.33 1.1e+6 170.5 9.19 232438 123.6 512 16
20. 1.96 2.0e+6 232.4 9.58 1.0e+6 296.8 512 11

21. 0.87 241447 149.6 0.55 44 43.00 512 2
22. 1.03 339874 210.7 0.89 370696 184.6 512 14
23. 0.28 120983 75.01 0.92 192501 80.26 512 16
24. 0.01 305 3.91 0.17 340 4.33 512 8

25. 0.60 1117 0.05 8.19 239561 10.09 512 15
26. 0.04 284 0.15 1.00 14566 7.76 512 16

27. 0.38 6.4e+8 56549. 4.75 3.E+10 3534800. 512 16
28. 0.12 3.6e+8 85405. 1.62 5.9e+9 1349810. 512 12

29. 0.38 128156 17.70 4.17 179382 25.25 512 16
30. 0.04 6492 6.49 0.73 7524 7.37 512 16
31. 0.08 34122 21.21 1.01 59253 36.39 512 16
32. 0.06 28119 22.28 0.80 30298 24.74 512 15

Table 4: Results for graph partitioning into 31 partitions (part I)
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Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).

Spectral-LOBPCG-K-means ILU0 Spectral-LOBPCG(ILU0)-K-means

# Time Edge Cost LOBPCG K-means Time Time Edge Cost LOBPCG K-means

(s) -cut η̃ It. It. (s) (s) -cut η̃ It. It.

1. 1.50 7308 21.31 79 1 0.014 0.59 7152 21.27 25 1
2. 6.99 122688 138.28 101 1 † † † † † †
3. 5.70 16774 117.35 495 1 1.803 0.36 16874 108.9 17 1
4. 16.03 87833 94.41 493 1 0.351 1.48 87290 92.71 31 1
5. 5.07 3934 30.68 511 1 0.569 0.26 3985 30.57 17 1
6. 8.85 12149 13.22 201 1 † † † † † †
7. 0.94 4283 69.23 111 1 0.056 0.17 4307 72.81 13 1
8. 20.92 21824 15.88 285 1 0.227 2.49 22554 16.60 25 1
9. 28.21 18468 24.22 511 1 † † † † † †
10. 15.01 20533 30.10 511 1 17.44 0.78 10954 27.56 17 1
11. 1.14 167285 511.8 53 1 1.408 0.74 171104 521.2 11 1
12. 1.64 2435 35.62 181 1 0.061 0.26 2180 35.89 19 1
13. 8.58 45188 68.26 363 1 0.598 0.72 43671 68.25 21 1
14. 13.67 5097 28.00 511 1 † † † † † †
15. 7.36 48869 193.5 169 1 0.230 1.35 73905 183.5 21 1

16. 80.48 767 2.05 511 1 0.688 4.30 168 2.02 19 1
17. 33.31 472 4.10 275 1 0.263 1.65 259 4.74 9 1
18. 41.88 435 4.90 263 1 0.259 3.04 223 4.03 13 1
19. 297.9 535 5.71 453 1 52.93 21.99 203 2.27 15 1
20. 374.0 353 6.65 511 1 13.56 21.03 110 2.50 15 1

21. 4.39 269718 163.19 75 1 † † † † † †
22. 20.81 343094 187.45 349 1 † † † † † †
23. 3.50 111721 83.85 65 1 0.029 2.03 125925 80.12 29 1
24. 0.34 319 4.01 53 1 0.006 0.14 292 3.33 19 1

25. 40.53 64679 2.74 63 1 0.116 14.27 54751 2.11 19 1
26. 2.59 5300 2.69 47 1 0.020 1.33 2853 1.52 21 1

27. 177.7 1.3e+9 176497. 511 1 0.098 111.4 5.6e+8 37987. 261 1
28. 65.86 4.8e+8 100834. 511 1 0.043 38.01 3.7e+8 84531. 243 1

29. 27.46 134921 18.71 89 1 0.136 15.58 135212 19.13 35 1
30. 2.00 8055 8.00 61 1 0.015 1.05 7848 7.82 27 1
31. 5.62 37287 23.32 89 1 0.039 2.02 37887 23.96 23 1
32. 4.44 28726 22.27 95 1 0.027 1.69 28920 22.03 27 1

Table 5: Results for graph partitioning into 31 partitions (part II)
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