
Hashed Alpha Testing

Chris Wyman∗

NVIDIA
Morgan McGuire

NVIDIA & Williams College

Figure 1: Hashed alpha testing avoids alpha-mapped geometry disappearing in the distance and reduces correlations in multisample alpha-
to-coverage. We show a bearded man with (a) traditional alpha testing, (b) traditional, hardware-accelerated alpha-to-coverage, (c) hashed
alpha testing, and (d) hashed alpha-to-coverage. Insets show the same geometry from further away, enlarged to better depict variations.

Abstract

Renderers apply alpha testing to mask out complex silhouettes us-
ing alpha textures on simple proxy geometry. While widely used,
alpha testing has a long-standing problem that is underreported in
the literature, but observable in commercial games: geometry can
entirely disappear as alpha mapped polygons recede with distance.
As foveated rendering for virtual reality spreads this problem wors-
ens, as peripheral minification and prefilitering also cause this prob-
lem for nearby objects.

We introduce two algorithms, stochastic alpha testing and hashed
alpha testing, that avoid this issue but add some noise. Instead of
using a fixed alpha threshold, ατ , stochastic alpha testing discards
fragments with alpha below randomly chosen ατ ∈ (0..1]. Hashed
alpha testing uses a hash function to choose ατ procedurally, pro-
ducing stable noise that reduces temporal flicker.

With a good hash function and inputs, hashed alpha testing main-
tains distant geometry without introducing more temporal flicker
than traditional alpha testing. We describe how hashed and stochas-
tic alpha testing apply to alpha-to-coverage and screen-door trans-
parency, and how they simplify stochastic transparency.

Keywords: hashed, stochastic, alpha map, alpha test
Concepts: •Computing methodologies→ Visibility;

∗e-mail:chris.wyman@acm.org
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2017 ACM.
I3D ’17, February 25-27, 2017, San Francisco, CA, USA
ISBN: 978-1-4503-4886-7/17/03. . . $15.00
DOI: http://dx.doi.org/10.1145/3023368.3023370

1 Introduction

For decades interactive renderers have used alpha testing, discard-
ing fragments whose alpha falls below a specified threshold ατ .
While not suitable for transparent surfaces, which require alpha
compositing [Porter and Duff 1984] and order-independent trans-
parency [Wyman 2016a], alpha testing provides a cheap way to ren-
der binary visibility stored in an alpha map. Alpha testing is particu-
larly common in engines using deferred rendering [Saito and Taka-
hashi 1990] or complex post-processing, as it provides a correct and
consistent depth buffer for subsequent passes. Today, games widely
alpha test for foliage, fences, decals, and other small-scale details.

Alpha testing introduces artifacts. Its binary queries alias on alpha
boundaries (α ≈ ατ) occurring in texture space, making geomet-
ric antialiasing ineffective. Only postprocess antialiasing addresses
this problem (e.g., [Lottes 2009; Karis 2014]). Texture prefiltering
fails since a post-filter alpha test still gives binary results.

Less well-known, alpha mapped geometry can disappear in the dis-
tance, as shown in Figure 1. Largely ignored in academic contexts,
game developers frequently encounter this problem (e.g., [Castano
2010]). Some scene-specific tuning and restrictions on content cre-
ation reduce the problem, but none completely solve it.

To solve this problem, we propose replacing the fixed alpha thresh-
old, ατ , with a stochastic threshold chosen uniformly in (0..1], i.e.,
we replace:

if (color.a < ατ) discard;
with a stochastic test:

if (color.a < drand48()) discard;
This adds high-frequency spatial and temporal noise, so we show a
hashed alpha test has similar but stable behavior, i.e.,

if (color.a < hash(. . .)) discard;

This paper makes the following contributions:

http://dx.doi.org/10.1145/3023368.3023370

Figure 2: Coarse mipmap texels average alpha over corresponding
finer texels in the mipmap chain. The hair texture from Figure 1 has
an average alpha αavg=0.32, partly due to artist-added padding.
Thus, accessing coarser mip levels for alpha thresholding, unsur-
prisingly, causes most fragments to fail the alpha test.

Figure 3: When nearby, each metal wire in this fence is 5 pix-
els wide (left). With distance, alpha testing discretely erodes pixel
coverage along edges so that the wire thins to roughly single-pixel
width (center). Further away wires no longer cover even one pixel,
and can disappear entirely (right).

• shows stochastic alpha testing maintains consistent coverage
even for distant geometry;

• shows hashed alpha testing provides similar benefits and,
with well selected hash inputs, provides spatial and temporal
stability comparable to traditional alpha testing;

• demonstrates how to integrate these algorithms into renderers
without making magnified surfaces noisy, as traditional alpha
testing already works acceptably there;

• shows stochastic alpha testing converges to stochastic trans-
parency [Enderton et al. 2010] and order-independent trans-
parency with enough stochastic samples of ατ ; and

• relates our new alpha tests to alpha-to-coverage and screen-
door transparency, showing how those algorithms can be im-
proved using stochasm and hashing.

2 Why Does Geometry Disappear?

Disappearing alpha-tested geometry is poorly covered in academic
literature. However, game developers repeatedly encounter this is-
sue. Castano [2010] investigates the causes and describes prior ad
hoc solutions. Three issues contribute to loss of coverage in alpha-
tested geometry:

Reduced alpha variance. Mipmap construction iteratively box fil-
ters the alpha channel, reducing alpha variance in coarser mipmap
levels. At the coarsest level of detail (lod), the single texel av-
erages alpha, αavg , over the base texture. Many textures contain
αavg� ατ , causing more failed alpha tests in coarser lods, espe-
cially if the texture contains padding (see Figure 2). Essentially, a
decreasing percentage of texels pass the alpha test in coarser mips.

Discrete visibility test. Unlike alpha blending, alpha testing gives
binary visibility. Geometry is either visible or not in each pixel. As
geometry approaches or recedes from the viewer, pixels suddenly
transition between covered and not covered. This discretely erodes
geometry with distance (see Figure 3). At some point 1-pixel wide
geometry erodes to 0-pixel wide geometry, disappearing.

Figure 4: Hashed alpha testing (b) maintains coverage better than
regular alpha testing (a), but it still loses some coverage due to
sub-pixel leaf billboards, compared to ground truth (d). Conserva-
tive raster (c) ensures full coverage, but alpha threshold ατ must
be modified based on sub-pixel coverage to avoid the oversampled
billboards shown here.

Coarse raster grid. With enough distance, even billboarded proxy
geometry becomes sub-pixel. In this case, a relatively coarse ras-
terization grid poorly samples the geometry. Billboards may not
appear on screen at all, causing an apparent loss of coverage (see
Figure 4). Our algorithms do not address this issue, though conser-
vative rasterization and multisampling reduce the problem.

3 State of the Art in Alpha Testing

Game developers have dealt with disappearing alpha-mapped ge-
ometry for years, as games often display foliage, fences, and hair
from afar. Various techniques can help manage the problem.

Adjusting ατ per texture mipmap level. Since mipmapping fil-
ters alpha, adjusting ατ per mip-level can correct for reduced vari-
ance. Consider a screen-aligned, alpha-tested billboard covering
A0 pixels where a0 pixels pass the alpha test at mip level 0. Seen at
a distance, this screen-aligned billboard might use mip level i. You
expect a consistent percentage of pixels passing the alpha test, i.e.:

a0/A0 ≈ ai/Ai.
One can precompute test thresholds ατ (i) that maintain this ratio
for each mipmap [Castano 2010]. But as content affects this thresh-
old, it differs between textures and even within a mip level (i.e.,
you want ατ (i, u, v)). Even perfect per-level thresholds do not pre-
vent geometry disappearing with distance; the fence in Figure 3 has
nearly constant ατ (i) but still quickly disappears with distance.

Always sampling α from finest mip lod. Because filtering reduces
alpha variance and changes threshold ατ (i), always sampling α
from mip level 0 trivially avoids the problem. But this either costs
two texel fetches per pixel (one for RGB, one for α) or eliminates
color prefiltering. An alternative limits the maximum mipmap lod
to a manually specified imax and uses level imax when i > imax.
But both approaches can thrash the texture cache and reduce the
temporal stability of fine texture details.

Rendering first with α-test, and then with α-blend. Alpha
testing’s popularity stems from order-independent blending’s dif-
ficulty. Naive blending causes halos if the z-buffer gets polluted
by transparent fragments. By first rendering with alpha testing and
then rerendering with alpha blending, z-buffer pollution is reduced
[Moore and Jefferies 2009]. This guarantees transparent fragments
never occlude opaque ones, but requires rendering alpha-mapped
geometry twice and does not work with deferred shading.

Supersampling. When storing binary visibility, a base texture’s
alpha channel contains only 0s or 1s. With sufficiently dense super-
sampling, you can always access the full resolution texture, provid-
ing accurate visibility. But the required density can be arbitrarily
high, due to geometric transformations and parameterizations.

Alpha-to-coverage. With n-sample multisampling, alpha is dis-
cretized and outputs bnαc dithered binary coverage samples [Khar-

Figure 5: A minified cedar tree using (a) alpha testing, stochastic
alpha testing with (b) 1, (c) 4, (d) 16, and (e) 64 samples per pixel,
and (f) a supersampled ground truth using sorted alpha blending.

lamov et al. 2008]. Usually these dither patterns are fixed, causing
correlations between layers and preventing correct multi-layer com-
positing. Enderton et al. [2010] proposes selecting random pattern
permutations to address this problem.

Screen-door transparency. While uncommon today, screen-door
transparency behaves similar to alpha-to-coverage except dithering
occurs over multiple pixels. Various mask selection techniques ex-
ist for screen-door transparency [Mulder et al. 1998], but even ran-
dom mask patterns lead to correlation between composited layers
and repeating dither patterns visible over the screen.

4 Stochastic Alpha Testing
Stochastic alpha testing’s key idea is simple: replace the fixed alpha
threshold (ατ =0.5) with a stochastic threshold (ατ =drand48()).
Essentially, this replaces one sample from a regular grid pattern
(i.e., sampling [0..1] at 0.5) with one uniform random sample.

This simplifies stochastic transparency [Enderton et al. 2010] to use
one sample per pixel. While this seems trivial, we observe that re-
placing a fixed alpha threshold with a random one solves the disap-
pearing coverage problem: alpha mapped surfaces no longer disap-
pear with distance (see Figure 5). Unlike with a fixed alpha thresh-
old, with stochastic sampling the visibility, V =(α<ατ) ? 0 : 1,
has the correct expected value E[V] of α.

But a single random sample is insufficient, as it introduces signifi-
cant noise that causes continuous twinkle (see video). Reusing ran-
dom seeds between frames and using stratification, e.g., [Laine and
Karras 2011; Wyman 2016b], help stabilize noise for static geome-
try. But whenever object or camera moves the high-frequency noise
reappears. Supersampling helps, but using one sample per pixel is
a major appeal of alpha testing, since it works in forward and de-
ferred shading, without MSAA, and even on low-end hardware.

5 Hashed Alpha Testing
In hashed alpha testing we aim for quality equivalent to stochastic
alpha testing while simultaneously achieving stability equivalent to
traditional alpha testing.

Instead of stochastic sampling, we propose using a hash function
to generate alpha thresholds. Appropriate hash functions include
those that generate outputs uniformly distributed in [0..1), allowing
direct substitution for uniform random number generators while al-
lowing finer control by adjusting their inputs.

To obtain well distributed noise with spatial and temporal stability,
we sought the following hash properties:

• noise anchored to surface, to avoid appearance of swimming;
• no correlations between overlapping alpha-mapped layers;
• and output ατ discretized at roughly pixel scale, so sub-pixel

translations return the same hashed value.

5.1 Hash Function

Our hash function is less important than its properties. We use the
following hash function f : R2 → [0..1) from McGuire [2016]:

float hash(vec2 in) {
return fract(1.0e4 * sin(17.0*in.x + 0.1*in.y) *

(0.1 + abs(sin(13.0*in.y + in.x)))
);

}

We tried other hash functions, which gave largely equivalent results
after (potentially) scaling inputs by different multipliers to obtain
similar frequencies in the output.

To hash 3D coordinates, a hash f : R3 → [0..1) may provide more
control. Repeatedly applying our 2D hash worked well for us:

float hash3D(vec3 in) {
return hash(vec2(hash(in.xy), in.z));

}

5.2 Anchoring Hashed Noise to Geometry

To avoid noise swimming over surfaces, hash() inputs must stay
fixed under camera and object motion. Candidates for stable in-
puts include those based on texture, world-space, and object-space
coordinates.

In scenes with a unique texture parameterization, texture coordi-
nates work well. But many scenes lack such parameterizations.

Hashing world-space coordinates provides stable noise for static ge-
ometry, and our early tests used world-space coordinates. However,
this fails on dynamic geometry. Object-space coordinates give sta-
ble hashes for skinned and rigid transforms and dynamic cameras.

All our stability improvements disappear if coordinate frames be-
come sub-pixel, as each pixel then uses different coordinates to
compute its hashed threshold. So it is vital to use coordinates con-
sistent over an entire aggregate surface (e.g., a tree) rather than a
portion of the object (e.g., each leaf).

5.3 Avoiding Correlations Between Layers

For overlapping alpha-mapped surfaces, using similar ατ thresh-
olds between layers introduces undesirable correlations similar to
those observed in hardware alpha-to-coverage. These correlations
are most noticeable when hashing window or eye-space coordi-
nates, but they can also arise for texture-space inputs.

Including the z-coordinate in the hash trivially removes these cor-
relations. We recommend always hashing with 3D coordinates to
avoid potential correlations.

5.4 Achieving Stable Pixel-Scale Noise

Under slow movement, we do not want new thresholds ατ between
frames, as that causes severe temporal noise. But we still expect ατ
to vary between pixels, allowing dithering of opacity over adjacent
pixels. This suggests using pixel-scale noise and thus reusing ατ
for sub-pixel movements. Since noise is anchored to the surface,
for larger motions ατ will also be reused, just in different pixels.

5.4.1 Stability Under Screen-Space Translations in X and Y

For stable pixel-scale noise, we normalize our object-space coordi-
nates by their screen-space derivatives and then clamp. This causes
all values on a pixel-scale to generate the same hashed value:

// Find the derivatives of our coordinates
float pixDeriv = max(length(dFdx(objCoord.xy)),

length(dFdy(objCoord.xy)));

// Scale of noise in pixels (w/ user param g HashScale)
float pixScale = 1.0/(g_HashScale*pixDeriv);

// Compute our alpha threshold
float ατ = hash3D(floor(pixScale*objCoord.xyz));

Here, pixScale scales objCoord so that 1 unit in x and y roughly
correspond to pixel size. The floor() discretizes the inputs so those
within a square pixel region return the same hashed value. User
parameter g_HashScale controls the target noise scale (default 1.0).
Changing g_HashScale is useful if the chosen hash outputs noise at
another frequency. Also, when temporal antialiasing, using noise
below pixel scale (e.g., 0.3–0.5) allows for temporal averaging.

5.4.2 Stability Under Screen-Space Translations in Z

That approach gives stable noise under small vertical and horizontal
translations. But moving along the camera’s z-axis changes deriva-
tives dFdx() and dFdy(), thus changing hash inputs continuously.
This gives noisy results, comparable to stochastic alpha testing, as
ατ thresholds are effectively randomized by the hash each frame.

For stability under z-translations, we need to discretize changes in-
duced by such motion. In this case, only pixDeriv changes, so
discretizing it adds the needed stability:

// To discretize noise under z-translations:
float pixDeriv = floor(max(length(dFdx(objCoord.xy)),

length(dFdy(objCoord.xy))));

But this still exhibits discontinuities if pixDeriv simultaneously
changes between discrete values in many pixels, e.g., when drawing
large, view-aligned billboards. Ideally, we would change our noise
slowly and continuously by interpolating between hashes based on
two discrete values of pixDeriv, as below:

// Find the discretized derivatives of our coordinates
float maxDeriv = max(length(dFdx(objCoord.xy)),

length(dFdy(objCoord.xy)));
vec2 pixDeriv = vec2(floor(maxDeriv), ceil(maxDeriv));

// Two closest noise scales
vec2 pixScales = vec2(1.0/(g_HashScale*pixDeriv.x),

1.0/(g_HashScale*pixDeriv.y));

// Compute alpha thresholds at our two noise scales
vec2 alpha = vec2(hash3D(floor(pixScales.x*objCoord.xyz)),

hash3D(floor(pixScales.y*objCoord.xyz)));

// Factor to interpolate lerp with
float lerpFactor = fract(maxDeriv);

// Interpolate alpha threshold from noise at two scales
float ατ = (1-lerpFacor)*alpha.x + lerpFactor*alpha.y;

This almost achieves our goal, but has two problems. First, it fails
for 0 ≤ maxDeriv < 1. To solve this we discretize pixScale on a
logarithmic scale instead of discretizing pixDeriv on a linear scale:

// Scale of noise in pixels (w/ user param g HashScale)
float pixScale = 1.0/(g_HashScale*maxDeriv);

// Discretize pixScales on a logarithmic scale
vec2 pixScales = vec2(exp2(floor(log2(pixScale))),

exp2(ceil(log2(pixScale))));

// Factor to interpolate lerp with
float lerpFactor = fract(log2(pixScale));

// Find the discretized derivatives of our coordinates
float maxDeriv = max(length(dFdx(objCoord.xy)),

length(dFdy(objCoord.xy)));
float pixScale = 1.0/(g_HashScale*maxDeriv);

// Find two nearest log-discretized noise scales
vec2 pixScales = vec2(exp2(floor(log2(pixScale))),

exp2(ceil(log2(pixScale))));

// Compute alpha thresholds at our two noise scales
vec2 alpha=vec2(hash3D(floor(pixScales.x*objCoord.xyz)),

hash3D(floor(pixScales.y*objCoord.xyz)));

// Factor to interpolate lerp with
float lerpFactor = fract(log2(pixScale));

// Interpolate alpha threshold from noise at two scales
float x = (1-lerpFactor)*alpha.x + lerpFactor*alpha.y;

// Pass into CDF to compute uniformly distrib threshold
float a = min(lerpFactor, 1-lerpFactor);
vec3 cases = vec3(x*x/(2*a*(1-a)),

(x-0.5*a)/(1-a),
1.0-((1-x)*(1-x)/(2*a*(1-a))));

// Find our final, uniformly distributed alpha threshold
float ατ = (x < (1-a)) ?

((x < a) ? cases.x : cases.y) :
cases.z;

// Avoids ατ == 0. Could also do ατ=1-ατ

ατ = clamp(ατ, 1.0e-6, 1.0);

Listing 1: Final code to compute our hashed alpha threshold.

A trickier problem arises during interpolation. A well-designed
hash function f : R2 → [0..1) produces uniformly distributed
output values in [0..1). Interpolating between two uniformly dis-
tributed values in [0..1) does not yield a new uniformly distributed
value in [0..1). This introduces strobing because the variance of our
hashed noise changes during motion.

Fortunately, we can transform our output back into an uniform dis-
tribution by computing the cumulative distribution function (of two
interpolated uniform random values) and substituting in our inter-
polated threshold. The cumulative distribution function is:

cdf(x) =

x2

2a(1−a) 0 ≤ x < a
x−a/2
1−a a ≤ x < 1− a

1− (1−x)2
2a(1−a) 1− a ≤ x < 1

(1)

for a = min(lerpFactor, 1-lerpFactor).

Combining these improvements gives the final computation for ατ
shown in Listing 1.

5.5 Implementation Considerations

When adding hashed alpha testing into a renderer, the goal is likely
avoiding fadeout of distant alpha-mapped geometry. Traditional al-
pha testing works fine for nearby geometry, and having even stable
noise along nearby edges may be undesirable.

5.5.1 Fading in Noise with Distance

Fortunately, we can fade in hashed noise by considering the follow-
ing formulation of our alpha threshold:

ατ = 0.5 + δ,

where δ = 0 for traditional alpha testing and δ ∈ (−0.5...0.5] for
hashed and stochastic variants. We suggest modifying this as:

ατ = 0.5 + δ · b(lod), (2)

where b(lod) slowly blends in the noise, i.e., b(0)=0 and b(n)=1
for lod = n coarse enough to rely entirely on hashed alpha tests.
Values for n depends on your texture sizes and tolerance for noise;
we found n=6 worked well in all our experiments.

We found that linearly ramping b still introduced noise too close to
the camera. The following quadratic ramp gave a good transition:

b(x) =

0 x ≤ 0

(x/n)2 0 < x < n

1 x ≥ n.
(3)

Anisotropic filtering repeatedly accesses finer mip levels, causing
alpha geometry to fade out even using relatively low mip levels.
Scaling x based on anisotropy before computing b(x) fixes this:

// Find degree of anisotropy from texture coords
vec2 dTex = vec2(length(dFdx(texCoord.xy)),

length(dFdy(texCoord.xy)));
float aniso = max(dTex.x/dTex.y, dTex.y/dTex.x);

// Modify inputs to b(x) based on degree of aniso
x = aniso * x;

Higher anisotropy increases x, varying ατ more in Equation 2, and
fixes these disappearing alpha maps at grazing angles.

5.5.2 Using Premultiplied Alpha

As hashed alpha testing accesses diffuse texture samples from a
somewhat larger region than standard alpha tests, care is required
to avoid sampling in-painted diffuse colors added by artists in trans-
parent regions, especially at higher mip levels when we filter from
large regions of the texture.

We encourage using premultiplied alpha, which mipmaps correctly
and avoids this problem (e.g., see Glassner’s [2015] work for fur-
ther discussion). However, since premultipled alpha texture stores
(αR,αG,αB, α), we need to divide by alpha before returning our
alpha tested color (R,G,B) in order to maintain convergence to
ground truth when increasing sample counts.

While hashed alpha testing works with non-premultiplied diffuse
textures, we frequently found that when hashed ατ < 0.5, colors
bled from transparent texels and introduced arbitrarily colored halos
at alpha boundaries.

6 Applications to Alpha-to-Coverage

As noted in Section 3, alpha-to-coverage discretizes fragment alpha
and outputs bnαc coverage bits dithered over an n-sample buffer.
Generating bnαc coverage bits is equivalent to supersampling the
alpha threshold, i.e., performing n alpha tests with thresholds:

ατ =
0.5

n
,
1.5

n
, ...,

n− 0.5

n
. (4)

This observation reveals that traditional alpha testing is a special
case, where n = 1.

Applying hashed or stochastic alpha testing to alpha-to-coverage is
equivalent to jittered sampling of the thresholds:

ατ =
χ1

n
,
1 + χ2

n
, ...,

n− 1 + χn
n

, (5)

Traditional Hashed Stochastic
Scene # tris Alpha Test Alpha Test Alpha Test
Single fence 2 0.06 ms 0.08 ms 0.20 ms
Bearded Man 7.6 k 0.14 ms 0.16 ms 0.58 ms
Potted Palm 68 k 0.10 ms 0.12 ms 0.42 ms
Bishop Pine 158 k 0.22 ms 0.30 ms 0.75 ms
Japanese Walnut 227 k 0.28 ms 0.36 ms 0.99 ms
European Beech 386 k 0.39 ms 0.50 ms 1.69 ms
Sponza with Trees 900 k 1.05 ms 1.15 ms 4.04 ms
QG Tree 2,400 k 1.08 ms 1.22 ms 3.01 ms
UE3 FoliageMap 3,000 k 2.52 ms 2.86 ms 11.42 ms
San Miguel 10,500 k 5.19 ms 5.28 ms 7.30 ms

Table 1: Cost comparisons for traditional, hashed, and stochastic
alpha tests at 1920×1080 on a GeForce GTX 1080.

for hashed samples χi∈(0..1]. χi can be chosen independently per
sample or once per fragment (i.e., χi=χj).

Traditional alpha-to-coverage uses fixed dither patterns for all frag-
ments with the same alpha. This introduces correlations between
overlapping transparent fragments, causing aggregate geometry to
lose opacity (see Figure 1).

To avoid this, we compute a per-fragment offset αo, increment α+,
and apply per-sample alpha thresholds:

ατ =
χi + ((αo + iα+) mod n)

n
, ∀ i ∈ [0...n−1]

Given hashed ξ1, ξ2∈ [0..1) and limiting n to powers of two, αo=
bnξ1c is an integer between 0 and n−1 and α+ = 2b0.5nξ2c+1
is an odd integer between 1 and n−1. This decorrelates the jittered
thresholds if ξ1 or ξ2 varies with distance to the camera.

6.1 Applications to Screen Door Transparency

Screen-door transparency simply dithers coverage bits over multi-
ple pixels rather than multiple sub-pixel samples. So similar ran-
domization of the interleaved ατ thresholds and decorrelation be-
tween layers can occur between pixels rather than within a pixel.

7 Comparison to Stochastic Transparency

Stochastic alpha testing essentially simplifies stochastic trans-
parency to one sample per pixel. Hence, when using more tests
per pixel stochastic alpha testing converges to ground truth, just as
stochastic transparency does.

In this light, based on the thresholds in Equation 4, alpha-to-
coverage is stochastic transparency with regular instead of random
samples. Using randomized thresholds, as in Equation 5, corre-
sponds to stratified stochastic transparency.

But a key difference is that alpha testing is designed and frequently
expected to work with a single sample per pixel. Avoiding tempo-
ral and spatial noise is key for adoption, hence our stable hashed
alpha testing, which we believe provides an appealing alternative to
traditional alpha testing.

8 Results

We prototyped our hashed and stochastic alpha test in an OpenGL-
based renderer using the Falcor prototyping library [Benty 2016].
We did not optimize performance, particularly for stochastic alpha
testing, as we sought stable noise rather than optimal performance.
Timings include logic to explore variations to hashes, fade-in func-
tions, and other normalization factors.

Traditional
Alpha Test

Traditional
Alpha-to-Coverage

Hashed
Alpha Test

Hashed
Alpha-to-Coverage Ground Truth

Po
tte

d
Pa

lm
E

ur
op

ea
n

B
ee

ch
Ja

pa
ne

se
W

al
nu

t
B

is
ho

p
Pi

ne
Tr

ee

Figure 6: Four plant models whose alpha-mapped polygons disappear with distance. This also happens when rendering at lower resolution
(left four columns), which allows for better comparisons to our supersampled ground truth (right column). Notice how alpha testing loses
alpha-mapped details and alpha-to-coverage introduces correlations that under represent final opacity where transparent polygons overlap.
Both hashed alpha testing and hashed alpha-to-coverage largely retain appropriate coverage, but both introduce some noise.

Figure 7: An alpha-mapped chain link fence, as seen from an oblique angle using (a) alpha blending, (b) traditional alpha testing, (c) hashed
alpha testing, (d) hashed alpha with noise faded in as per Section 5.5.1, and (e) hashed alpha testing with temporal antialiasing. Note how
hashed alpha testing shows (noisy) geometry much further in the distance and better maintains the overall opacity (visible in the temporally
antialised image). With the hash fade in, nearby chains appear much less noisy.

Table 1 shows our performance relative to traditional alpha testing,
using one shader for all surfaces, transparent and opaque, and ren-
dered at 1920 × 1080. Our added overhead for hashed alpha test-
ing is all computation, without additional texture or global memory
accesses. Our stochastic alpha test prototype uses a random seed
texture, requiring synchronization to avoid correlations from seed
reuse. This causes a significant slowdown.

Cost varies with number, depth complexity, and screen coverage of
alpha-mapped surfaces. At 1920×1080 with one test per fragment,
our hashed alpha test costs an additional 0.1 to 0.3 ms per frame
for scenes with typical numbers of alpha-mapped fragments. For
stochastic alpha testing, synchronization costs increase greatly in
high depth complexity scenes.

Figure 1 shows a game-quality head model with alpha-mapped hair
billboards. With distance the hair disappears. This is most visible
in his beard, as the underlying diffuse texture has no hair painted
on his chin. See the supplemental video for dynamic comparisons
with this model.

Figure 6 shows similar comparisons on a number of artist-created
tree models provided as samples by XFrog. These trees’ alpha maps
contain 50–75% transparent pixels, causing foliage to disappear
quickly when rendered in the distance or at low resolution. Hard-
ware accelerated alpha-to-coverage has high layer-to-layer correla-
tion that causes leaves to appear as a single layer and overly trans-
parent. Hashed alpha testing and hashed alpha-to-coverage fix these
problems and appear much closer to the ground truth, despite ren-
dering at lower resolution.

Figure 7 demonstrates the behavior of hashed alpha testing under
anisotropic filtering. With traditional alpha testing, the chain link
fence quickly disappears while hashed alpha testing still shows de-
tails in the distance. However, even nearby chains on the fence have
noisy edges. The level-of-detail based transition from Section 5.5.1
maintains the noisy details in the distance while switching to alpha
testing nearer the camera. See our video for behavior under motion.

Figure 8 shows a more complex example where hashed noise may
be undesirable nearby and the fade-in from Section 5.5.1 maintains
crisp edges near the viewer.

Figure 9 compares the temporal stability of traditional, hashed,
and stochastic alpha testing under slight, sub-pixel motion. Note
that under the same sub-pixel motion hashed alpha testing exhibits
temporal stability roughly equivalent to traditional alpha testing.
Stochastic alpha testing and methods that do not anchor noise or
discretize it to pixel scale exhibit significantly more instability.

Beyond use for distant or low-resolution alpha-mapped geometry,

Figure 8: With alpha testing (a), leaves in the tree disappear with
distance. With hashed alpha testing these leaves are visible (b), but
nearby leaves have noisy edges and, due to leaf alpha of 0.99, some
internal noise. Fading in the hash contribution (c), as per Section
5.5.1, keeps distant leaves without nearby noise.

other applications exist for hashed alpha testing. In head-mounted
displays for virtual reality, rendering at full resolution in the user’s
periphery is computationally wasteful, especially as display resolu-
tions increase. Instead, foveated rendering [Guenter et al. 2012]
renders at lower resolution away from a user’s gaze. Patney et
al. [2016] suggest prefiltering all rendering terms, but they were not
able to support alpha testing due to an inability to prefilter the re-
sults. Naive alpha testing in foveated rendering causes even nearby
foliage to disappear in the periphery (see Figure 10). With tempo-
ral antialiasing, hashed alpha testing enables use of alpha mapped
geometry in foveated renderers.

Figures 11 shows hashed alpha testing in a more complex environ-
ment. Results are more subtle as scene scale is small enough to
minimize the pixels accessing very coarse mipmaps.

9 Conclusions

We introduced two new algorithms to solve the problem of alpha-
mapped geometry disappearing with distance. Stochastic alpha
testing uses a randomly chosen alpha test threshold ατ rather than
a fixed threshold. Because this introduces objectionable temporal
noise, we developed hashed alpha testing to provide stable, proce-
durally generated noise using a hash function.

We obtained stable, pixel scale noise by hashing on discretized
object-space coordinates at two scales. We showed how to ensure
the interpolated hash value maintained a uniform distribution, and
demonstrated temporal stability both in Figure 9 and the accompa-
nying video. We provided inline code to replicate our hashed test.

Thinking about alpha-to-coverage and screen door transparency in

Figure 9: We rendered a tree before and after a sub-pixel transla-
tion along the x-axis, and computed difference images for (a) tra-
ditional alpha testing, (b) hashed alpha testing, and (c) stochastic
alpha testing. Red pixels correspond to major changes (with RGB
differences between 0.5 and 1), usually where pixels toggle between
background and pine needle. Yellow pixels represent moderate dif-
ferences (0.25 to 0.5), green pixels smaller changes (0.13 to 0.25),
and blue pixels minor changes (0.06 to 0.13).

Figure 10: Two images from Patney et al.’s [2016] foveated ren-
derer. In both images, the viewer is gazing towards the green cur-
tain (noted by the yellow circle) and regions outside the circle are
rendered at progressively coarser resolution. Low resolution shad-
ing uses coarser mipmap levels, causing most alpha tests to fail
using (a) traditional alpha testing. With (b) hashed alpha testing,
the foliage maintains its aggregate appearance.

the context of varying ατ provides insights, showing them all to
be different discrete sampling strategies for transparency: alpha
test and alpha-to-coverage perform regular sampling, screen-door
transparency interleaves samples, stochastic alpha testing randomly
samples, and hashed alpha testing uses quasi-random sampling via
a uniform hash function.

While our hashed test provides spatially and temporally stable noise
without scene-dependent parameters, we did not explore the space
of 2D and 3D hash functions to see which minimizes flicker be-
tween frames. Additionally, hash inputs more sophisticated than
object-space coordinates may generalize over a larger variety of
highly instanced scenes. Both areas seem fruitful for future work.

10 Acknowledgments

This idea evolved out of a larger project, meaning many researchers
contributed indirectly. Special thanks to Pete Shirley for keeping
our hash uniform by deriving the cdf in Equation 1, as well as Cyril

Figure 11: Disappearing geometry in San Miguel.

Crassin for suggesting alpha maps as a simplified domain worth
studying, Anton Kaplanyan for discussions on stable noise, Anjul
Patney for adding hashed alpha testing to his foveated renderer, and
Dave Luebke, Aaron Lefohn, and Marco Salvi for discussions on
larger research directions.

References

BENTY, N., 2016. Falcor real-time rendering framework. https:
//github.com/NVIDIA/Falcor.

CASTANO, I., 2010. Computing alpha mipmaps. http://the-witness.
net/news/2010/09/computing-alpha-mipmaps/.

ENDERTON, E., SINTORN, E., SHIRLEY, P., AND LUEBKE, D.
2010. Stochastic transparency. In Symposium on Interactive 3D
Graphics and Games, 157–164.

GLASSNER, A. 2015. Interpreting alpha. Journal of Computer
Graphics Techniques 4, 2, 30–44.

GUENTER, B., FINCH, M., DRUCKER, S., TAN, D., AND SNY-
DER, J. 2012. Foveated 3d graphics. ACM Transactions on
Graphics 31, 6, 164:1–10.

KARIS, B. 2014. High-quality temporal supersampling. In SIG-
GRAPH Course Notes: Advances in Real-Time Rendering in
Games.

KHARLAMOV, A., CANTLAY, I., AND STEPANENKO, Y. 2008.
GPU Gems 3. Addison-Wesley, ch. Next-Generation SpeedTree
Rendering, 69–92.

LAINE, S., AND KARRAS, T. 2011. Stratified sampling for
stochastic transparency. Computer Graphics Forum 30, 4, 1197–
1204.

LOTTES, T. 2009. FXAA. Tech. rep., NVIDIA, http://develop-
er.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA
WhitePaper.pdf.

MCGUIRE, M. 2016. The Graphics Codex, 2.13 ed. Casual Effects.

MOORE, J., AND JEFFERIES, D. 2009. Rendering technology at
Black Rock Studios. In SIGGRAPH Course Notes: Advances in
Real-Time Rendering in Games.

MULDER, J., GROEN, F., AND VAN WIJK, J. 1998. Pixel masks
for screen-door transparency. In Proceedings of Visualization,
351–358.

PATNEY, A., SALVI, M., KIM, J., KAPLANYAN, A., WYMAN,
C., BENTY, N., LUEBKE, D., AND LEFOHN, A. 2016. To-
wards foveated rendering for gaze-tracked virtual reality. ACM
Transactions on Graphics 35, 6, 179:1–12.

https://github.com/NVIDIA/Falcor
https://github.com/NVIDIA/Falcor
http://the-witness.net/news/2010/09/computing-alpha-mipmaps/
http://the-witness.net/news/2010/09/computing-alpha-mipmaps/

PORTER, T., AND DUFF, T. 1984. Compositing digital images. In
Proceedings of SIGGRAPH, 253–259.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-d shapes. Proceedings of SIGGRAPH, 197–206.

WYMAN, C. 2016. Exploring and expanding the continuum of OIT
algorithms. In High Performance Graphics, 1–11.

WYMAN, C. 2016. Stochastic layered alpha blending. In ACM
SIGGRAPH 2016 Talks.

