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Abstract—Increasing transfer rates and decreasing I/O voltage
levels make signals more vulnerable to transmission errors. While
the data in computer memory are well-protected by modern
error checking and correcting (ECC) codes, the clock, control,
command, and address (CCCA) signals are weakly protected
or even unprotected such that transmission errors leave serious
gaps in data-only protection. This paper presents All-Inclusive
ECC (AIECC), a memory protection scheme that leverages and
augments data ECC to also thoroughly protect CCCA signals.
AIECC provides strong end-to-end protection of memory,
detecting nearly 100% of CCCA errors and also preventing
transmission errors from causing latent memory data corruption.
AIECC provides these system-level benefits without requiring
extra storage and transfer overheads and without degrading the
effective level of data protection.

I. INTRODUCTION

Any thorough system-level protection scheme must be holis-
tic and provide end-to-end error protection. Strong protection of
any one component provides limited benefit to the overall relia-
bility, as any unprotected component will quickly become the re-
liability bottleneck. Despite this, the overwhelming majority of
current DRAM error protection literature is devoted towards pro-
tecting the data that are stored in memory. Clock, control, com-
mand, and address (CCCA) signals are left unprotected or are
protected seemingly as an afterthought by ad-hoc mechanisms.

This paper presents All-Inclusive ECC (AIECC), a holistic
memory error protection scheme that is able to safeguard
DRAM data and CCCA signals against storage and transmis-
sion errors. By leveraging the existing strong ECC schemes for
the protection of CCCA errors, AIECC remedies the approach
of protecting only or mostly DRAM data without discarding
the extensive advancements made in the area of data protection.

With demands for both memory capacity and bandwidth
constantly increasing, DRAM design evolves to provide more
data bandwidth with less energy. Each recent generation of
DRAM has more-than-doubled the data transfer rate of its
predecessor (Figure 1a) and each generation has also decreased
core and I/O voltages for better energy efficiency (Figure 1b).
Increasing signal transfer rates and lowering I/O voltages each
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Fig. 1: General DRAM trends over the past 15 years.
Transmission rates continually increase each generation while
supply voltages drop. Meanwhile, roughly half of the DRAM
power is consumed during transmission.

exacerbate the problem of transmission errors. A transmission
error occurs when a signal is incorrectly transferred to or from
memory; higher transfer rates and lower voltages increase the
vulnerability to timing and electrical noise, respectively.

Traditionally, DRAM designs have managed the transmission
error rate using sophisticated circuit techniques to improve
signal integrity (e.g., delay-locked loops [2], [3], phase-
locked loops [4], [5], on-die termination [2], [3], [4], [5],
[6], differential signaling [2], [3], [4], [5], [6], and fly-by
topologies [2], [3]) at the cost of burning extra power. The
price paid for reliable transmission is significant, and roughly
half of DRAM power is spent on I/O (Figure 1c). Rising
transmission error rates and tight power constraints have made
circuit techniques alone insufficient to provide high levels of
reliability and efficiency. DRAM vendors have accordingly
introduced ad-hoc architectural techniques to recent memory
generations—such as Cyclic Redundancy Checks (CRCs)—to
verify the consistency of received data and relax the circuit-level



demands by tolerating some transmission errors [3], [4], [5].
While current protection techniques primarily focus on

protecting data transmission, CCCA signals can be more vulner-
able to transmission errors. These signals typically operate at
half the transfer rates of data signals, yet they may suffer from
more transmission errors due to their parallel interface (e.g. 27
DDR4 control/command/address signals share a clock, while 8
data signals and 1 mask signal share a data strobe) and more
receivers (e.g. CCCA signals drive many chips, while data
signals drive a single pin on one rank at a time). DDR4 DIMM
signal and power integrity simulations show that CCCA signals
have narrower time windows to reliably receive signals than
data signals, limiting the overall operating frequency. Due to
the lack of strong CCCA protection, current DRAMs passively
limit CCCA rates for high reliability. DDR4 introduced gear-
down mode which halves CCCA transfer rates for reliability [3],
and GDDR5X could not scale up CCCA rates along with data
rates [5] (Figure 1a). These designs trade performance for
CCCA reliability by lowering command bandwidth, adding
command latency, and increasing access granularity.

We present a novel and thorough protection technique for
both data and CCCA errors in main memory. All-Inclusive
ECC (AIECC) augments existing data-protection schemes to
provide high coverage against CCCA errors without additional
redundant storage or new signals to and from memory. AIECC
is meant to be an unobtrusive addition to future memory
standards. As an example, we describe AIECC as an extension
to DDR4 memory, which is the most dominant main memory
system design today for high-capacity servers and HPC systems.
Specifically, AIECC makes the following contributions. It:

• Is the first known publication to simultaneously consider
DRAM data, address, command, control, and clock
protection.

• Detects nearly 100% of CCCA errors without introducing
additional storage or transfer redundancy.

• Provides detailed diagnosis of CCCA errors to ease repair.
• Dovetails existing DRAM techniques (command and

address parity / write CRC) to ease adoption and leverage
prior effort.

In addition to the novelty and contributions of the AIECC
scheme, we also provide a comprehensive literature and
patent survey. While some prior art is conceptually similar,
AIECC differs in important ways. We sweep a range of
plausible CCCA error rates and demonstrate that ours is the
first mechanism to provide complete CCCA and data error
protection for DDR4 memory.

The paper proceeds as follows. We first lay out the conceptual
foundations of AIECC and describe the current state-of-the-art
in CCCA protection efforts in Sections II and III. Section IV
describes how AIECC simultaneously protects against data
and CCCA errors. Section V evaluates the reliability benefits
of AIECC and shows its system-level overheads to be minimal.
Finally, Section VI describes exciting future research avenues
and Section VII concludes the paper.
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Fig. 2: The CCCA signal interface for DDR4 memory. CMD
and ADD share pins by having a different context per command.
RAS and CAS denote the row and column address strobes.
CK, CKE, CS, ODT, PAR, ACT, WE, BC and AP stand for
clock, clock-enable, chip-select, on-die-termination, command-
parity, activate, write-enable, burst-chop and auto-precharge,
respectively, as described in the DDR4 spec [3].

II. BACKGROUND

This section summarizes the background necessary for a
complete understanding of AIECC in the context of high-
capacity and high-reliability systems using DDR4 memory.
Sections II-A, II-B, and II-C review DRAM memory, ECC,
and CCCA errors, respectively.

A. DRAM and CCCA Signals

DRAM memory is organized as two-dimensional arrays
(banks) and requires three commands to access a fresh piece of
data. An activation command (ACT) fetches a row of data into
an internal row buffer. Then, a read or write command (RD or
WR) uses a column address to select and transfer or overwrite
a particular block from the activated row. Once a memory
transfer or write completes, the DRAM bank must be restored
to a ready state by issuing a precharge command (PRE). To
exploit data locality and amortize command overheads, an
access to DDR4 initiates a burst of 8 data transfer beats. An
access to an already-activated row (a row buffer hit) does
not require an ACT or PRE command, potentially saving
command bandwidth for spatially local accesses. However,
command bandwidth can be a limiting factor for programs
lacking locality, especially in systems featuring fine-grained
access granularities [7], [8], [9]. Furthermore, DRAM requires
periodic refresh commands (REF) to prevent data loss from
leakage, further taxing the available command bandwidth.

DDR4 DRAM commands use 28 non-data pins to issue and
control 4 types of signals: clock (CK), control (CTRL), com-
mand (CMD), and address (ADD), as shown in Figure 2. Note
that signal identifiers are overlined to differentiate them from
DRAM commands. Also note that there is both an activate com-
mand, ACT, and an activate signal, ACT. The CMD and ADD
signals time-multiplex physical pins, while CTRL and CK
signals have dedicated wiring. Transmission errors over any of
these pins can have a disastrous impact that is not correctable by
conventional data-only ECC, as explained later in Section II-C.

A DRAM chip with an N-bit data interface is called a ×N
DRAM (e.g. a ×4 or ×8 DRAM). A rank is a set of DRAM
chips that are accessed together to provide the desired data bus
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Fig. 3: Some CCCA transmission error examples. Even a small CCCA error can have disastrous consequences, and data-only
ECC is useless in detecting, correcting, or diagnosing such errors.

width. A channel is a set of ranks that time-share physical data
transfer lanes. A rank/channel is comprised of DIMMs (dual
in-line memory modules) that are built from multiple DRAM
chips on a PCB board. A memory transfer block (MTB) is the
unit of memory access and is defined by the rank width and
burst length; typical MTB sizes are 64B or 128B, depending
on the memory configuration.

B. Error Correcting Codes

Error checking and correcting (ECC) codes are often
used by business-critical, high-availability, or high-reliability
systems to protect data in memory from errors. An ECC code
detects and corrects errors by adding redundant information
whose value is generated algorithmically from the protected
data. A data and check code pair is called an ECC word. A
valid ECC word whose check bits are consistent with its data
is called a codeword, while an invalid pair due to errors is
called a non-codeword.

ECC check codes are typically stored alongside data
in ECC DIMMs that have some extra DRAM chips. For
example, a 72-bit single-rank ECC DIMM has 18 ×4 chips
to provide a 64-bit data interface and 8 bits for redundancy.
This 12.5% of redundant storage is the industry standard for
ECC DIMMs, and it is sufficient to provide high levels of
data error protection using aggressive coding techniques [10].
AIECC extends such protection to the CCCA signals without
requiring any additional redundancy such that it fits in the
footprint of commodity ECC DIMMs.

A strong level of memory ECC protection that protects
memory from any single chip failure is called chipkill ECC.
Chipkill ECC on ×4 DRAM chips should therefore correct up
to 32 erroneous bits per MTB to restore the full 8-beat transfer
coming from the faulty chip. There are many chipkill ECC
implementations; some of them use multiple codewords per
memory access [11] while others use a single codeword [10]
for coding efficiency.

The maximum codeword size is defined by the underlying
ECC code. An 8-bit symbol Reed-Solomon (RS) code, which is
commonly used in chipkill ECC schemes, supports up to a 255-
symbol (2040-bit) codeword. However, memory configurations
do not typically have such coarse-grained accesses and current

chipkill ECC schemes use smaller codewords (a shortened
code) accordingly. AIECC leverages the shortened nature of
chipkill ECC to strongly protect address information without
any additional redundancy, as we explain later.

C. CCCA Errors

Transmission errors in CCCA signals are often disastrous,
corrupting data storage and escaping data-only ECC. Figure 3
gives some examples of transmission errors and their associated
consequences. Figure 3a shows a transmission error that
changes the address of a read operation. Despite reading the
wrong location, the data-only ECC codeword ({data B, ECC B})
is valid and the error causes silent data corruption (SDC). An
error in a write address (Figure 3b) poses an even more serious
risk—not only is the wrong location (address B) updated with
incorrect data, but also the data in the originally intended
destination (address A) becomes obsolete. Both locations have
their storage data corrupted (memory data corruption (MDC))
yet each location still holds a valid ECC codeword such that
a following read will escape data-only ECC and result in SDC.
Transmission errors in the command signals can be catastrophic,
as well. Figure 3c shows a CCCA error that generates duplicate
activations (for row A and B) on the same bank. The memory
bit-lines are already activated with row A data and mistakenly
opening a word-line copies this data into row B, destroying it
and causing significant MDC. Accordingly, a later read to row B
will yield valid codewords yet incorrect data, resulting in SDC.

CCCA errors are growing rapidly with increasing transfer
rates. A large-scale field analysis on DDR3 shows that the
number of detected CA errors is as many as 72% of uncorrected
data ECC errors [12]. Assuming that circuit techniques ensure
a fixed Bit Error Ratio (BER), DDR4 will suffer from roughly
twice as many CCCA errors due to its doubled command
bandwidth. With a more realistic assumption of increasing
BER at higher transfer rates, the CCCA error growth will
even outpace bandwidth scaling. AIECC detects and diagnoses
transmission errors as they occur, preventing a high BER from
translating into silent data corruption or system failures. This

Current 8-bit RS chipkill schemes use anywhere from 18 [11] to 144 [10]
symbols, depending on the memory configuration.
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Fig. 4: The DDR4 reliability features.

allows the continuing use of commodity DRAMs (which are not
necessarily optimized for high reliability) in business or safety-
critical systems, even in the presence of increasing transmission
error rates.

III. PRIOR CCCA PROTECTION WORK

Due to rising transmission error rates and their impact on
high-capacity servers, there have been a number of recent
industrial developments to detect and correct CCCA errors.
Such CCCA protection efforts, while numerous, seem to
be fragmented and ad-hoc—no single mechanism is able
to provide the comprehensive protection of data and CCCA
signals. The wealth of recent industrial interest for this issue
bespeaks the importance of AIECC, and the relative dearth of
activity in academic literature for CCCA errors is an oversight
that this paper attempts to rectify.

The weak and ad-hoc CCCA protection that is making its
way into DRAM standards is described below in Section III-A;
other alternatives that are openly published or are hinted at
via public patent records are investigated in Section III-B.
AIECC is designed to fit within the footprint of DDR4 CCCA
protection and it incorporates and supersedes some of the best
qualities from the alternative protection mechanisms. Ultimately,
however, AIECC is stronger and more efficient than any prior
mechanism—no other solution is able to simultaneously protect
against data, address, clock, and command errors without
introducing additional redundancy or new signals to and from

Note that we developed AIECC independent of this prior patent survey.

DRAM. The relationship between AIECC and prior CCCA pro-
tection approaches is explained in more detail in Section III-C.

A. Current DRAM Practices
DRAM has introduced reliability features to protect data

against storage and transmission errors. Large-scale systems typ-
ically employ Data ECC (DECC), as described in Section II-B,
to protect memory data against storage and transmission errors
(Figure 4a). On a read, DECC fetches both data and its ECC
check bits, detecting and correcting inconsistencies due to errors.
A data transmission error on a memory write remains latent as
MDC until a following read to the locations with erroneous data.
Such MDC is problematic, as it is likely to cause severe data
loss that is not correctable through ECC. Accordingly, DDR4
introduces a write CRC (WCRC) for the early detection of
write data transmission errors (Figure 4b) to reduce the chance
of memory data corruption. WCRC generates an 8-bit CRC
checksum of the write data to each chip and transmits this CRC
over 2 additional beats that trail the standard 8-beat data transfer.
Each DDR4 DRAM chip checks the consistency of this check-
sum with the received data before writing its memory array.

DDR4 introduces two other weak ad-hoc mechanisms for
dealing with CCCA errors: CA parity (CAP) and Gear Down
Mode. CA parity (Figure 4c) uses a dedicated pin to transfer
the even parity of the CMD/ADD signals. Upon receiving a
command, each DRAM chip computes the parity of its received
CMD/ADD and checks it against the received CAP. CAP is a
weak level of CCCA protection, as it does not cover the CK and
CTRL groups and cannot detect an even number of bit- errors
on the CMD/ADD signals. Gear Down Mode halves the CCCA
transmission rate to trade latency and command bandwidth
for signal quality, keeping the data transmission rate and the
data bandwidth the same. While gear down mode reduces
the CCCA error rate, it is not a viable solution for memory-
intensive workloads that do not exhibit very high locality.

B. Other Approaches for CCCA Protection
The topic of the end-to-end memory protection is of great

importance to the server industry, and some form of CCCA
protection has been the topic of patents from Freescale [13],
Fujitsu [14], IBM [15], [16], [17], Intel [18], Micron [19],
[20], Sun (now Oracle) [21], [22], Azul Systems [23], [24],
and others [25], [26]. The different approaches taken by these
protection mechanisms (as well as a single chain of academic
literature [27], [28], [29]) are described below.

1) Separate Address Protection:: Various authors describe
techniques to protect the address signal using separate check
bits [19], [20], [21]. While these approaches are straightforward,
they are inefficient as they sacrifice transmission bandwidth
and require additional signals to and from memory.

2) Combined Address and Data Protection:: Address
protection can be combined with data protection while sharing
check bits. It appears that two prevailing techniques exist for
such protection: codeword transformation and combined ECC.

Codeword transformation uses the address information to
transform the data or check bits upon a write, reversing this
transformation before ECC decoding. In the case of an address
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transmission error, this reverse transformation will corrupt
the codeword; this corruption may be detected via data ECC.
Nicholas [17] partitions a write data block into 32 sub-blocks
and XORs each sub-block with a corresponding address bit. Sub-
blocks should be organized to report address errors as detectable-
yet-uncorrectable; no specific ECC or details are mentioned,
however. Normoyle [23] and Wong et al. [22] generate
checksums over the address and later XOR this information in
with the DECC check bits. Normoyle generates a 4-bit CRC
checksum from the address and merges it with 2 DECC nibbles,
which results in a detectable-but-uncorrectable error in single-
symbol-correcting double-symbol-detecting (SSC-DSD) ECC
codes. Wong merges a 1-bit address parity into at least two
check bits for similar capabilities in a single-error-correcting
double-error-detecting (SEC-DED) code.

An alternative mechanism, combined ECC, combines the
address with the data prior to ECC encoding. Chen et al. [15],
[16] describe a linear code that accepts the address along
with the data and encodes them together for either a 140 or
146-bit channel, providing relatively weak address protection
but taking special care to correctly diagnose address errors in
most cases. Vogt [18] appends the address to the data before
encoding, with no consideration of ECC specifics or correct
address error diagnosis. The same approach was studied by
Gumpertz for checking a variety of metadata, including the
storage address [27] (also mentioned in [28]). The concept is
described with respect to SEC-DED ECC and is not evaluated
in the context of off-chip memory. Sazeides et al. [29] describe
a scheme to combine metadata with ECC, but they do not
consider address errors or off-chip memory. Normoyle and
Hathaway [24] first take a CRC of the address and then
append it and other metadata to the data before encoding.

3) Protection of Control Signals: The protection of control
signals through separate ECC has been proposed, trading trans-
mission bandwidth for reliability [19], [21]. Partial protection
of the DRAM command stream through history tracking is
proposed by Wang [26] and an abandoned patent application by
Romdhane [25]. These approaches check for illegal command
sequences or timing violations without requiring any additional
signals to or from memory, but they cannot provide complete
protection against command and control errors.

C. Relationship of Prior Work with AIECC

AIECC is designed to put the CCCA reliability mechanisms
present in DDR4 [3] to good use in a cohesive and compre-
hensive protection scheme; its relationship with this work is
clear and intentional. AIECC further protects the ADD signal
by concatenating it with the data before encoding, similar
to [18], [27]. AIECC is the first approach that considers strong
levels of protection (100% address error detection with detailed
error diagnosis for address transmission errors) and this paper
represents the first realistic evaluation of a combined ECC
protection scheme for off-chip memory.

The Command State and Timing Checker proposed for
AIECC is similar in principle to the mechanisms described
by [25], [26], yet is more complete. AIECC is the first to

evaluate the coverage of protocol tracking, and it augments
the approach to provide the complete coverage of command
errors by extending the DDR4 CA parity signal to fill gaps
(such as a missing WR command).

When taken as a whole, AIECC both combines and extends
the best aspects of prior CCCA protection efforts. No other
approach simultaneously protects against data, address, clock,
and command errors with as high of error coverage as AIECC.
AIECC also performs early write error detection, is able to
correctly diagnose address errors, and it does not require
additional redundancy or new signals to and from DRAM.

IV. ALL-INCLUSIVE ECC

AIECC provides thorough and strong protection by combin-
ing 4 complementary techniques. Extended data ECC (eDECC)
and extended write CRC (eWCRC) protect memory against
address errors by exploiting currently unused faculties of the
data ECC and write CRC. They are able to strongly protect
both the data and address simultaneously with no extra storage
and transfer overheads. An architectural mechanism called the
Command State and Timing Checker (CSTC) uses memory
protocol information to detect illegal command sequences and
protect against errors in the CK, CTRL, and CMD signals.
Finally, extended CA Parity (eCAP) strengthens this command
error protection, filling some coverage holes of the CSTC.

A. Extended Data ECC (eDECC)

Extended data ECC (eDECC) augments chipkill data ECC
to protect address information without extra storage/transfer
overheads. A ×4 DRAM transfers 32 bits of data per access;
eDECC leverages the strength of chipkill ECC to to detect and
precisely diagnose up to 32 bits of address information. The 32-
bit address used by AIECC is an MTB address that includes the
rank, bank, row, and (partial) column address for the given 64B
block of physical memory (Figure 5e). By using the MTB ad-
dress, AIECC can protect up to 256GB per channel (compared
to 4GB if it uses the full byte address); a capacity of 256GB
per channel is larger than any published DRAM standard and
it should be sufficient for even the highest-capacity servers.

Commonly used chipkill codes can protect longer codewords
than those that are called for by conventional memory access
granularities. These underlying capabilities are used by
eDECC to embed DRAM address information without adding
additional redundancy, similar to their use for embedding other
types of metadata [27], [28]. Figure 5c shows eDECC with
AMD chipkill [11]. The AMD chipkill data ECC codeword
has 16 data symbols and 2 check symbols, though it could
potentially protect 237 more symbols without either extra
redundancy or compromising its correction capability. AIECC
adds one extra write address symbol to the eDECC encoding
using this auxiliary protection. On a read, the returned data
and redundancy are decoded together with the read address
(Figure 5a). If a read address error fetches data and redundancy
from a wrong address (address B instead of address A in Fig-
ure 5b), the inconsistent tuple ({address A, data B, redundancy
B}) will be detected by eDECC. Further decoding of the word
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will reconstruct the address symbol from data and redundancy
(address B in Figure 5b), diagnosing the faulty address pins
by revealing the erroneous address that DRAM received.
Figure 5d shows another example eDECC organization using
Quadruple-Pin-Correcting Bamboo ECC [10]. The original
Bamboo codeword with 64 data symbols and 8 check symbols
is extended to hold 4 extra address symbols. This eDECC
organization is also able to detect and diagnose any 32-bit
address error without additional redundancy.

B. Extended Write CRC (eWCRC)

Extended write CRC (eWCRC) extends the write CRC of
DDR4 to protect the write address as well as the data, in a
similar manner to how eDECC extends a chipkill data ECC. To
implement eWCRC, the DRAM controller generates an 8-bit
CRC checksum from both the write data and its MTB address
as shown in Figure 5f. DRAM receives the WCRC along with a

write command and validates its data and address prior to chang-
ing the contents of memory. The detection coverage of eWCRC
is 100% for any error that affects 8 or fewer contiguous address
or data bits, and 99.6% for more severe errors. eWCRC detects
write address errors prior to memory data corruption, allowing
cheap common-case correction through write retry. In the rare
case that an address error escapes the eWCRC, an MDC occurs;
erroneously overwritten data can be diagnosed by eDECC, but
the stale data that is left behind can result in SDC if read.

C. Command State and Timing Checker
The first tier of AIECC command protection is to detect

illegal commands by tracking DRAM state transitions and com-
mand arrival times. AIECC adds a Command State and Timing
Checker (CSTC) to the DRAM alongside each bank for this
purpose; this CSTC checks the validity of received commands
based on the memory protocol (Figure 5g). At any given time,
DRAM has a predetermined bank context (ACT/REF on an idle
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Command Bank state Timing parameters

ACT Idle tRC, tRRD, tFAW, tRP, tRFC
REF Idle tRRD, tFAW, tRP, tRFC
RD Open tRCD, tCCD, tWTR
WR Open tRCD, tCCD
PRE Open tRAS, tRTP, tWR
NOP Any

TABLE I: DRAM commands with their allowed bank state
and timing constraints.

bank and RD/WR/PRE on an open bank) and a valid context-
breaking command (e.g., ACT on an open bank) can be easily
detected by monitoring bank states. Additionally, command
arrival times are monitored to detect erroneous commands
that violate the DRAM timing guarantees. Each CTSC is
implemented as a small state machine using DRAM commands
from the JEDEC standard and binned timing parameters that are
known by the vendor. Table I shows the bank state and timing
constraints for DDR4 DRAM, taken from the JEDEC specifi-
cation [3]. Commands for DRAM initialization (mode register
set and ZQ calibration) and for power saving modes (self-
refresh and power down) are excluded for simplicity, but these
commands are later included in our experimental evaluation.

There are some command errors that are not necessarily
caught by the CSTC; most of these errors either do not
compromise the functionality of the system or they will be
detected through the address checking mechanisms. An extra
refresh operation with valid timing may not be detected by
the CSTC, but it does not affect correct operation. A missing
refresh is not detected; we assume DRAM has some retention
time margins so that a lost refresh operation does not corrupt
data. Missing or duplicate activations (ACT/PRE) are not
immediately detected by the CSTC, but they change the bank
state so that the next command to the bank will trigger a
CSTC error and data integrity is not compromised.

Errors that corrupt a command to or from a RD result in
an extra or missing read operation, respectively. An extra or
missing read command corrupts the write pointer in the read
data FIFO of the DDR PHY (physical interface) such that the
memory controller receives a wrong entry from the PHY. This
wrong entry is then detected by eDECC as it will not validate
the address of the codeword taken from the read FIFO (this
address is produced and stored within the memory controller
itself and is not subject to transmission errors). An extra write
command will attempt to interpret the I/O at the data pins as a
value and will write this value back to the open row. The data
interpreted from the undriven I/O pins can be random (if they
are fully undriven) or all-ones (if they are partially driven by
termination resistors); in either case, the erroneous write will be
handled by the eWCRC and eDECC like any write data error.

D. Extended CA Parity (eCAP)

The only command error that is not covered by either the
CSTC or the AIECC address checking mechanisms is a missing
write. In this case, as DRAM never receives the command, it

would not report an error and the memory controller would as-
sume that an error-free write completes. To detect this erroneous
situation, we extend the CA parity of DDR4 to cover missing
WR commands (Figure 5h). To enforce extended CA parity
(eCAP), the memory controller and memory maintain synchro-
nized write toggle (WRT) bits that flip upon sending/receiving
a WR command. The CA parity is then generated across both
the 24 CA signals and the WRT bit. If there is a missing
WR, the WRT values in the memory controller and memory
disagree on the next command and the error is detected.

E. CK and CTRL Protection

Errors in the CK and CTRL signals can compromise
commands as well. An additional toggle on CK results in the
reception of an erroneous command, while a missing toggle
causes a command to be lost. Errors in CKE (clock enable)
and CS (chip select) can also incur an extra/missing command.
These extra/missing commands are all detected by eDECC,
eWCRC, CSTC, and eCAP as explained above. Errors in
ODT (on die termination) deteriorate the data signal quality,
which can be detected by eWCRC and eDECC.

F. Precise Diagnosis

eDECC not only detects address errors but can also pin-
point faulty address pin(s) by restoring the original address
and comparing it against the erroneous address. We expect
such knowledge to be valuable to repair techniques, such as
selectively tuning delay and drive parameters of the reported
pin. Without this knowledge, extensive diagnostic routines
are required or repeated CCCA errors may impact system
reliability and availability.

G. Correction Details

AIECC correction is more straightforward than data correc-
tion via ECC. Because AIECC generally detects CCCA errors
early (before possible data corruption), correction simply entails
retrying the faulty command. In the rare case that AIECC
detects an error late (after possible data corruption) then a
detectable-uncorrectable error must be flagged to higher system
levels. This is no different from current systems that encounter
an uncorrectable error, and the uncorrectable AIECC error rate
is shown in Section V to be low.

V. EVALUATION

We investigate the reliability and efficiency of AIECC below.
Section V-A analyzes the level of CCCA reliability provided
by AIECC and prior protection techniques. Section V-B
investigates the impact of AIECC on the strength of
the chipkill data protection, finding it to be negligible.
Section V-C estimates the system-level reliability of systems
with transmission errors, showing the impact of AIECC to be
significant in many scenarios. Finally, Section V-D describes
the modest design changes (and correspondingly low overheads)
required to extend a DDR4 memory to support AIECC.
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Erroneous Pin DRAM Command in Error

# Name ACT WR RD PRE

27 CK Clock error
26,25 CKE, CS ACT− WR− RD− PRE−
24 ODT On-die termination error
23 PAR No error
22 ACT ACT→? ACT+
21 RAS (A16) WR→MRS RD→REF PRE→ZQC
20 CAS (A15) WR→ZQC RD→NOP PRE→MRS
19 WE (A14)

ACTrowaddr
WR→RD RD→WR PRE→RFU

18∼15 BG1,0,BA1,0 ACTbankaddr WRbankaddr RDbankaddr PREbankaddr
14 A12 (BC) WRburstchop RDburstchop No error
13∼11 A17,13,11 No error
10 A10 (AP) ACTrowaddr ACT−
9∼0 A9∼0 WRcoladdr RDcoladdr No error

SDC SDC and MDC SDC and conditional MDC

TABLE II: The impact of 1-pin CCCA errors across pin
locations and commands. CMD-/CMD+/CMDA →CMDB
indicate missing, extra, and altered commands (changed from
CMDA to CMDB), respectively. A transition to MRS, ZQC,
and RFU indicate that the DRAM was erroneously given a
mode register set command, ZQ calibration command, or a
reserved-for-future-use command, respectively.

A. CCCA Reliability

The CCCA error coverage of AIECC is evaluated using error
injection simulations, as depicted by Figure 6. A CCCA error
has different consequences with different DRAM commands;
we test 5 dominant command patterns: ACT (followed by
WR), ACT (followed by RD), WR, RD, and PRE. ACT
is sub-categorized because the consequence of an activate
error depends heavily on the following command—a missing
ACT followed by WR results in memory data corruption,
while a missing ACT followed by RD reads arbitrary data
but it does not corrupt storage. Other commands do not vary
significantly with the following command, and we use a single
test sequence for each. Before each erroneous command, the
simulated DRAM is set to have all banks open (except for
erroneous ACTs where the target bank is closed).

Transmission errors are modeled as 1-pin, 2-pin, and
all-pin errors in the CCCA signals of the target command.
These models represent sources of transmission noise such
as inter-symbol interference, crosstalk with 2 victims, and
clock/power noise, respectively. A CK error is modeled as a
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Fig. 7: The CCCA error detection coverage of an
unprotected DDR4 DIMM, DDR4+DECC (DECC),
DDR4+eDECC (eDECC), and DDR4+AIECC (AIECC).

source of all-pin errors, rather than individual 1-pin error. We
cover all combinations of 1-pin, 2-pin, and all-pin errors on
the 27 CTRL, CMD, and ADD signals. In the no-protection
configuration, errors are not injected on the PAR pin because
it is assumed to be non-existent or disconnected.

1) Impact of undetected CCCA errors: The effects of
undetected CCCA errors depend strongly on the DRAM
command and in some cases also on the following command.
To understand these effects, we implement a DRAM model
that tracks DRAM states, decodes erroneous CCCA signals,
and interprets the impact of each error based on the decoded
command and resultant DRAM state. We tabulate our 1-
pin error results in Table II and summarize the findings
below. (Results of 2-pin and all-pin errors appear in later
experiments, but they are not included in this analysis for
simplicity.) ACT: Any undetected error during an ACT causes
SDC+MDC (if followed by WR) or SDC (if followed by RD).

WR: Three pins (A11, A13, and A17) do not participate in the
WR operation and manifest no error. Errors on CKE, CS, ODT,
ACT, RAS, CAS, WE, burst-chop (BC), auto-precharge (AP),
bank address, and column address manifest as SDC+MDC.

RD: Three pins (A11, A13, and A17) manifest no error. Errors
on CKE, CS, CAS, bank address, BC, and column address
manifest as SDC in the read data, while errors on other signals
generate SDC+MDC. PRE: Fourteen pins (A17, A13∼A11,
A9∼A0) manifest no error, while errors on CKE, CS, ACT,
RAS, CAS, WE, A10 and bank address manifest SDC+MDC.

2) Detection coverage: To examine the error coverage
of different protection mechanisms, we check CCCA errors
against four increasing levels of protection: 1 no protection,
2 DDR4 + data ECC (DECC), 3 DDR4 + eDECC, and
4 DDR4 + AIECC. Figure 7 shows the fraction of 1-pin/2-

pin/all-pin CCCA errors that DECC, eDECC, and AIECC can
detect. 1-PIN ERRORS: CA parity detects 1-pin errors on the 24
CA signals but not on the 3 CTRL signals, two of which are
problematic (CKE and CS—see Section V-A1). A missing
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RD command manifests as SDC with data-only DECC, yet it
can be detected by eDECC. AIECC can detect all 1-pin errors.

2-PIN ERRORS: The detection strength of CA parity is limited for
2-pin errors, resulting in large coverage holes in DDR4+DECC
and DDR4+eDECC. AIECC fills the holes in CAP, avoiding all
SDC and MDC. ALL-PIN ERRORS: CA parity actually performs
better in an all-pin scenario than with 2 erroneous pins, as it has
a 50% chance of detecting the error. However, as undetected
command and control errors are likely to severely corrupt
data, extra coverage is still needed. AIECC provides thorough
command and control protection using CSTC and eCAP, and
only errors that escape eWCRC may cause SDC+MDC.

Figure 8 shows which AIECC components detect different
CCCA errors. It is apparent that the most effective CCCA
protection mechanism heavily depends on the specific error
scenario, such that all four AIECC mechanisms are required
for robust CCCA error coverage. Address protection (eWCRC
and eDECC) is crucial for protecting write and read commands.
All-pin errors during activation are best detected by CSTC, as
the errors frequently change the command into another (invalid)
command. However, eCAP is the most effective mechanism
for 1-pin activation errors, and 2-pin errors are protected by
either address protection or CSTC, depending on whether the
address or command is affected. Only through a combination
of eDECC, eWCRC, CSTC, and eCAP is AIECC able to
provide complete coverage.

B. Data Reliability

Despite its strong level of CCCA protection, AIECC has
minimal impact on the levels of existing data protection.
Table III compares the level of data protection between data-
only chipkill ECC using QPC Bamboo ECC [10], a checksum-
based address protection mechanism that is fully described in
a patent disclosure [23], and two eDECC variants for AIECC:
one based on combined ECC (as described in Section IV-A) and
one based on codeword transformation. Prior work in the area
of address protection that does not require redundant storage
or bandwidth falls into these two camps (Section III-B). The
combined ECC approach provides precise diagnostics whereas
codeword transformation does not. However, it is possible
that error coverage of the two techniques is not equivalent
and may be lower with combined codewords [29]. To analyze
these effects we create a strong codeword transformation
scheme for comparison purposes. We adapt the approach
taken by Nicholas/IBM [17] to work with Bamboo ECC for
our strong transformation-based eDECC variant. Codeword
transformation eDECC decomposes a 64B data MTB into 32
16b sub-blocks, aligning these sub-blocks orthogonally to the
Bamboo ECC symbols. Data is transformed by XORing each
sub-block by an associated bit of the address. Any address

The approach taken by Normoyle/Azul is modified slightly for QPC—the
4-bit address checksum it uses is triplicated and merged into first beats of
3 chips in order to avoid miscorrection from 2-pin correcting QPC.

Note that Nicholas/IBM [17] does not describe any specific implementation
of their general idea.

error is guaranteed detection, and the scheme profits from the
very high error detection coverage of Bamboo ECC.

We inject errors into the data and address symbols using
Monte-Carlo simulation (4 billion trials), determining the
results of each error through a simulated Bamboo ECC decoder.
The strong detection capability of the underlying data ECC
yields virtually 100% detection of serious full-rank errors,
with the Monte Carlo analysis indicating <10-6% undetected
errors. While adding the address information to eDECC may
degrade its data error detection capability, our experiments
conclude that the degradation is negligible and the protection
level is equivalent. Any single-chip errors are still corrected
(preserving chipkill) and AIECC can detect virtually 100%
of concurrent data and address errors.

C. System-Level Reliability Improvements

Section V-A shows that AIECC provides thorough and
strong protection against CCCA errors on any and all pins. Its
implication on system-level reliability, however, depends on the
underlying CCCA error rate. Due to a lack of publicly available
DDR4 CCCA error rates, we perform a sensitivity sweep
on the BER (Bit Error Ratio) and multiply it with command
bandwidths and signal counts to estimate CCCA error rates.
Other approaches for CCCA errors, such as simulation-based
modeling and lab measurements, are excluded due to factors
like confidential process and layout information and low
confidence from limited samples.

Due to the dependence of CCCA error manifestation on
the DRAM command stream, we first characterize the DRAM
behavior of 56 benchmarks from the NPB, SPEC2006, Parsec,
and SPLASH2X benchmark suites [30], [31], [32], [33] using
the Xeon E5 and E7 v3 memory controller performance
counters [34]. Four representative clusters are identified
by hierarchically clustering across the memory bandwidth
utilization, read to write ratio, CAS to ACT ratio, and
ACT→RD to ACT→WR ratio of each program. Three of the
clusters differ mainly in their data bandwidth utilization, and
the other (SPLASH2X’s wat-ns) is an outlier with an extreme
read-to-write ratio. Table 9a gives the data and command
bandwidth for the median centroids of these clusters.

For a given BER, we estimate the CCCA FIT rate of
each representative centroid using Equation 1. This equation
accumulates the FIT contribution from each CCCA-sensitive
command—ACT (+WR), ACT (+RD), WR, RD, and PRE–over
all 1-pin errors. Apart from a CK error, which affects all pins,
no multi-pin errors are modeled due to a lack of data on their

The C, ref, and native input sets are used for these suites, with one thread
per core. SPEC2006 is run with 10 replicated processes in order to fit in a
16GB memory footprint.

NPB’s cg is also an outlier with a high but less-extreme read-to-write ratio;
it is omitted for brevity.
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Fig. 8: A quantitative evaluation of the different AIECC components: eDECC (Section IV-A), eWCRC (Section IV-B),
address protection (eDECC+eWCRC), CSTC (Section IV-C), eCAP (Section IV-D), command protection (CSTC+eCAP),
eDECC+eWCRC+eCAP (for completeness), and AIECC (eDECC+eWCRC+CSTC+eCAP). All four components of AIECC
are necessary to protect against different CCCA errors. Note that the test scenario is ACT-WR-RD-PRE so that most row
address errors are first detected by eWCRC; this may not always be the case.

Data Error Address Error Protection

QPC QPC+Azul [23] QPC+eDECC-t [17] QPC+eDECC-c

None 1 bit 100.0% SDC- CE-R CE-R- CE-R+
32 bits 100.0% SDC- 006.3% SDC- CE-R- CE-R+

1 bit
None CE-D CE-D CE-D- CE-D
1 bit 100.0% SDC- 00.14% SDC- CE-RD CE-RD+

32 bits 100.0% SDC- 006.4% SDC- <10-6% SDC <10-6% SDC

1 chip
None CE-D CE-D CE-D- CE-D
1 bit 100.0% SDC- <10-6% SDC <10-6% SDC <10-6% SDC

32 bits 100.0% SDC- 006.3% SDC- <10-6% SDC <10-6% SDC

1 rank None / 1 bit / 32 bits <10-6% SDC

TABLE III: Data and address reliability comparison. eDECC-t and eDECC-c denote eDECC with codeword transformation
and combined ECC, respectively. SDC stands for silent data corruption; CE-D, CE-R, and CE-R+ stand for a corrected error
through data ECC, retry following a DUE, and retry following accurate diagnosis. Similarly, CE-RD and CR-RD+ stand for
a corrected error that uses both retry and data ECC (with the retry following a DUE and accurate diagnosis, respectively).

rates and distributions.
FITCCCA=BER× ∑

i∈CMD
∑

j∈ERR
{{Command Bandwidth}i

×{Signal Count} j

×{Undetected Probability}i, j

×3.6×1012} (1)
Our evaluation is swept from 10-16 BER, which is the

minimum design specification for data in the JEDEC DDR4
standard [3], up to 10-22. The minimum JEDEC BER of 10-16

is very weak and corresponds to 2.8×106 unprotected FITCCCA
with the high-bandwidth centroid. This BER is likely to be
higher than that in a real system—the FIT of a DDR2/DDR3
x4 DRAM device (including both storage and transmission
errors) is around 25–66 [12], [35], [36]. The stronger BER of
10-22 corresponds to 2.8 FITCCCA, 3.4×106 system-FIT and
a 12-day MTTF on a system with 1.2M DRAM devices. We
believe this number to be within an order of magnitude of the
CCCA error rate exhibited by the Cielo system [12], which
has a similar number of DDR3 chips as our modeled system;
however, the actual measurements on Cielo are not public.

Figure 9b shows FITCCCA from 10-22 BER with and
without protection. Applications with more data bandwidth
have a higher FITCCCA because they issue more commands.

DDR4+DECC reduces the CCCA SDC and MDC rates by an
order of magnitude using the DDR4 reliability mechanisms.
eDECC reduces the SDC rate further by detecting read address
errors. AIECC improves the unprotected CCCA failure rate
by four orders of magnitude because it detects all read errors
and nearly all write errors (as was shown in Section V-A2).

We expect that large-scale systems utilizing DDR4 will
suffer from increased CCCA error rates due to its doubled
transfer rate, and test higher BER values of 10-21 and 10-20

accordingly. These BERs change the Y-axis scale of Figure 9b
yet its shape remains the same. Table 9c shows the estimated
SDC MTTF on a 1.2M-DRAM system with high bandwidth
utilization. AIECC provides an MTTF of 8 years, even with
the more severe BER. In contrast, other schemes have orders of
magnitude worse reliability with an MTTF of just 1 or 2 days.

D. Hardware Overheads

AIECC has negligible hardware overhead and it represents
a straightforward upgrade to existing DDR4 features and
chipkill data ECC. It requires no additional pins or bandwidth
to and from memory as it reuses the existing WCRC and
CAP mechanisms and it does not require any additional
ECC storage. We implement a Verilog model of AIECC to
estimate its logic overheads and synthesize it with the Synopsys
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# Apps Major Feature Data BW Command BW (×106 cmds/sec)

ACT
(+WR)

ACT
(+RD) WR RD PRE

33 Low Data BW 0.50% 0.64 0.39 0.69 2.22 1.03
10 Med. Data BW 7.90% 9.18 16.7 8.57 33.3 25.9
11 High Data BW 22.0% 39.4 76.2 29.2 90.1 116

wat-ns High RD/WR 4.31% 0.15 6.13 0.17 23.6 6.28

(a) Representative benchmark clusters and their bandwidths.
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(b) ×4 DRAM CCCA FIT rates after protection with 10-22 BER.

BER Protection

None DECC eDECC AIECC

10-22 12 days 4 months 5 months 768 years
10-21 1 day 13 days 15 days 77 years
10-20 3 hours 32 hours 35 hours 8 years

(c) CCCA SDC Mean-Time-To-Failure on a system with 1.2M DRAM
chips and high bandwidth utilization.

Fig. 9: AIECC system-level reliability evaluation.

toolchain and the TSMC 40nm LP standard cell library [37],
[38]. ePAR/eWCRC/eDECC+AMD/eDECC+QPC have area
overheads equivalent to 30/180/140/2200 NAND2 gates
and dynamic+static power increases of 0.01/0.1/0.05/0.8mW,
respectively. The logic depth of the DECC decoder increases
by 1 XOR gate and cycle latency is not impacted. On the
DRAM side, ePAR/eWCRC/CTSC require the area equiva-
lent of 30/180/9000 NAND2 gates per chip and consume
30/180/0.8mW, respectively. CTSC is off the critical path and
it does not affect memory latency. The AIECC correction
procedure requires support in the memory controller for
command replay. We note that most systems already support
for on-demand scrubbing [11], [39] (writing back corrected
data to DRAM to eliminate transient bit-flips), and expect the
further additions for AIECC correction to be modest.

While eDECC does not impact performance with the QPC
ECC used in this paper, it could potentially increase read
latency using AMD chipkill and other chipkill-correct schemes.
These schemes can detect data errors before a read transfer
is complete, but would have to wait until the end of a block
transfer for precise eDECC address error diagnosis. Prior
simulation results show this performance overhead to be modest
(an average of 1.7% on a 64-bit DDR3-1600 data channel [10]).

On-demand scrubbing is also called redirect scrubbing by AMD.

Alternatively, a different eDECC organization could sacrifice
precise diagnosis to enable early data error detection, or
asynchronous ECC checking [40] could avoid this penalty in
the common case; a detailed exploration of AIECC performance
with alternative ECC schemes is left for future work.

VI. DISCUSSION

Applicability to Other Memories: AIECC targets DDR4,
as it is the dominant memory for large-scale systems and can
provide both high capacity and performance. The principles that
empower AIECC are general, however, as is its methodology
for targeting and evaluating complete end-to-end protection. As
an example of this generality, AIECC can be applied to GDDR5
with modest changes. eDECC can be supported in GDDR5
with some tailoring to the ECC codes in use (it is unlikely
that GPUs use AMD chipkill or QPC). GDDR5 includes an
EDC pin that can be reused for eWCRC by incorporating both
the address and data for writes. While GDDR5 does not have
a dedicated CA parity pin, missing writes and other command
errors could be detected by incorporating WRT and CA parity
into the GDDR5 read CRC over the same EDC pin. CSTC
can be implemented in GDDR5 a similar manner to DDR4,
only using the GDDR5 commands and timing parameters.

The fundamental concepts and design choices behind
AIECC are also congruent with 3D stacked DDR memory
such as HBM [41]. The CRC of packetized HMC memory [42],
meanwhile, protects against CCCA transmission errors between
the memory controller and the base layer, but the end-to-end
protection of AIECC could also protect against internal base
layer errors. Future work should extend AIECC to these
memory organizations once it is clear how transmission errors
and data protection operate in the stacked domain.

Enriching the DRAM Design Space: Circuit-level
techniques and frequency margins are used in order to achieve
current DRAM transfer rates without violating transmission
error rate targets. In addition, large-capacity servers often
employ memory buffers to isolate each DIMM from the
capacitive load of all the ranks on each channel [43], [44].
Such techniques come at a frequency, power, and latency cost.
AIECC provides high reliability for a memory system that was
designed a priori to achieve an industry-standard bit error ratio.
However, a system using AIECC could perhaps also tolerate
a relaxed BER target without reliability degradation, exposing
the system designer to a richer set of design tradeoffs and
achieving superior efficiency. This potential use for AIECC
is left for future exploration.

VII. CONCLUSION

All-inclusive ECC is a readily-implementable suite of
complementary error protection mechanisms for DRAM
data and CCCA signals. Our analyses demonstrate that
data ECC, the DDR4 reliability mechanisms, and address
protection similar to that which may be used by industry are
insufficient for the complete end-to-end protection of DRAM;
AIECC supplements these current practices to provide strong
holistic protection. Despite its apparent advantages, AIECC has
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minimal associated costs and requires no new signals to or from
memory, no additional storage, negligible hardware real-estate,
and it does not significantly affect the level of data protection.
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