
SASSIFI: An Architecture-level Fault Injection Tool for GPU Application Resilience
Evaluation

Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W. Keckler, Joel Emer
NVIDIA

Abstract—As GPUs become more pervasive in both scalable
high-performance computing systems and safety-critical em-
bedded systems, evaluating and analyzing their resilience to
soft errors caused by high-energy particle strikes will grow
increasingly important. GPU designers must develop tools
and techniques to understand the effect of these soft errors
on applications. This paper presents an error injection-based
methodology and tool called SASSIFI to study the soft error
resilience of massively parallel applications running on state-
of-the-art NVIDIA GPUs. Our approach uses a low-level
assembly-language instrumentation tool called SASSI to profile
and inject errors. SASSI provides efficiency by allowing instru-
mentation code to execute entirely on the GPU and provides
the ability to inject into different architecture-visible state.
For example, SASSIFI can inject errors in general-purpose
registers, GPU memory, condition code registers, and predicate
registers. SASSIFI can also inject errors into addresses and
register indices. In this paper, we describe the SASSIFI tool,
its capabilities, and present experiments to illustrate some of
the analyses SASSIFI can be used to perform.

1. Introduction

Transient hardware errors caused by high-energy particle
strikes are a rising concern for processors deployed in large-
scale systems and safety-critical embedded systems. These
transient errors can propagate to the application level and
cause execution failures, also known as Detected Unrecov-
erable Errors (DUEs), or silently corrupt application output
producing Silent Data Corruptions (SDCs). Since SDCs
are silent, developing insights to what causes them and
designing cost-effective mitigation schemes are important
and challenging.

SDCs are fundamentally application dependent. App-
lication-level error injection techniques with the ability and
speed to run many error injection simulations to applica-
tion completion are needed to evaluate their effect on the
program output. Such techniques will allow us to analyze
which type of errors in different application sections produce
SDCs. Until recently, the tools that allow us to perturb and
monitor GPU state at the architecture level in an automated,
efficient, and user-friendly manner have not been available.
A recent tool called SASSI overcomes these challenges and
provides the ability to instrument instructions in the low-
level GPU assembly language (SASS) [1]. The instrumenta-

tion allows callbacks to arbitrary user-level functions which
can execute before or after the instrumented instructions.
This paper demonstrates how SASSI can be employed to
evaluate and analyze GPU application resilience to transient
errors by injecting errors into the architecture state on a
running GPU. We call this tool SASSIFI (SASSI-based Fault
Injector).

SASSIFI provides an automated flow to perform error
injection campaigns. It operates in three main steps: (1)
profiling and identifying the error injection space; (2) statis-
tically selecting error injection sites; and (3) injecting errors
into executing applications and monitoring error behavior.
Steps 1 and 3 use SASSI instrumented applications.

For step 1, we collect the names of the kernels and
the number of times they execute in an application using
CUPTI. CUPTI allows host-side code to receive callbacks
when certain CUDA events such as kernel launches and
exits occur [2]. We instrument before all instructions using
SASSI and inspect the register and memory information
to count the number of dynamic instructions of different
instruction types. Using this information, SASSIFI selects a
statistically significant number of error injection sites based
on the desired confidence interval. For each injection, we
identify a tuple that contains enough information to identify
when and what error to inject. As selecting the injection
model depends on the type of studies one wants to perform,
SASSIFI provides several options described below.

In the last and most important step, SASSIFI injects one
error per application run and monitors for a crash, hang, fail-
ure symptom, and output corruption. In each injection run,
we check whether the selected injection site (as described
by the tuple) has been reached. We do so by monitoring the
executing kernels and assembly instructions through CUPTI
and SASSI instrumentation handlers, respectively. At the
injection site, we inject the error through the instrumentation
handler either before or after the instruction, based on the
error indicated in the tuple.

SASSIFI is publicly available on GitHub at https://
github.com/NVlabs/sassifi. It can be used to perform the
following two types of studies. (1) Inject bit-flips into the
register file, randomly spread across time and space, to
compute the Architectural Vulnerability Factor (AVF) of
the register file, which informs us of the importance of
using ECC on this structure. (2) Inject errors in the outputs
of the instructions to analyze how a low-level soft error
that manifests at the architecture level can propagate to the



program output.
For the first type of the study, SASSIFI can inject single

and double bit-flips in randomly selected registers at a
randomly selected dynamic instruction to capture the impact
of direct particle strikes in the register file. For the second
type of study, SASSIFI injects errors into the outputs of
the dynamic instructions (e.g., destination register value).
This approach allows quantification of the probability of
application-level SDCs given that a low-level soft error
manifests as bit-flips in the outputs of the instructions. Since
low-level errors can manifest in different ways at the archi-
tecture level, SASSIFI provides the ability to inject errors
into the output values and addresses of the instructions.
SASSIFI can be used to inject errors into any architecturally
visible state including general-purpose registers, condition
codes, predicate registers, and store addresses/values. SAS-
SIFI can also be used to select a group of instructions
for targeted studies such as analyzing whether errors in
floating-point operations cause more SDCs than the integer
operations, which can be helpful in designing cost-effective
error detection schemes.

SASSIFI can also inject a variety of errors in the output
values and addresses. For example, SASSIFI can inject
single and double bit-flips, as well as random and zero
values in the output of one instruction in one thread. It can
also inject these error patterns in the same instruction in all
the threads in a warp (group of threads).

Leveraging the capabilities of SASSIFI, we performed
several case studies and present a summary of the results
using two DOE mini-apps (Lulesh and CoMD) and all
workloads from the Rodinia benchmark suite [3], [4], [5].
Our findings are as follows.

• By simulating particle-strikes in the register file, we
show that enabling SECDED ECC yields limited re-
silience benefits for some applications, but is required for
others. SASSIFI can be used to identify the workloads
that might not need protection and can save energy by
disabling ECC.

• Error injections into destination registers of instructions
that write to general-purpose registers show that only
a small fraction result in SDCs. The SDC probability is
application-dependent, and the per-kernel results provide
insights for developing cost-effective SDC mitigation
schemes. For example, duplicating just one kernel in the
backprop workload can eliminate most of the SDCs.

• Error injections into different instruction groups show
that errors in some groups are less likely to produce
SDCs for a given application. For example, double-
precision floating-point operations in CoMD are much
less susceptible than integer operations. Targeting error
mitigation schemes only for the high SDC susceptible
instruction groups may result in a cost-effective solution.

• Injecting different types of bit-flip patterns for the same
group of instructions as well as injecting into addresses
versus values reveal that the SDC probabilities depend
on the chosen bit-flip model and the architecture state
for corruption. This observation makes understanding

how low-level errors manifest at the architecture level
important for accurate SDC rate estimates.

2. SASSIFI Framework
2.1. SASSI Background

SASSI is a compiler-based instrumentation tool that runs
as the final pass in NVIDIA’s production backend compiler
and assembler, ptxas [1]. Because SASSI is invoked af-
ter the original, un-instrumented SASS has already been
finalized, the injected instrumentation does not disrupt the
perceived final instruction schedule or register usage. In this
paper, we use SASSI to inject instrumentation after all SASS
instructions that modify registers or memory.

SASSI must be instructed where to insert instrumenta-
tion and what instrumentation to insert. For each of the
instrumentation sites, SASSI will insert a CUDA ABI-
compliant function call to a user-defined instrumentation
handler function, passing site-specific information as argu-
ments to the handler. Therefore, users must instruct SASSI
what information to pass to the instrumentation handler(s).
We can currently extract and pass to an instrumentation
handler the following information for each site: memory
information (e.g., addresses read and written), register usage
information (e.g., registers read and written, including their
values), conditional branch information, and register liveness
information.

Unlike CPU instrumentation, GPU instrumentation must
coordinate with the host CPU to both initialize instrumenta-
tion counters and to gather their values. We use the CUPTI
library to initialize counters before kernels launch and to
copy information off the device after kernels exit.

2.2. SASSIFI Tool Description

SASSIFI is an automated tool that can perform error
injection campaigns. It operates in three main steps: (1)
profiling and identifying the error injection space; (2) statis-
tically selecting error injection sites; and (3) injecting errors
into executing applications and monitoring error behavior.
Steps (1) and (3) occur on different executions of the SASSI
instrumented application on the GPU; step (2) is performed
on the host CPU. We explain these steps below using
Figure 1.

For any error injection campaign, one needs to specify an
error model that defines what errors to inject and where (in
time and space) to inject them in a program. One example
of an error model is injecting a single bit-flip error (what)
in destination registers of randomly selected floating-point
instructions (where). The three SASSIFI steps take the error
model as input to perform the injection campaign.

Step 1: Profiling and identifying the error injection
space. We collect the information needed to identify the
error injection space in this step. Specifically, we collect
(1) static kernel names in an application, (2) the number of
times each kernel executes, and (3) the number of dynamic
instructions per instruction group (a set of opcodes), as



GPU Kernels CPU Code 

Output 
Golden 
Output 

Kernel 1, invocation 1 

Kernel 2, invocation 1 

Kernel 1, invocation 2 

. 
sassi_before_handler(params) 
. 
Opcode Dest, Src1, Src2 
. 
sassi_after_handler(params) 
. 

Figure 1: SASSIFI overview.

described by where in the error model. We only count the
instructions that are executed. We use CUPTI to collect (1)
and (2) and instrument the GPU instructions using SASSI to
collect (3). We instrument before all instructions. We pass
the register and memory information of the instrumented in-
struction to the handler to determine whether the instruction
matches the where description from the error model. We
count the number of dynamic instructions if the match is
successful. For the example error model mentioned above,
this step counts the number of floating-point instructions
that write to a register. We count the dynamic instructions
separately for each of the instruction groups as described by
the input error models.

Step 2: Statistically selecting error injection sites.
Using the information from step 1, SASSIFI selects a
statistically significant number of error injection sites per
application for a desired confidence interval. The red dots
in Figure 1 show a set of randomly selected error sites in
an application that has two static and three dynamic kernels.
We define an error site as a tuple that captures enough infor-
mation needed to select a specific dynamic instruction from
the program within the selected instruction group (where)
and how that selected instructing is to be perturbed (what).
For the above example, an error site will specify a randomly
selected dynamic instruction number among all the floating-
point instructions that write to a register in the program.
It also specifies that a single-bit flip is to be injected and
randomly selects a destination register in that instruction.

Since we know the dynamic instruction count breakdown
per kernel invocation from the profiling phase, we combine
the instructions from all the kernel executions (for each of
the instruction groups) and randomly select dynamic in-
struction numbers for error injections. We map this dynamic
instruction number back to a static kernel name and dynamic
kernel invocation index, which become the part of the error
site tuple. We also record the dynamic instruction count
for the selected instruction group relative to the beginning
of the current kernel in the tuple. For what, we select an
instruction’s output (if the instruction has multiple outputs)
and the error value to inject in that output. For this purpose,

we generate and include two random numbers in the tuple.
Step 3 Error injections runs. In the last and most

important step, we inject one error per application run and
monitor for crashes, hangs, failure symptoms, and output
corruption. In each injection run, we check whether the
selected static kernel and dynamic kernel count has been
reached using CUPTI on the host CPU. If so, we copy the
remaining error site tuple into the device memory. During
kernel execution, we maintain a counter for the selected
instruction group and check whether the dynamic instruc-
tion count that will execute next or just executed (based
on whether the check is performed in the SASSI handler
before or after the instruction, respectively) is the selected
instruction. If so, we inject the error at this instruction by
selecting the register and the location of the bit-flip using
the two random numbers passed by the tuple. In Figure 1,
this process corresponds to injecting each of the red dots
one at a time in separate runs and comparing the output to
the golden output, in the absence of failures.

Based on the selected error model, SASSIFI instruments
either before, after, or both before and after the instructions.
For example, to inject errors in a randomly selected register
at a randomly selected instruction (used to measure regis-
ter file AVF), we instrument the instructions before they
execute. For injecting errors in a destination register of an
executing instruction (used to represent errors in unprotected
pipeline bits), we instrument after the instruction. Finally,
to inject an address or register index error, we instrument
instructions both before and after the instruction.

After error injection, the application is resumed where
it then executes to completion, unless a crash or a hang is
detected. We categorize the injection outcome based on the
exit status of the application, hang detection, error messages
thrown during execution, and differences in stdout/stderr
and program output (typically stored in a file) from that of an
error-free execution of the program. We define the outcome
where the execution either terminates early with non-zero
exit status or hangs as a DUE (Detected Uncorrectable
Error). Whenever we observe error messages in either the
system log (using the Linux utility dmesg), stderr, or stdout,
we categorize the outcome as a potential DUE.1 If the
application finishes execution and the application output
matches the expected output and the run is not categorized
as DUE or potential DUE, we categorize it as masked. If
the output differs from the expected output, we categorize
it as SDC. We explain these outcome categories in Table 1.

During injection runs, SASSIFI can also track whether
the injected error was ever consumed before being overwrit-
ten by monitoring the source and destination register num-
bers of the executing instructions using a SASSI handler.
This information provides better understanding into why
certain errors are masked and also provides an opportunity
to terminate early and optimize the injection runtime. We
explore this option in one of the use cases described below.

1. A run that is characterized as potential DUE will result in either an
SDC or masked outcome if the appropriate symptom monitors are not
present in the system. SASSIFI distinguishes such events, but we do not
present that breakdown here for brevity.



TABLE 1: Error injection outcomes.

Category Explanation

Masked Application output is same as the error free output. No
error symptom is observed.

DUE
Application exits with non-zero exit status. Execution
does not terminate within an allocated threshold time,
which is 3× the fault-free runtime in our study.

Potential
DUE

Unsuccessful kernel executions (detected by comparing
kernel exit status with cudaSuccess) or explicit error mes-
sages in stdout/stderr (e.g., Error: misaligned address).
These errors can be categorized as detected if the system
has appropriate application or system monitors.

SDC

Application finishes without crashes, hangs, or failure
symptoms, but either the output file or the stdout is
different than the output generated by the fault-free run.
Most of our applications produce a single output file.

2.3. Use Cases

This section shows how SASSIFI can be employed to an-
alyze resilience characteristics of applications. Specifically,
we demonstrate how to configure SASSIFI to perform the
following four studies.
1) What is the probability that a particle-strike on the

register file while an application is running will produce
an SDC? Answering this question allows us to quantify
the benefit of adding ECC to the register file. If SDC
probability is the key metric of interest and the value
is low, the energy cost of enabling ECC may not be
justified.

2) What is the probability that a bit-flip in the destination
register of an executing instruction will result in an SDC?
This study aims to quantify the effect of bit-flips in
low-level unprotected state at the application-level by
injecting the manifestation at the architecture-level, a
commonly studied topic [6], [7], [8], [9].

3) What instruction types are likely to produce more SDCs
when subjected to errors in destination registers? This
study can provide insights into what to protect while em-
ploying selective instruction-level protection/duplication
schemes.

4) How do SDC probabilities change when different archi-
tecture-level states are subjected to errors (e.g., injecting
errors into values versus addresses of executing instruc-
tions)? How do the results change if we inject different
bit-flip patterns (e.g., injecting single versus double bit-
flips)? Addressing these questions provide insight into
the accuracy of the commonly used error model (single-
bit flips in values) in evaluating resilience of an applica-
tion from bit-flips in low-level state (e.g., flip-flops) and
what to consider for future studies.
For these studies, we must inject errors using different

error models. Since SASSIFI injects errors through instru-
mentation handlers, we created three modes of operation
which require instrumentation handlers to be inserted before,
after, and both before and after the instruction, respectively.

We use the first mode to perform study (1) and call
it the RF mode because it is used to measure register file
AVF. We use the second mode to perform studies (2) and
(3) by injecting errors into the destination register values

Instruction  
groups 

Bit-flip models 

Injection  
modes Instruction output 

value (IOV) 
Instruction output 

address (IOA) 
Randomly selected 

register (RF) 

GPR 
IADD-IMUL 
FADD-FMUL 
DADD-DMUL 

MAD 
FFMA 
DFMA 

LDS 
LD 
ST 

All instruction 
 

Random value 
 

Zero value 
 

Random value 
 

Zero value 
 

Single thread: 

All threads  
in one warp: 

GPR ST CC 
PR 

SETP 

Single-bit flip 
 

Single-bit flip 
 

Double-bit flip 
 

Double-bit flip 
 

Figure 2: Summary of different error injection modes, in-
struction groups, and bit-flip models that SASSIFI provides.

by instrumenting instructions after they are executed. We
call this mode IOV (Instruction Output Value). Finally, we
use the third mode, which we call IOA (Instruction Output
Address), to inject errors into destination register indices
and store addresses. We use the IOA and IOV modes to
perform the fourth study.

Figure 2 depicts the different options in SASSIFI to
select the instruction for injection and the bit-flip pattern
to inject in these three modes below.

Figure 3 explains the SASSI handlers we wrote for the
different modes.

Instruction selection and bit-flip models for the RF
mode: This mode randomly selects a dynamic instruction
from the program and injects an error in a randomly selected
register among the allocated registers. During the second
step of SASSIFI (as described in Section 2.2), we must spec-
ify when and what error to inject. For when, we randomly
select the dynamic instruction from the entire application.
For what, we generate and include two random numbers in
the tuple to (1) select an instruction’s output for injection and
(2) generate the injected value based on the selected bit-flip
model, respectively. In RF mode, we select a register among
the statically allocated registers per thread for the selected
kernel using the first random number. We obtain the number
of allocated registers from the NVIDIA compiler using the
-Xptxas -v option in the profiling phase. The second random
number is either zero or one.

During the third step of SASSIFI, we instrument before
all instructions. This handler checks whether the selected
dynamic instruction is reached for the selected dynamic
kernel. At the selected dynamic instruction, we use the
register number (selected above) to check whether it is used
as one of the source registers by the current instruction. If
not, we monitor the subsequent instructions. If the selected
register is written before being read, we mark the execution
as masked and terminate early. If the selected register is
among the sources in the current instruction, we inject the
error. Since the goal is to represent direct particle strikes in



. 
sassi_before_handler() 
Opcode Dest, Src1, Src2 
sassi_after_handler() 
. 
 
 

IOV  
mode 

•Empty handler •Maintain counter for the selected instruction 
group 
• If the injection instruction is reached, inject 

error according to the selected bit-flip model 

•Maintain counter for the selected 
instruction group 
• If the injection instruction is 

reached, record register/memory 
content 

At the injection instruction 
•Compute corrupted address 
•Read values from correct address and write 

them to the corrupted address 
•Revert content at the correct address with the 

recorded values 

•Maintain counter for the selected 
instruction group 
• If the injection instruction is 

reached and the selected register 
is in the sources, inject the error. 
•Else monitor subsequent 

instructions and inject when 
found as source 

•Empty handler 

IOA 
mode 

RF 
mode 

Figure 3: Error injection handlers for different modes.

the register file in this mode, we inject single and double
bit-flips. Once the error is injected, the program resumes
execution. If the thread (within the kernel) completes its
execution and the selected register was never read, we mark
the simulation as masked and terminate the simulation early.

Results obtained from these injections show the prob-
ability with which a particle strike in an allocated register
manifests in the application output. These results must be
further derated by the fraction of physical registers that
are unallocated to obtain the AVF of the register file for
a specific device.

We obtain the average number of allocated physical reg-
isters per kernel by multiplying the number of statically allo-
cated registers per thread with the average number of active
threads (number of active warps × 32) in an SM. We divide
this value by the total number of physical registers in the SM
to obtain the fraction of allocated registers. We obtain the av-
erage number of active warps from the achieved occupancy
metric as printed by the nvprof tool [10]. We obtain the
number of allocated registers from the compilation step as
described above. We use these per-kernel derating factors
and weigh them with the relative kernel runtimes for each
application to obtain a per-application derating factor.

Instruction selection and bit-flip models for the IOV
mode: In the IOV mode, we randomly select an instruction
for injection based on predefined instruction groups to study
the sensitivity of error propagation. Based on the instruction
types, we define the following instruction groups.

• Instructions that write to general-purpose registers (GPR)
• Instructions that write to condition-code registers (CC)
• Instructions that write to predicate registers (PR)
• Store instructions (ST)
• Integer add and multiply instructions (IADD-IMUL)
• Single-precision floating-point add and multiply instruc-

tions (FADD-FMUL)
• Double-precision floating-point add and multiply instruc-

tions (DADD-DMUL)
• Integer fused multiply and add instructions (MAD)

• Single-precision floating-point fused multiply-add in-
structions (FFMA)

• Double-precision floating-point fused multiply-add in-
structions (DFMA)

• Instructions that compare source registers and set a pred-
icate register (SETP)

• Loads from shared memory (LDS)
• Load instructions, excluding LDS instructions (LD)

During the second step of SASSIFI, we specify when
to inject errors by randomly selecting dynamic instructions
from the entire application for the selected instruction group.
For what, we pass a random number to select a destination
register from the executing instruction for injection. Since
soft errors in low-level state can manifest in the destination
registers in many ways, we define the following bit-flip
models (BFMs) for the IOV mode. We inject (1) single bit-
flip, (2) double bit-flips, (3) random value, and (4) zero value
in a single register/store value in one thread. We also define
four more BFMs by injecting these four bit-flip patterns into
the same register/store value in all of the active threads in
a warp. We only inject single bit-flips in a single register in
one thread for the CC and PR instruction groups. For the
SETP instruction group, we inject using single bit-flip and
warp-wide single bit-flip models.

During the third step of SASSIFI, we instrument the
instructions after the instructions that write to a register
or memory location. In the handler, we check whether the
selected dynamic instruction for the selected instruction
group is reached for the selected static and dynamic kernel
invocation. At this instruction, we use the random number
to select the destination register. For stores, we always inject
the error in the value that is being stored.

Instruction selection and bit-flip models for the IOA
mode: In this mode, we randomly select an instruction for
injection based on two predefined instruction groups – GPR
and ST. During the second step of SASSIFI, we specify
when to inject the error by randomly selecting dynamic
instructions from the entire application for the selected
instruction group. For what, we pass a random number
to select a destination register index from the executing
instruction for injection. For ST instructions, we inject errors
in the address.

During the third step of SASSIFI, we instrument the
instructions before and after the instructions that write to a
register or memory location. In the instrumentation handler
that executes before the instruction, we record the register
and memory content from the correct register index and
address, respectively. In the instrumentation handler that
executes after the instruction, we check whether the selected
dynamic instruction for the selected instruction group is
reached for the selected static and dynamic kernel invoca-
tion. At this instruction, we read the data from the correct
register index or memory address and write it to the new
error-injected (corrupted) register index or memory address.
We then use the recorded data to revert the data in the correct
location. In this mode, we inject single and double bit-
flips; the bit position for flips is generated using the second
random number, passed during the second step.



3. Evaluation

Our experimental flow targets NVIDIA Kepler and
Maxwell architecture-based GPUs with Compute Capability
3.5 and 5.2 [11], [12]. Since we inject errors into the
architecture state, our injection results do not depend on
the specific GPU we use for experimentation as long as
the binary file does not change. We used multiple systems
with Tesla K20 and K40 GPUs, the CUDA 7.0 toolkit, and
display driver versions 340.46 and 340.118 to obtain results
for the Kepler GPUs. We obtain the results for the Maxwell
GPUs using a Quadro M5000 board, the CUDA 7.0 toolkit,
and display driver version 370.28.

We performed the profiling experiments to measure
SASSIFI slowdowns on a system with an Intel i7-3930K
CPU (3.2GHz), 32GB host memory, and a K40 GPU. We
obtain the application-level runtime by taking the average
runtime from three consecutive runs after a warm-up run.
We obtain the GPU execution time using the –print-gpu-
trace option in the nvprof tool, including the time spent in
copying data between the GPU and CPU memories. Since
CUPTI and nvprof cannot be used simultaneously, we obtain
the GPU time for the SASSIFI runs by disabling CUPTI.
We show these results in Section 3.5.

We use all applications from the Rodinia benchmark
suite (version 2.3), which includes a diverse set of workloads
from domains such as data mining, bioinformatics, medical
imaging, image processing, physics simulation, and graph
algorithms [5]. We also used two DOE mini-apps, CoMD
and Lulesh, which are proxies of real applications run on
supercomputers. CoMD is a reference implementation of
classical molecular dynamics algorithms as used in materials
science [3]. LULESH is a proxy application that represents
typical workloads found in production Lagrangian hydro-
dynamics code [4]. We ensure deterministic outputs needed
to detect SDCs by fixing the seed to the random number
generator for the workloads that use variable seeds.

While we evaluated the resilience of all these workloads,
we used the two DOE mini-apps to conduct detailed sen-
sitivity analyses such as understanding the differences in
injecting errors in different architecture state, using different
bit-flip models, and quantifying ISA-level differences. In the
rest of this section, we show the results for each of the use
cases listed in Section 2.3.

3.1. Results for Use Case 1 (RF Mode)

We performed 500 injections each for CoMD and Lulesh
using the single and double bit-flip models in the RF mode
and show the results in Figure 4. The confidence interval
for results based on 500 injections is at most 4.4% at the
95% confidence level.

To obtain the SM register file AVF, we derate the results
with the average fraction of occupied physical registers. For
CoMD and Lulesh (with our chosen inputs), these factors
are 0.77 and 0.87, respectively. Based on these factors
and SASSIFI SDC probabilities, we calculate the register
file SDC AVF for CoMD and Lulesh as 7.5% and 0.7%,

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Single-bit flip Double-bit
flip

Single-bit flip Double-bit
flip

CoMD Lulesh

%
 o

f 
in

je
ct

io
n

s 

Masked DUEs Potential DUEs SDCs

Figure 4: Outcomes of the injections into the allocated
registers for CoMD and Lulesh in the RF mode.

respectively, for the single-bit flip model. The respective
numbers for the double-bit flip model are 8.8% and 0.5%.

These SDC AVF numbers allow us to quantify the ben-
efit of adding parity/ECC to the register file. If the (derated)
SDC probability is low for single and double bit-flips in an
application then the energy cost of enabling parity/SECDED
ECC may not be justified, as demonstrated by Lulesh.
However, enabling parity or SECDED ECC seems important
for CoMD, as a significant fraction of injections resulted in
SDCs.

In this mode, we terminate the error simulations early
if the injected error is never consumed. This optimization
saved approximately 6% and 9% of the total runtime for
CoMD and Lulesh, respectively.

3.2. Results for Use Case 2 (IOV Mode)

For this use case, we injected single-bit flips in the
destination general-purpose registers of executing instruc-
tions. We injected 1000 errors each in all our workloads.
These injection results have maximum error bars of 3%
at the 95% confidence level. Figure 5 shows the observed
masking, DUE, potential DUE, and SDC probabilities for all
of the workloads. At least 60% of the injected errors did not
have any effect on the program output, which is interesting
given that we injected errors in the destination registers, not
randomly selected registers (which may be completely dead
at the point of injection). A significant fraction of the non-
masked injection runs resulted in DUEs and potential DUEs.
Results show that the SDC probabilities vary significantly
based on the application, from 0% to 21%, which is expected
since application-level error propagation highly depends on
the data-flow of the workloads.

For applications with multiple static kernels that execute,
identifying kernels that are more vulnerable to architecture-
level errors provides insights into which kernels to protect
for a cost-effective mitigation solution. Data obtained from
this error injection campaign allows us to perform such
analysis. Since we select instructions for error injection
randomly across all dynamic instructions (except control
flow instructions) in an application, the number of injections



0% 20% 40% 60% 80% 100%

CoMD

Lulesh

b+tree

backprop

bfs

gaussian

heartwall

hotspot

kmeans

lavaMD

lud

mummergpu

nn

nw

pathfinder

srad_v1

srad_v2

streamcluster

Masked DUEs Potential DUEs SDCs

Figure 5: Outcomes of injecting single bit-flip errors in
destination registers of instructions that write to general-
purpose registers.

performed per static kernel can be approximated as the
relative number of dynamic instructions per static kernel
across all of its instantiations.

Figure 6 shows the per-kernel breakdown of the injection
results obtained in Section 3.2 for three workloads. We do
not plot the results from the static kernels where less than
10 injections were performed. The results show that most
of the SDCs in the backprop application come from the
bpnn adjust weights cuda kernel. This kernel executes for
only a third of the GPU execution time, excluding host
execution and data transfer between the host and GPU.
This result suggests that selective application-level error
mitigation schemes such as full thread-level duplication can
be cost-effective [13].

For kmeans, however, the most SDC susceptible kernel
(invert mapping) constitutes a significant fraction of the
GPU execution time. For CoMD, we found that almost
all kernels that execute for a significant fraction of time
contribute to the SDC rate, which implies that intra-kernel
level analysis should be performed to identify cost-effective
ways to reduce SDCs.

3.3. Results for Use Case 3 (IOV Mode)

SASSIFI can be used to study the SDC sensitivity of
different instruction groups that write to general-purpose
registers to gain insights about what to protect in an ap-
plication. As a case study, we injected 500 single bit-
flip errors in each of the six different instruction groups

0
200
400
600
800

1000

b
p

n
n

_
la

ye
rf

o
rw

ar
d

_
C

U
D

A

b
p

n
n

_
ad

ju
st

_
w

ei
gh

ts
_c

u
d

a

km
ea

n
sP

o
in

t

in
ve

rt
_m

ap
p

in
g

EA
M

_
Fo

rc
e_

w
ar

p
_

at
o

m
_

N
L<

in
t=

1
,

in
t=

4
, i

n
t=

6
4

, b
o

o
l=

0
>

EA
M

_
Fo

rc
e_

w
ar

p
_

at
o

m
_

N
L<

in
t=

3
,

in
t=

4
, i

n
t=

6
4

, b
o

o
l=

0
>

b
u

ild
N

ei
gh

b
o

rL
is

t
K

er
n

el
_w

ar
p

backprop kmeans CoMD
Masked DUEs Potential DUEs SDCs

Figure 6: Breakdown of the error injection outcomes per
static kernel of selected workloads. The height of each bar
shows the number of injections performed per static kernel.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

Si
n

gl
e-

b
it

 f
lip

R
an

d
o

m
 v

al
u

e

IADD-IMAD DADD-DMUL MAD DFMA LDS LD

O
u

tc
o

m
e

 p
ro

b
ab

ili
ti

e
s 

w
e

ig
h

te
d

 b
y 

th
e

 %
 o

f 
d

yn
am

ic
 in

st
ru

ct
io

n
s

Masked DUEs Potential DUEs SDCs

Figure 7: Outcomes of injections in different instruction
groups for CoMD.

that write to general-purpose registers and have non-zero
dynamic instruction counts. These results, when weighted
with the total fraction of dynamic instructions in each group,
can identify the instruction group that is responsible for
most of the SDCs. Figure 7 shows the combined outcome
probabilities weighted by the dynamic instruction fractions
for CoMD.

These results show that errors in the DADD-DMUL
and DFMA instruction groups are far less susceptible to
producing SDCs than the other instruction groups. Although
a significant fraction of the errors in LDS instructions result
in SDCs, their contribution towards the total SDC rate is low
because the number of dynamic LDS instructions is low for
CoMD.

We also show the results obtained by injecting 500
random value errors for the six instruction groups in Fig-
ure 7 to illustrate the sensitivity of the results to the bit-
flip model. These results indicate that for some instruction
groups (IADD-IMUL, DADD-DMUL, MAD, and DFMA),
the SDC or DUE probabilities do not change significantly.
We notice a significant change in the SDC probability for
LDS instructions and the DUE probabilities for LDS and
LD instruction groups. This result indicates that using just
the single bit-flip injection model might provide inaccurate



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Si
n

gl
e-

b
it

 f
lip

D
o

u
b

le
-b

it
 f

lip

R
an

d
o

m
 v

al
u

e

Ze
ro

 v
al

u
e

Si
n

gl
e-

b
it

 f
lip

D
o

u
b

le
-b

it
 f

lip

R
an

d
o

m
 v

al
u

e

Ze
ro

 v
al

u
e

Si
n

gl
e-

b
it

 f
lip

D
o

u
b

le
-b

it
 f

lip

R
an

d
o

m
 v

al
u

e

Ze
ro

 v
al

u
e

Si
n

gl
e-

b
it

 f
lip

D
o

u
b

le
-b

it
 f

lip

R
an

d
o

m
 v

al
u

e

Ze
ro

 v
al

u
e

Single thread All threads in a warp Single thread All threads in a warp

CoMD Lulesh

%
 o

f 
in

je
ct

io
n

s

Masked DUEs Potential DUEs SDCs

Figure 8: Outcomes of injections in GPR instructions using
different bit-flip models for CoMD and Lulesh.

estimates of the actual error rates.

3.4. Results for Use Case 4 (IOV and IOA Modes)

To understand how the SDC probabilities change with
different bit-flip models, we performed 500 injections for
CoMD and Lulesh using the different bit-flip models de-
scribed in Section 2.3 for the GPR instruction group. The
results are shown in Figure 8.

Injecting more bit errors (e.g., random value error, warp-
wide injections) are expected to result in either more DUEs
or SDCs depending on how the errors propagate for each
workload. From Figure 8, we observe that the SDC proba-
bility tends to increase with the number of bit-flips (single
bit-flip to random value error), matching the expectation.
We also observe that the warp-wide injections yield higher
SDCs than the single thread injections for the same bit-
flip pattern for CoMD. However, we see little difference
between warp-wide and single-thread injections for Lulesh.
We conducted similar injection experiments for all other
supported instruction groups for CoMD and Lulesh and
observed trends similar to the ones in Figure 8. Further
analysis of the applications is needed to understand the
reasons for the SDC increase.

We also obtain and analyze the results from injections
in CC and PR register values, store values and addresses,
and general-purpose register indices. Figure 9 shows the
results obtained by injecting 500 errors per instruction
group. Injecting single-bit flip errors in addresses (register
index or store address) in GPR and ST instruction groups
often results in higher SDC and DUE probabilities when
compared to respective single-bit value errors.

For the IOA mode injections, we also injected 500 errors
each for the double bit-flip pattern to study the sensitivity to
the chosen bit-flip model. We observed only small changes
in the SDC and DUE probabilities for these two workloads.

Injections into PR registers show higher SDC probabili-
ties than CC registers, both of which are different than GPR
value injections. Since the SDC probabilities from injections
using different error models are different, it is important

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

G
P

R

ST
O

R
E

G
P

R

ST
O

R
E

C
C

P
R

G
P

R

ST
O

R
E

G
P

R

ST
O

R
E

C
C

P
R

IOA IOV IOA IOV

CoMD Lulesh

%
 o

f 
in

je
ct

io
n

s

Masked DUEs Potential DUEs SDCs

Figure 9: Outcome distribution from IOA and IOV mode in-
jections in different architecture state for CoMD and Lulesh.

to quantify how the bit-flips in low-level unprotected state
manifest at the architecture level for an accurate total ap-
plication vulnerability analysis. Such an analysis requires
a model that propagates microarchitecture state, such as a
low-level simulator or an accelerated beam experiment on
real hardware.

Since SASSIFI injects errors at the assembly language
(SASS) level, it can be used to understand if an ISA change
has a significant effect on the application resilience charac-
teristic. We performed 1000 error injections in CoMD and
Lulesh using a single-bit flip model and the GPR instruction
group, running on Kepler and Maxwell architectures with
ISA version 3.5 and 5.2, respectively. While we do not show
the results here, we find little difference in SDC and DUE
outcome probabilities between the two ISA versions.

3.5. SASSIFI Performance

Because the injection experiments require hundreds or
thousands of runs per application, the slowdown of the
application due to instrumentation can be important. We
evaluated SASSIFI runtimes and observed 1.02× to 166×
slowdowns at the application-level; at the kernel level the
slowdowns were higher, ranging from 5.2× to 488×. The
application level slowdowns are lower because the host-side
execution time does not change with SASSI. We also noticed
that the slowdowns in the IOA mode are higher than in
the IOV or RF modes for several applications. This higher
slowdown is likely because we instrument both before and
after the instructions in the IOA mode (as summarized in
Figure 3).

We measure the performance of SASSIFI in MWIPS
(Million Warp-Instructions Per Second) and show the results
in Table 2. We observed 13-254 MWIPS for our work-
loads. The expected MWIPS for low-level (microarchitec-
ture or RTL level) simulators is order of magnitude lower.
For example, single-threaded GPGPU-sim achieves up to
0.1 MWIPS [14]. Parallel GPU simulators can provide a
speedup of roughly 4× using 6 threads [14], which is still
significantly slower than SASSIFI. Verilog simulators are



TABLE 2: SASSIFI Performance in Million Warp-Instruc-
tions Per Second (MWIPS).

CoMD Lulesh Rodinia
Geomean Max Min

IOV mode 81 81 57 233 13
IOA mode 55 46 64 254 13
RF mode 94 85 57 229 12
GPGPU-Sim <0.1

even slower, running at only 5–30 thousand instructions per
second [15].

SASSI takes a static approach and instruments all static
instructions of certain types. In our setup, we instrument all
instructions which significantly affects performance. This
overhead can be lowered by instrumenting only selected
static instructions or kernels for a group of injection runs.
A dynamic instrumentation approach that only instruments
the instruction that is selected for injection can significantly
lower the overheads.

4. Related Work

One prior study developed a CUDA-GDB based tool
called GPU-Qin to inject architecture-level errors to study
application resilience [7], [16] . Some of its capabilities
are similar to SASSIFI, including injecting single-bit flips
into destination registers of executing instructions. Any code
used to identify an injection site, inject the error, or moni-
tor error propagation will execute on the host CPU for a
CUDA-GDB based tool, which causes significant perfor-
mance degradations. As a result, GPU-Qin requires complex
steps during grouping and profiling phases to manage per-
formance overhead. The instrumentation code that performs
these functions executes on the GPU for SASSIFI.

The GPU-Qin paper did not study the effect of (1) faults
in predicate registers, condition codes, and memory values,
(2) injecting different bit-flip patterns (e.g., double bit flips,
random value errors in destination registers), and (3) errors
in different instruction types (e.g., floating-point versus in-
teger instructions) to identify which instructions are likely
to produce more SDCs. SASSIFI natively includes these
capabilities to provide further insight into the development
cost-effective error mitigation schemes.

Researchers have also proposed reliability evaluation
tools at the LLVM IR level through injection [8] and PTX
level program analysis [17], [18], which can be faster than
SASSIFI. Techniques that operate at higher-levels such as
C-code, LLVM IR, or PTX cannot accurately model errors
in the native GPU ISA because SASS code-generation,
including register allocation and ISA specific optimizations,
are performed in the back-end compiler. Figure 10 shows a
brief overview of where these levels lie in the compilation
process. In fact, researchers have recently shown that the
PTX based reliability measurements induce some under-
estimation of the actual hardware vulnerability [19]. They
injected register file errors at the PTX and SASS levels and
found the masking rate to be always higher at the PTX level.

CUDA 
code 

LLVM 
IR 

PTX SASS 

Backend compiler:  
Code generation,  
Register allocation,  
ISA specific optimizations 

Figure 10: Brief overview of where different levels lie in
the compilation process.

Since we study the vulnerability of the software through
architectural-level error injections, our approach (especially
in the IOV-mode) is similar to measuring the Program Vul-
nerability Factor as defined in [20]. We use error injection
instead of performing ACE analysis [21], [22]. While injec-
tions from the RF mode can be used to directly calculate
the AVF of the register file, injection from the IOV and IOA
modes do not directly translate into AVF. The latter modes
show how different architecture-level errors affect program
outcomes. A full evaluation of AVF requires the distribution
of error manifestations at the architecture level based on how
faults propagate through the microarchitecture.

Some studies investigate GPU vulnerability using ACE
analysis [23], [24] or fault injection [25], [19], but few study
the effect of error propagation and masking all the way to the
application output. For example, the GUFI framework [19]
uses a publicly available GPU microarchitecture simulator
to inject errors in the microarchitecture units to measure
AVF. It can also perform injections at the SASS level, which
are similar to SASSIFI injections, but needs a much slower
microarchitecture simulator.

Fault injection can be performed at the RTL or gate
level [26], [27], [28], [29] to understand the effect of errors
on combinational and sequential logic and the resulting
manifestation of these lower-level errors at the architecture
level. Since SASSIFI uses an architecture-level error model,
we are not able to capture the exact effect of lower-level
errors (also observed by [28], [30], [29]). Instead, SASSIFI
provides several architecture-level error models for sensi-
tivity analysis. SASSIFI is significantly faster than lower-
level error injection tools, which allows SASSIFI to not only
inject more errors but also execute of full applications.

5. Summary and Future Work

This paper describes the SASSIFI tool that performs
architecture-level fault injections to analyze GPU applica-
tion resilience. SASSIFI operates in three steps: (1) profiling
and identifying the error injection space; (2) statistically
selecting error injection sites; and (3) injecting errors into
executing applications and monitoring error behavior. Steps
1 and 3 use an assembly language level instrumentation tool
called SASSI. SASSIFI provides the ability to perform a
wide range of application resilience studies. Some examples
include (1) quantifying the importance of enabling ECC for
the register file for specific applications, (2) understanding
which applications and GPU kernels are more susceptible
to SDCs when subjected to architecture-level errors, (3)
identifying the instruction groups that are likely to produce
more SDCs when subjected to errors in destination registers,



and (4) measuring the application output level effect of
corrupting different architecture states.

Some of the other interesting analyses that can be per-
formed using SASSIFI include (1) extracting application
characteristics that correlate with SDCs, which are key
for developing cost-effective error mitigation schemes, (2)
tracking inter-kernel error propagation patterns to identify
where to place a cost-effective set of error detectors, and
(3) analyzing why certain instruction groups are highly
susceptible to SDCs when subjected to errors.

Soft-errors in low-level unprotected state can manifest
at the architecture-level in several ways. While SASSIFI
provides the capability to inject such manifestations, identi-
fying the rate of propagation for different architecture-level
manifestations for a specific device of interest is needed to
derive realistic application SDC rates.

References

[1] M. Stephenson, S. K. S. Hari, Y. Lee, E. Ebrahimi, D. R. Johnson,
D. Nellans, M. O’Connor, and S. W. Keckler, “Flexible Software
Profiling of GPU Architectures,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2015.

[2] NVIDIA, “CUPTI :: CUDA Toolkit Documentation,” http://docs.
nvidia.com/cuda/cupti/index.html, 2014.

[3] Exascale Co-Design Center for Materials in Extreme Environments
(ExMatEX), “CoMD: Classical Molecular Dynamics Proxy Applica-
tion,” http://exmatex.github.io/CoMD.

[4] Lawrence Livermore National Laboratory, “Livermore Unstructured
Lagrangian Explicit Shock Hydrodynamics (LULESH) 2.0,” http://
codesign.llnl.gov/lulesh.php, 2013.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in Proceedings of the IEEE International Symposium
on Workload Characterization (IISWC), 2009.

[6] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran,
“Relyzer: Exploiting Application-level Fault Equivalence to Analyze
Application Resiliency to Transient Faults,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operation Systems (ASPLOS), 2012.

[7] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-
Qin: A Methodology for Evaluating the Error Resilience of GPGPU
Applications,” in Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2014.

[8] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding Error
Propagation in GPGPU Applications,” in Proceedings of the Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis (SC), 2016.

[9] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
Accuracy of High-Level Fault Injection Techniques for Hardware
Faults,” in Proceedings of the International Conference on Depend-
able Systems and Networks (DSN), June 2014.

[10] NVIDIA, “Profiler Users’s Guide,” http://docs.nvidia.com/cuda/
profiler-users-guide, September 2015.

[11] ——, “NVIDIA’s Next Generation CUDA Compute Architec-
ture: Kepler GK110,” https://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012.

[12] ——, “NVIDIA GeForce GTX 980 Featuring Maxwell, The
Most Advanced GPU Ever Made.” http://international.download.
nvidia.com/geforce-com/international/pdfs/GeForce GTX 980
Whitepaper FINAL.PDF, 2014.

[13] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and
K. Skadron, “Real-World Design and Evaluation of Compiler-
Managed GPU Redundant Multithreading,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2014.

[14] S. Lee and W. W. Ro, “Parallel GPU Architecture Simulation Frame-
work Exploiting Work Allocation Unit Parallelism,” in Proceedings
of the International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2013.

[15] C. Celio, D. A. Patterson, and K. Asanovic, “The Berkeley Out-
of-Order Machine (BOOM): An Industry-Competitive, Synthesiz-
able, Parameterized RISC-V Processor,” in Technical Report No.
UCB/EECS-2015-167, 2015.

[16] NVIDIA, “CUDA-GDB :: CUDA Toolkit Documentation,” http://
docs.nvidia.com/cuda/cuda-gdb/index.html, 2014.

[17] ——, “PTX ISA :: CUDA Toolkit Documentation,” http://docs.nvidia.
com/cuda/parallel-thread-execution/, September 2015.

[18] S. Li, V. Sridharan, S. Gurumurthi, and S. Yalamanchili, “Software-
based Dynamic Reliability Management for GPU Applications,” in
International Reliability Physics Symposium, 2016.

[19] S. Tselonis and D. Gizopoulos, “GUFI: A Framework for GPUs Re-
liability Assessment,” in Proceedings of the International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2016.

[20] V. Sridharan and D. Kaeli, “Eliminating Microarchitectural Depen-
dency from Architectural Vulnerability,” in Proceedings of the In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), 2009.

[21] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural Vulnera-
bility Factors for a High-Performance Microprocessor,” in Proceed-
ings of the International Symposium on Microarchitecture (MICRO),
December 2003.

[22] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee,
and R. Rangan, “Computing Architectural Vulnerability Factors for
Address-Based Structures,” in Proceedings of the International Sym-
posium on Computer Architecture (ISCA), 2005.

[23] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing Soft-error Vulner-
ability on GPGPU Microarchitecture,” in Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC),
2011.

[24] H. Jeon, M. Wilkening, V. Sridharan, S. Gurumurthi, and G. H.
Loh, “Architectural Vulnerability Modeling and Analysis of Integrated
Graphics Processors,” in Workshop on Silicon Errors in Logic -
System Effects (SELSE), 2013.

[25] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical Fault Injection-
Based AVF Analysis of a GPU Architecure,” in Workshop on Silicon
Errors in Logic - System Effects (SELSE), 2012.

[26] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K.
Iyer, “An Experimental Study of Soft Errors in Microprocessors,”
IEEE Micro, vol. 25, no. 6, pp. 30–39, 2005.

[27] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-Level Impact Analysis of Low-Level Faults in a Mod-
ern Microprocessor Controller,” IEEE Transactions on Computers,
vol. 60, no. 9, pp. 1260–1273, 2011.

[28] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative Evaluation of Soft Error Injection Techniques for Ro-
bust System Design,” in Design Automation Conference (DAC), 2013.

[29] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Y. Cher, H. Cho,
K. Skadron, M. Stan, K. Lilja, J. Abraham, P. Bose, and S. Mitra,
“CLEAR: Combining Hardware and Software Techniques to Tolerate
Soft Errors in Processor Cores,” in Design Automation Conference
(DAC), 2016.

[30] M. Gschwind, V. Salapura, C. Trammell, and S. A. McKee, “Soft-
Beam: Precise Tracking of Transient Faults and Vulnerability Anal-
ysis at Processor Design Time,” in Proceedings of the International
Conference on Computer Design (ICCD), 2011.


