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Figure 1: Our �lter takes (le�) 1 sample per pixel path-traced input and (center) reconstructs a temporally stable 1920×1080
image in just 10 ms. Compare to (right) a 2048 samples per pixel path-traced reference. Insets compare our input, our �ltered

results, and a reference on two regions, and show the impact �ltered global illumination has over just direct illumination.

Given the noisy input, notice the similarity to the reference for glossy re�ections, global illumination, and direct so� shadows.

ABSTRACT

We introduce a reconstruction algorithm that generates a tempo-

rally stable sequence of images from one path-per-pixel global

illumination. To handle such noisy input, we use temporal accu-

mulation to increase the e�ective sample count and spatiotemporal

luminance variance estimates to drive a hierarchical, image-space

wavelet �lter [Dammertz et al. 2010]. �is hierarchy allows us to

distinguish between noise and detail at multiple scales using local

luminance variance.

Physically based light transport is a long-standing goal for real-

time computer graphics. While modern games use limited forms of

ray tracing, physically based Monte Carlo global illumination does

not meet their 30 Hz minimal performance requirement. Looking

ahead to fully dynamic real-time path tracing, we expect this to

only be feasible using a small number of paths per pixel. As such,

image reconstruction using low sample counts is key to bringing
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path tracing to real-time. When compared to prior interactive

reconstruction �lters, our work gives approximately 10× more

temporally stable results, matches reference images 5–47% be�er

(according to SSIM), and runs in just 10 ms (± 15%) on modern

graphics hardware at 1920×1080 resolution.
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1 INTRODUCTION

In recent years, path tracing [Kajiya 1986] emerged as the rendering

algorithm of choice for �lm and visual e�ects [Keller et al. 2015].

�is spurred development of advanced �lter and reconstruction ker-

nels that reduce Monte Carlo sampling’s inevitable noise (e.g., see

Zwicker et al. [2015]). �ese kernels allow noise-free reconstruc-

tion of images with dozens to hundreds of samples per pixel. With

further algorithmic advances, we argue that a shi� to path-traced

global illumination also lies on the horizon for real-time graphics.

Both video games and �lm recently migrated from empirical

models to physically-based shading [McAuley and Hill 2016], but

the simpli�ed light transport available in rasterization continues to

push developers to consider ray tracing [Whi�ed 1980] for accu-

rate shadows and re�ections, and multi-bounce global illumination.

But current ray tracing performance is limited to around 200–300

Mrays/sec [Binder and Keller 2016; Wald et al. 2014], giving just

a few rays per pixel at 1920×1080 and 30 Hz. �is number is even

lower for production usage with dynamic acceleration structures,

large scenes, and variable CPU/GPU performance. �erefore, with

multiple rays per path and the trends towards higher resolutions

and refresh rates, practical performance is not likely to exceed one
path per pixel for the foreseeable future. By developing a reconstruc-

tion �lter that respects this constraint, we aim to make real-time

path tracing a reality much sooner.

We extend Dammertz et al.’s [2010] hierarchical, wavelet-based

reconstruction �lter to output temporally stable global illumination,

including di�use and glossy interre�ections, and so� shadows from

a stream of one sample per pixel (spp) images (c.f., Figure 1).

Reconstruction at very low sampling rate presents many chal-

lenges. High variance from poor sampling obscures high-frequency

signals and, with just one sample, distinguishing between sources

of noise proves di�cult. For example, noise from spatially sampling

a high-frequency surface texture becomes con�ated with variance

introduced by light transport and visibility events.

Given our real-time performance target, our �lter leverages prior

frames’ samples to help isolate �ne details and decouple sources

of noise, even in the context of animated scenes. Today, at 1920×
1080, it runs in around 10 ms on current GPUs, opening the door

for future real-time path-traced global illumination. Our speci�c

contributions include:

• An e�cient and temporally stable algorithm for real-time re-

construction from single path-per-pixel inputs, built using a

combination of �lters guided by estimated variance in spatial

and temporal domains.

• A temporal pass that computes per-pixel variance estimates using

information from past frames, and falls back to a spatial estimate

during disocclusions and other temporal undersampling events.

• A spatial pass that builds on prior work (Dammertz et al. [Dammertz

et al. 2010]) to �lter input color through multiple wavelet iter-

ations. Our spatial pass starts by using the temporal estimate

of variance, but updates it during each iteration to improve its

reliability.

• New, scene-agnostic geometric edge-stopping functions.

While our �lter requires no scene-dependent parameters or knowl-

edge of the underlying light transport algorithm, it assumes input

of a noise-free G-Bu�er [Saito and Takahashi 1990]. �is means we

do not support stochastically sampled visibility for depth-of-�eld

or motion blur. However, today’s games approximate these e�ects

well using post-processing techniques.

2 RELATED WORK

Real-time global illumination has eluded researchers for many years.

Current approximations o�en rely on precomputing or caching

light transport computations [Kajiya 1986], either on surfaces or

in sparsely sampled volumes. To augment cached lighting, addi-

tional techniques allow inclusion of speci�c desired e�ects, such as

ambient occlusion, glossy screen-space re�ections, and so� shad-

owing [Ritschel et al. 2012]. While o�en plausible and pleasing,

the resulting lighting is far from realistic. To reach true realism in

real-time, we believe developers must switch to physically-based

Monte Carlo light transport.

Path tracers account for light transport by stochastic sampling,

allowing accurate rendering of distribution e�ects [Cook et al. 1984]

including depth of �eld, motion blur, caustics, so� shadows, and

global illumination. Beyond increased realism, path tracing also

avoids use of per-e�ect rendering algorithms, potentially reduc-

ing code complexity. �is transition already occurred in o�ine

rendering [Keller et al. 2015], leading to the development of numer-

ous �lters designed to remove residual stochastic noise. Zwicker

et al. [2015] provides an excellent survey of these techniques.

Monte Carlo Denoising. Denoising �lters reduce variance—at

the expense of introducing bias—by combining multiple per-pixel

Monte Carlo estimators. �ey aim to smooth the output while

preserving any sharp image features, such as edges and surface

details. Most o�ine denoisers spatially �lter over input images

with tens to hundreds of samples per pixel, with computation times

measured in seconds or minutes.

Regression-based approaches [Bi�erli et al. 2016; Moon et al.

2014, 2015, 2016; Rousselle et al. 2012] have been shown to yield

good results at higher sample rates (≥ 128), however, these �lters

do not work reliably at low sample rates since they are sensitive

with respect to outliers. Furthermore, they are not applicable to

real-time rendering given their high computational complexity.

Munkberg et al. [2016] shows operating in texture space allows

simpler �lters that bene�t from both spatial and temporal reuse.

However, scaling this approach to large assets for real-time render-

ing is nontrivial. Filtering can also occur in path space [Keller et al.

2016], but this uses expensive kNN-searches and couples rendering

and �ltering algorithms. �e black box nature of image-space �lters

is an a�ractive feature for real-time applications. While path-space

metrics can improve image-space �ltering [Gautron et al. 2014],

these metrics remain costly and only converge progressively over

many frames at extremely low sample counts.

Some of the aforementioned methods are designed to be used to

to drive adaptive sampling that locally enhances quality, however,

our requirements di�er. To maintain stable and predictable perfor-

mance we prefer to avoid adaptive sampling, �xing sampling rate

and allowing bias to vary.

Interactive Monte Carlo Denoising. Seminal work by Durand et

al. [2005] derives an optimal �lter footprint via frequency analysis
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of a Monte Carlo sampled light �eld. Later extensions apply to

so� shadows, motion and defocus blur, and indirect illumination

using linear sheared �lters (Egan et al. [2011a; 2011b; 2009]) and

axis-aligned �lters (Mehta et al. [2012; 2013; 2014]). Using separa-

ble sheared �lters leads to higher performance [Hasselgren et al.

2015; Munkberg et al. 2014; Vaidyanathan et al. 2015; Yan et al.

2015], although frequency analysis increases total cost and typi-

cally requires at least 4–16 spp for good results. Additionally, in

high-frequency regions frequency-space �lters reduce �lter foot-

prints to small regions, leading to higher variance without adaptive

sampling.

Instead of shrinking the �lter footprint, non-linear �lters adapt

�lter weights to preserve salient features. Pioneering work on non-

linear Monte Carlo denoising uses outlier removal [Lee and Redner

1990], smooth energy redistribution [Rushmeier and Ward 1994],

and anisotropic di�usion [McCool 1999]. An edge-preserving bi-

lateral �lter [Tomasi and Manduchi 1998] can be applied to Monte

Carlo denoising [Xu and Pa�anaik 2005]. A reformulated cross (or

joint) bilateral �lter [Eisemann and Durand 2004; Petschnigg et al.

2004] replaces each pixel by a weighted average of nearby pixels,

using Gaussian-distributed weights that account for distance, color,

and other di�erences to guide images via edge-stopping functions.

Accounting for geometric information in the edge-stopping func-

tion improves the cross bilateral �lter’s robustness under input

noise.

Weighting the edge-stopping functions’ components per-pixel

further improves robustness to spatially varying sampling noise.

Li et al. [2012], Rousselle et at. [2013], Kalantari et al. [2013], and

Bauszat et at. [2015a] create a bank of candidate �lters and select or

interpolate �lters per pixel depending on estimated input variance

or �lter error. Kalantari et al. [2015] propose applying a small neural

network to control a cross bilateral �lter’s per-pixel feature weights.

�ese �lters can apply at even relatively low sampling rates, but

rely on signi�cant preprocessing or smoothing error estimates and

they currently do not run in real-time.

Several fast approximations to cross bilateral �lters exist, in-

cluding guided image �lters [Bauszat et al. 2011; He et al. 2013],

edge-aware wavelets [Dammertz et al. 2010; Fa�al 2009], and adap-

tive/linear manifolds [Bauszat et al. 2015b; Gastal and Oliveira 2012].

Generally, these approximations introduce ringing and haloing ar-

tifacts. With coarsely sampled inputs (i.e., ≤ 4 spp) image structure

may be impossible to infer, so establishing important features via

�lter guide images is vital to prevent over blurring and loss of detail.

Temporal Filtering. Exploiting temporal information across mul-

tiple frames helps address spatial �lters’ shortcomings and improve

temporal stability at low sampling rates. Delbracio et al. [2014]

consider ray histograms across three frames to reduce �ickering

and Meyer and Anderson [2006] compute a PCA over all frames,

discarding insigni�cant bases to improve temporal stability. Zim-

mer et al. [Zimmer et al. 2015] use a path-space decomposition for

motion estimation and apply denoising on multiple bu�ers. But

these methods require an input set of precomputed frames rather

than temporally �ltering only over previous frames, as required for

real-time.

Interactive �lters o�en reproject samples from one frame to an-

other based on motion vectors [Nehab et al. 2007; Walter et al.
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+ Modulate 
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Figure 2: We reconstruct direct and indirect lighting sepa-

rately. Prior to reconstruction, surface albedo is demodu-

lated based on the rasterized G-bu�er. �is focuses our re-

construction on light transport, rather than denoising high

frequency texture detail. A�er �ltering, we recombine di-

rect and indirect light with primary albedo, then apply tone

mapping and temporal antialising.

1999]. �is is similar to view interpolation [Chen and Williams

1993], which reprojects samples from a prerendered set of images

to generate novel viewpoints. Recently, reprojection has gained

popularity through the broad adoption of temporal anti-aliasing

(TAA) [Karis 2014]. TAA draws inspiration from temporally amor-

tized supersampling [Yang et al. 2009], but rather than discarding

stale samples, they are conditioned to match the color at their repro-

jected locations. Patney et al. [2016] improve on this by estimating

the statistical distribution of colors.

Mara et al. [2017] independently and contemporaneously devel-

oped a denoising method that operates on full paths rather than

separately �ltering direct and indirect light; we look forward to

comparison as future work.

3 RECONSTRUCTION PIPELINE

Below we provide a high-level overview of our reconstruction

pipeline (see Figure 2), including our rasterization and path tracing

inputs, how we isolate noise sources by separating components,

our reconstruction �lter, and our post processing steps. Section 4

covers the core reconstruction algorithm in greater detail.

Path Tracing. As input to our reconstruction �lter, we use stan-

dard path tracing with next event estimation to generate 1 spp color

samples. Our path tracer includes optimizations to be�er utilize

available GPU resources, including use of the rasterizer to e�ciently

generate primary rays. �is provides a noise-free G-bu�er [Saito

and Takahashi 1990] containing additional surface a�ributes used

to steer our reconstruction �lter (see Section 4).

A low-discrepancy Halton sequence [Halton and Smith 1964]

is used to sample light sources and sca�ering directions. We loop

through a small set of Halton samples (e.g., 16), as our temporal

�lters’ exponential moving average loses contributions from ear-

lier samples a�er a few frames. For non-di�use surfaces a�er a

path’s �rst sca�ering event, we apply path space regularization

[Kaplanyan and Dachsbacher 2013]. Regularization essentially in-

creases surface roughness in secondary sca�ering events, allowing

the path tracer to �nd contributions for indirect bounces by con-

necting to the light source, even with highly glossy materials. �is

increases light transport robustness and allows paths to contribute

more uniformly. We also restrict the path length to one additional

sca�ering event per path, limiting computational costs. We thus

trace one ray to �nd indirectly visible surfaces, plus two shadow

rays to connect primary and secondary hit points to a light source.
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Figure 3: An overview of the core reconstruction �lter (shown as blue boxes in Figure 2). We temporally �lter deep frame

bu�ers (le�) to get temporally integrated color and moments. We use an estimated luminance variance to drive an edge-aware

spatial wavelet �lter (center). �e wavelet �lter’s �rst iteration provides a color and moment history to help temporally �lter

future frames. �e reconstructed result (right) feeds back into Figure 2, where we remodulate albedo, perform tonemapping,

and run a �nal temporal antialiasing pass.

Our path tracer outputs direct and indirect illumination sep-

arately. �is enables the �lter to account for local smoothness

independently in both components, and allows be�er reconstruc-

tion of poorly sampled shadow edges. Separation appears to double

cost, but since many steps use the rasterized G-bu�er, signi�cant

work is shared.

Reconstruction. We �rst demodulate surface albedo (including

textures and spatially-varying BRDFs) of directly visible surfaces

from our sample colors. �is avoids our �lter having to prevent

overblurring of high-frequency texture details. In other words, we

�lter untextured illumination components and reapply texturing

a�er reconstruction. Besides removing the need of preventing the

�lter from overly blurring texture details, this also increases the

possible spatial reuse for neighboring samples. In case of multi-

layer materials we add the per-layer albedos, weighted by their

sampling probability.

Our reconstruction performs three main steps: temporally accu-

mulating our 1 spp path-traced inputs to increase e�ective sampling

rate, using these temporally augmented color samples to estimate

local luminance variance, and using these variance estimates to

drive a hierarchical à-trous wavelet �lter. Figure 3 provides an

overview, and Section 4 dives into these steps in greater detail.

A�er reconstruction, we (re-)modulate the �lter output with the

surface albedo.

Post Processing. A�er reconstruction, we perform post process-

ing similar to many of today’s real-time renderers. Our �ltered

result goes through a tone mapping operator to handle a high dy-

namic range. Finally, we perform temporal antialiasing [Karis 2014]

to increase temporal stability and �lter aliasing along geometric

edges that our reconstruction �lter preserves.

4 SPATIOTEMPORAL FILTER

Our reconstruction �lter takes a 1 spp path-traced color bu�er as

input, along with a rasterized G-bu�er [Saito and Takahashi 1990]

and history bu�ers from the prior frame’s reconstruction. We output

a reconstructed image and the following frames’ history bu�ers.

Our G-bu�er contains depth, object- and world-space normals,

mesh ID, and screen-space motion vectors generated from a ras-

terization pass for primary visibility. Our history bu�ers include

temporally integrated color and color moment data along with the

prior frame’s depths, normals, and mesh IDs. To increase robust-

ness, we deliberately avoid using scene-speci�c information, such

as light positions, shape, or other scene properties, and we do not

assume any particular light transport method.

Figure 3 highlights the main steps in our �ltering pipeline. Sec-

tion 4.1 describes our temporal sample accumulation, Section 4.2

presents our spatiotemporal estimation of luminance variance, and

Section 4.3 details our variance-guided wavelet �lter. Section 4.4

provides the edge-stopping functions that control our �lter weights.

4.1 Temporal �ltering

With temporal antialiasing (TAA) [Karis 2014] now widely adopted

for amortized supersampling in video games, it seems natural to ap-

ply it to real-time path tracing. Unfortunately, color-based temporal

�ltering introduces artifacts when applied to very noisy inputs. We

minimize these artifacts and increase the e�ective sample count

by instead adopting a geometry-based temporal �lter inspired by

ideas from Nehab et al. [2007] and Yang et al. [2009].

As in TAA, we require a 2D motion vector associated with each

color sample Ci for frame i . �is describes geometric motion from

the prior frame, and allows us to backproject Ci to its screen space

location in the prior frame. By accessing a color history bu�er, out-

put by our �lter in the prior frame, we can continuously accumulate

color samples over multiple frames. For each Ci we backproject to

�nd sampleCi−1 from the color history bu�er, and compare the two

samples’ depths, object-space normals, and mesh IDs to determine

if they are consistent (i.e., on the same surface). �ese consistency

tests use empirical similarity metrics similar to the fragment merge

heuristics in prior work [Jouppi and Chang 1999; Kerzner and Salvi

2014]. Consistent samples are accumulated as a new integrated
color C ′i via an exponential moving average:

C ′i = α ·Ci + (1 − α) ·C
′
i−1
,
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i = 0

i = 1

i = 2

Figure 4: Illustration of three levels of the 1D à-trous

wavelet transform. Arrows always point to the non-zero co-

e�cients (black dots) of the it h �lter kernel, whose number

remain constant. Each �lter iteration increases the kernel

footprint by introducing 2i−1 zero-elements (grey dots) be-

tween the initial entries, depicting elements accounted for

by the undecimated transformation.

where α controls the temporal fade, trading temporal stability for

lag. We found α = 0.2 worked best. Our motion vectors currently

handle camera and rigid object motion, though more complex trans-

formations are possible with the addition of more data in our history

bu�er and slightly more involved consistency tests.

To improve image quality under motion we resample Ci−1 by

using a 2 × 2 tap bilinear �lter. Each tap individually tests backpro-

jected depths, normals and mesh IDs. If a tap contains inconsistent

geometry, the sample is discarded and its weight is uniformly re-

distributed over consistent taps. If no taps remain consistent, we

try a larger 3 × 3 �lter to help �nd thin geometry such as foliage.

If we still fail to �nd consistent geometry, the sample represents a

disocclusion, so we discard the temporal history and use C ′i = Ci .

4.2 Variance estimation

To locally adjust the à-trous wavelet �lter to the signal, we estimate

the per-pixel variance of color luminance using temporal accumu-

lation as an e�cient proxy for detecting noise. �e key idea is that

our reconstruction should avoid changing samples in regions with

li�le or no noise (e.g., fully shadowed regions) while �ltering more

in sparsely sampled, noisy regions. By analyzing the di�erent sam-

ples over time, the �lter detects the reliability of a speci�c sample.

Note that spatially computed variance estimates can only provide

an imperfect proxy for noise: noise increases variance, but variance

can occur without noise.

We estimate per-pixel luminance variance using µ1i and µ2i ,

the �rst and second raw moments of color luminance. To collect

su�ciently many samples for a meaningful estimate we tempo-

rally accumulate these moments, reusing the geometric consistency

tests. We then estimate our temporal variance from the integrated
moments µ ′

1i
and µ ′

2i
using the simple formula σ ′2i = µ

′
2i
− µ ′2

1i
.

Camera motion, animations, and viewport boundaries all cause

disocclusion events, which impact the quality of our variance es-

timates. Where our temporal history is limited (<4 frames a�er a

disocclusion), we instead estimate the variance σ ′2i spatially, using

a 7×7 bilateral �lter with weights driven by depths and world-

space normals. Essentially, for a few frames a�er a disocclusion

our �lter relies on a spatial estimate of variance until the temporal

accumulation has collected su�cient data for a stable estimate.

4.3 Edge-avoiding à-trous wavelet transform

�e à-trous wavelet transform hierarchically �lters over multiple

iterations, each with increasing footprint but a constant number

of non-zero elements (see Figure 4). Discarding detail coe�cients

smooths the input while edge-stopping functions preserve sharp

details by limiting �lter extent at boundaries.

�e rasterized G-bu�er contains no stochastic noise, allowing us

to de�ne edge-stopping functions that identify common surfaces

using G-bu�er a�ributes. Our implementation follows the work

by Dammertz et al. [2010] that realizes each step of an edge-aware

à-trous wavelet decomposition using a 5 × 5 cross-bilateral �lter

with weight function w(p,q) between pixels p,q:

ĉi+1(p) =
∑
q∈Ω h(q) ·w(p,q) · ĉi (q)∑

q∈Ω h(q) ·w(p,q) , (1)

where h =
(

1

16
, 1

4
, 3

8
, 1

4
, 1

16

)
is the �lter kernel and Ω is the gathered

�lter footprint.

�e weight function w(p,q) typically combines geometrical and

color based edge-stopping functions [Dammertz et al. 2010]. Our

novel weight function instead uses depth, world-space normals, as

well as the luminance of the �lter input:

wi (p,q) = wz ·wn ·wl . (2)

Before applying our wavelet �lter we tune the luminance edge-

stopping function, based on the local estimate of luminance variance

(see Section 4.4). We then apply the wavelet �lter to our temporally

integrated color as per Equation 1, and by assuming our variance

samples are uncorrelated we �lter as follows:

Var(ĉi+1(p)) =
∑
q∈Ω h(q)2 ·w(p,q)2 · Var(ĉi (q))
(∑q∈Ω h(q) ·w(p,q))2

.

We use the result to steer the edge-stopping functions for the next

level of the à-trous transform. Our reconstruction uses a �ve-level

wavelet transform, giving an e�ective 65 × 65 pixel �lter footprint.

As part of our wavelet transform, we output the �ltered color

from the �rst wavelet iteration as our color history used to tempo-

rally integrate with future frames (see Figure 3). While we could use

�ltered colors from other wavelet levels, we empirically found using

the �rst wavelet iteration for temporal integration best balances

improved temporal stability with bias from spatial �ltering.

4.4 Edge-stopping functions

Given our real-time requirement, we chose the three edge-stopping

functions in Equation 2 to maximize temporal stability and ro-

bustness, potentially in exchange for increased spatial bias. Each

function’s ability to reject samples is individually controlled by

parameters σz , σn and σl . While a range of values for these param-

eters are e�ective, we found through experimentation that σz = 1,

σn = 128 and σl = 4, work well on all scenes we tested. For this

reason, we do not expose these parameters to the user.

Depth. Realistic scenes o�en contain large variations in geo-

metric scale, especially in open landscapes. �is makes global

edge-stopping functions di�cult to control. We thus assume a local

linear model for the surface depths and measure deviation from its

clip-space plane. We estimate the local depth model using screen-

space partial derivatives of clip-space depth. �is give a weight

function de�ned as:

wz = exp

(
− |z(p) − z(q)|
σz |∇z(p) · (p − q)| + ε

)
, (3)
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(a) Without spatial variance 
filter

(b) 1 spp

(c) With spatial variance filter (d) 4096 spp

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 5: Low sample counts cause (a) underestimation of

the variance where paths with lighting contributions occur

with low probability (e.g., see (b) input samples). Filtering

variance with (c) a small spatial �lter improves results in

these regions, giving results closer to (d) our reference.

where ∇z is the gradient of clip-space depth with respect to screen-

space coordinates, and ε is a small value to avoid division by zero.

Normal. We adopt a cosine term for our edge-stopping function

on world-space normals:

wn = max(0,n(p) · n(q))σn , (4)

for an input normal n(p) at point p on the image plane. Prior work

in mesh simpli�cation and anti-aliasing algorithms uses similar

terms to control whether to merge two surfaces together.

Luminance. A key aspect of our luminance edge-stopping func-

tion is its ability to automatically adapt to all scales by re-normalizing

luminance based on its local standard deviation. But operating at

low sample counts introduces instabilities in our estimates of vari-

ance and standard deviation; this can introduce artifacts. To avoid

these, we pre-�lter our variance image using a 3×3 Gaussian kernel,

which signi�cantly improves reconstruction quality (see Figure 5).

Our luminance edge-stopping function then becomes:

wl = exp

(
− |li (p) − li (q)|
σl

√
д3x3(Var(li (p))) + ε

)
, (5)

for a Gaussian kernel д3x3 and luminance li (p) at position p. Since

the luminance variance tends to reduce with subsequent �lter iter-

ations, the in�uence of wl grows with each iteration, preventing

overblurring.

Note that this Gaussian pre�lter is only used to drive the lumi-

nance edge-stopping function, and it is not applied to the variance

image propagated to the next iteration of the wavelet transform.

5 RESULTS AND DISCUSSION

We evaluate our new spatiotemporal variance-guided �lter on a

number of metrics, including �nal image quality, performance, and

temporal stability. Our evaluation focuses on 1 spp images, since

our design decisions all revolve around targeting this sampling

rate. Our prototype uses OpenGL to generate primary visibility and

to implement SVGF. Secondary and shadow rays are traced using

OptiX [Parker et al. 2010]. All reported performance results use an

NVIDIA TITAN X (Pascal).

5.1 Comparison With Existing Work

We compare to various denoising techniques, implemented inde-

pendently in our common framework based on their original papers.

For general image-space �ltering, we compare to the edge-avoiding

à-trous wavelet �lter (EAW) by Dammertz et al. [2010], SURE-based

�lter (SBF) by Li et al. [2012], and the learning-based �lter (LBF)
by Kalantari et al. [2015]. For direct illumination (shadows), we

also compare SVGF against the axis-aligned �lter (AAF) by Mehta

et al. [2012].

Our reconstruction �lter relies on temporal �ltering, thus oper-

ating at higher e�ective sample counts when using our temporal

history bu�er. Generally, this allows SVGF to achieve signi�cantly

be�er quality than prior published work, both visually (see Figure 6)

and in terms of RMSE and SSIM (Table 1).

Additionally, Figure 10(a) shows that SVGF provides 10× less

frame-to-frame variability, providing much higher temporally sta-

bility. We refer to the supplementary video for visual temporal

stability comparisons.

�e rest of our comparative evaluations augment prior work

using our temporal accumulation and postprocess temporal anti-

aliasing. Since temporal accumulation increases e�ective sample

count, we feel this provides a level playing �eld for comparing

our variance-guided reconstruction �lter. While the original EAW,

SBF, LBF, and AAF algorithms use no temporal accumulation, we

saw signi�cant improvement in both image quality (Table 1) and

temporal stability (Figure 10(b)). For clarity, we refer to the imple-

mentations without temporal improvements as EAWor iд , SBFor iд ,

and LBFor iд .

AAF follows the description by Mehta et al. [2012]. Since our ray

budget only allows for one shadow ray per pixel, we gather mini-

mum and maximum occlusion distance in a �xed spatial window.

We apply temporal �ltering to the estimated occlusion distance as

well as the visibility input.

Our SBF [2012] implementation does not perform any adaptive

sampling. We only have one sample per pixel, so we estimate color

variance using a small spatial window. We follow the authors’ ad-

vice and skip the renormalization of noise-free feature distance
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Figure 6: Frames captured from animated sequences comparing the image quality of our algorithm to reimplementations of

prior work (per the original publications). SBFor iд , LBFor iд , and EAWor iд all provide much lower image quality than our

SVGF using only 1 spp. Due to increased e�ective sample count from temporal �ltering, we modify comparative techniques

in all other results to include our temporal reuse, for fairer comparison (e.g., as in Figure 7).

functions (e.g. depth, normal, albedo). We run the �lter on tem-

porally accumulated, demodulated samples containing both direct

and indirect illumination.

LBF [2015] uses the pre-trained network weights provided with

their sample code. We did not retrain on our scenes, and all network

inputs were computed as described in their paper. We provide the

�lter with temporally �ltered color input, containing both direct

and indirect illumination. �e inputs to the network include direct

and indirect albedo, as well as �rst-bounce visibility information,

therefore we did not apply demodulation to the samples.

Since our �lter takes spatially �ltered samples as input to our

temporal accumulation (see Figure 3), our spatial �lter technically

does not use inputs identical to our comparison �lters. However, all

results are rendered deterministically, so all �lters are run over an

identical set of path traced samples at identical sample locations.

5.2 Image �ality

We evaluate image quality in multiple scenes. Sponza and Glossy-

Sponza evaluate isolated di�use and highly glossy illumination.

RedRoom, SanMiguel, and Classroom provide complex geometric

and material interactions that resemble real-world environments.

Animations include moving lights in RedRoom and Sponza and

include moving camera in Sponza, GlossySponza, SanMiguel, and

Classroom. We rendered animated sequences at 60 Hz, providing

1 spp path-traced inputs to each reconstruction technique.

Figure 7 selects frames in these animations for detailed compar-

isons, using insets to highlight key di�erences in our results. As

with the rest of our results, this �gure uses temporally augmented

versions of prior work. Table 1 quanti�es di�erences to a 4096 spp

reference using Root-Mean Square Error (RMSE) and Structural Sim-

ilarity Index (SSIM) [Wang et al. 2004] metrics. Our supplementary

material provides video comparisons of �nal animations.

�alitatively, our reconstructed results are more faithful to the

reference than previous work. It also provides plausible results in

areas with high geometric detail and many disocclusions, e.g., the

foliage in SanMiguel. RMSE and SSIM support these observations,

showing SVGF gives be�er or equal results compared to prior work.

�e SSIM of images reconstructed using prior work is between 2%

and 25% lower than that of our algorithm.

Due to globally adjusted edge-stopping functions, the EAW �lter

fails to retain prominent details. �is is particularly apparent in the

so� shadows in Sponza and glossy re�ections in GlossySponza.

�e EAW �lter also su�ers from suboptimal geometry-based edge-

stopping functions, which cause halos in the reconstructed output

(Figure 7, Sponza, cyan inset). LBF loses surface texture and exhibits

noise in shadow penumbras. SBF captures many important features,

but it exhibits strong mid-frequency noise.

E�ectiveness of temporal variance estimation. In order to test

the ability of SVGF to preserve details we designed a synthetic test

scene with structured noise with varying sampling density. Figure 9

shows the input of this test and compares the results for our spatial

fallback and spatiotemporal �lters against reference. �e input test

pa�ern consists of an image where for each pixel we sample from

the following distribution

f (x ,α) =
{

0 if x < α ,
1

1−α otherwise,

(6)

with α ∈ [0, 1) to estimate the integral

∫
1

0
f (x ,α)dx = 1. From le�

to right, with varying α the variance is gradually increased.

When temporal reprojection fails, our reconstruction �lter does

not have any history to estimate statistics and has to rely on a

spatial estimate. �e temporal variance estimate allows the �lter to

retain sharpness in regions with lower noise whereas the spatial

variance has higher amounts of bias across the whole image. Note

that our �lter fails to faithfully reconstruct the structure a�er a

certain sampling probability (right side of Figure 9), however the

temporal variance estimation pushes the breaking point further.

5.3 Performance

We designed SVGF for reconstruction in real-time contexts, so here

we try to characterize its performance. Figure 8 shows frame ex-

ecution times for our �lter during a 1280×720 �ythrough of the

SanMiguel courtyard, which we believe includes a realistic amount

of thin detail and disocclusions. �roughout the sequence, SVGF’s

cost varies between 4.1 and 5.8 ms. Excluding the �rst frame, per-

formance variation is under 15% of the average 4.4 ms cost. �is

variability comes entirely from the variance estimation (Section 4.2),

which reverts to a cross-bilateral �lter for variance estimates when

temporal reprojections fail. Frame cost then increases with number

of disocclusions, e.g., frames with lots of foliage. Worst-case frames
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Figure 7: Frames captured from animated sequences. Our �lter captures and preserves prominent structures and provides

plausible, noise-free results. While SBF reconstructs most structure, it fails to fully denoise the input. LBF has di�culty in

regions with low sample density, overblurring texture detail and creating a facetted �at appearance. EAW uses a globally-

adjusted color edge stopping function, which fails to retain important structure.

Table 1: RMSE and SSIM di�erence comparing to a 4096 spp reference. Parenthesized numbers indicate metrics for �lters

augmented by our temporal �ltering. Our algorithm performs consistently equal to or better than previous work.

Filter
Sponza GlossySponza RedRoom SanMiguel Classroom

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

Ours 0.022 0.947 0.049 0.779 0.021 0.972 0.059 0.863 0.027 0.940

EAW 0.043 (0.040) 0.902 (0.909) 0.089 (0.087) 0.585 (0.586) 0.049 (0.048) 0.923 (0.924) 0.088 (0.070) 0.767 (0.818) 0.059 (0.052) 0.841 (0.876)

LBF 0.032 (0.022) 0.777 (0.924) 0.058 (0.052) 0.655 (0.764) 0.033 (0.031) 0.915 (0.946) 0.074 (0.058) 0.651 (0.833) 0.047 (0.035) 0.787 (0.912)

SBF 0.060 (0.031) 0.500 (0.858) 0.058 (0.048) 0.648 (0.757) 0.038 (0.027) 0.822 (0.957) 0.088 (0.061) 0.571 (0.815) 0.072 (0.035) 0.610 (0.884)
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Figure 8: Runtime of our �lter for an animated �ythrough

in the San Miguel courtyard, rendered at 1280 × 720 on a

NVIDIA TITAN X (Pascal). �e performance of our tech-

nique is consistent across the sequence and is also largely

independent of scene properties. See Section 5.3 for details.

Sampling Probability1 0

SPATIAL VARIANCE ESTIMATE

STOCHASTIC SAMPLES (1SPP)

TEMPORAL VARIANCE ESTIMATE

REFERENCE

Figure 9: Synthetic test case for our �lter. We sample a func-

tion with varying sampling probability. �e spatial variance

estimate case refers to reconstruction without any tempo-

ral history, i.e. as it occurs in newly disoccluded regions. It

relies on a spatial estimate of variance, therefore overblur-

ring stable features. Once the �lter has acquired su�cient

temporal history it switches to a purely temporal variance

estimate which allows the �lter to retain sharp features.

are rare, usually occurring at application startup or at discontinu-

ities in camera paths when disocclusions cover the entire frame.

In such cases (not shown in Figure 8), our implementation can be

around 50% worse than the best-case performance.

SVGF performance scales linearly with resolution. Costing an

average of 4.4 ms per frame at 1280×720 and 10.2 ms at 1920×1080,

our algorithm processes around 200 MPixels/sec.

5.4 Temporal Stability

Figure 10(b) compares our temporal stability with prior work. For

a 60 frame sequence in Sponza, using static light, camera, and

scene, we quantify temporal stability by measuring the average

luminance of the di�erence between consecutive frames, which we

call temporal error. �e shows �lters’ temporal convergence.

All algorithms start with high temporal error, due to lack of

su�cient history, but they quickly converge until all variations arise

from repetitions in the sample pa�ern. While EAW has the lowest

temporal error, it loses signi�cant detail during reconstruction (see

Figure 7). Due to its high spatial bias (caused by insu�ciently sharp

edge-stopping functions), EAW combines more pixels together,

achieving both higher bias and temporal stability. SVGF gives

temporal error close EAW, but at much higher image quality.
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Figure 10: Temporal stability of various algorithms com-

pared using temporal error, the average luminance of the

per-pixel di�erences, for a �xed view and lighting con�g-

uration. We compare our algorithm with both (a) reimple-

mentations of comparative techniques directly from the lit-

erature and (b) the prior work augmented with our tempo-

ral reuse. When using temporal histories, algorithms lack

su�cient history data in early frames, a�er which they con-

verge over 10–20 frames. Our SVGF �lter performs 10× bet-

ter than prior published work. While EAW exhibits higher

temporal stability than our SVGF, it has signi�cantly higher

reconstruction error (see Figure 7 and Table 1).

5.5 Applicability

As SVGF requires no special knowledge about a scene’s light trans-

port, it applies to various contexts where ray tracing may be desired.

Beyond accurate reconstruction of glossy re�ections (see Figure 7),

Figure 12 shows SVGF can reconstruct ambient occlusion from 1 spp

input. Additionally, we can reconstruct illumination from multiple

lights from a single sample, a big improvement over rasterization,

where shadow maps are queried for each light. In both cases, the

reconstruction closely matches our 4096 spp reference.

Figure 11 compares our quality when reconstructing direct light-

ing. �e scenes include complex shadows from bright area lights.

EAW loses detail due to the non-adaptive edge-stopping functions

and SBF retains signi�cant noise. AAF also preserves many shadow

details, but at the cost of losing subtle shadow shape. Overall, SVGF

provides an accurate reconstruction without using any domain-

speci�c knowledge. Figure 11 shows that prior work performes

worse even without indirect lighting, emphasizing that spli�ing

apart and separately �ltering direct and indirect illumination is not

solely responsible for our improved reconstruction quality.

5.6 Filter Scalability with Additional Samples

We aimed to develop a high-quality �lter for real-time path tracing,

which today is only viable at 1 spp or less. �is target sampling rate

drove many of our design decisions. �ese decisions need revisiting

to extend our work on higher sampling rates, which is outside the

scope of our current �lter design.

For instance, with 1 spp traditional variance estimates are mean-

ingless over the single sample from each pixel. To estimate variance,

Section 4.2 accumulates variance temporally using an exponential

moving average, as typical in temporal antialiasing. Without us-

ing an arithmetic mean, this estimate does not converge to the

actual variance using additional samples. Instead, when using bet-

ter sampled images, it makes sense to reevaluate whether a more

traditional variance computation should be used.
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Figure 11: �ality comparison of various reconstruction �lters on direct lighting. Both scenes use �xed view and light posi-

tions. �e Pillar scene shows simple geometric shapes blocking an area light source. Due to the input’s high dynamic range

and its global edge-stopping function, EAW fails to preserve sharp features. SBF and AAF preserve the contact shadows, but

SBF produces mid-frequency noise. Our �lter preserves the shadow shape and the discontinuity present in the shadow (refer

to the second inset) which AAF does not capture. In Grids, multiple stacked occluders result in complex visibility with very

few samples. Our �lter captures the most prominent features of the shadow compared to AAF, which loses shape information.
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Figure 12: Beyond direct shadows and global illumination,

our �lter seamlessly reconstructs ambient occlusion and

contributions from multiple lights with the same settings.

6 LIMITATIONS

While our �lter is able to perform temporally stable real-time recon-

struction of very noisy Monte Carlo images, we identify scenarios

in which our algorithm can be improved.

Over-Blurred Chrominance. Because we solely compute and track

luminance variance in the edge-stopping functions, our �lter will

a b c

d e f

Figure 13: Limitations of our �lter. (a) shows fast-moving ge-

ometry close to a light source, resulting in slightly detached

shadows. (b) shows noise in a corner of the di�use Sponza

scene dimly lit by a small amount of indirect light. (c) shows

a correct, sharp specular re�ection processed by our �lter,

but (d) shows our �lter erroneously blurring a re�ection due

to undersampled lighting. (e) shows our system correctly

rendering a hard shadow when the camera is still, whereas

(f) shows over-blurring of shadows during camera motion.

sometimes over-blur chrominance. For example, see the multi-

colored re�ection in the bo�om inset for GlossySponza in Figure 7.

Note that our �lter over-blurs the colored re�ection compared to

the reference and SBF. �is issue can be addressed by estimating

variance individually for each color component, however this comes

at increased memory and computation costs.
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Detached Shadows in Motion. Fast-moving geometry close to a

light source can produce detached shadows (see shadows of the

pipes in Figure 13(a)). �is is due to the temporal accumulation not

being aware of the changing illumination due to object motion.

Temporally Unstable Noise in Extremely Low-Light. Our algo-

rithm can produce temporally unstable noise in cases where the

light transport results in very few samples, for example in regions

dimly lit with indirect light. See the end of the upstairs hallway

in the Di�use Sponza video, the exposure-enhanced image from

this video sequence in Figure 13(b), and the right most region of

Figure 9. As the sample density approaches zero, the estimate of

variance becomes increasingly unreliable and our �lter is unable to

recover a plausible image.

Over-Blurred Specular Re�ections. Under ideal conditions our

algorithm can correctly reconstruct specular re�ections (see Fig-

ure 13(c)). However, if the re�ection is noisy due to stochastically

sampling indirect illumination, the �lter will remove the noise, thus

blur the re�ection (see Figure 13(d)).

Over-Blurred Features Under Motion. Due to the blur introduced

by back-projecting the color and moments history bu�ers, our

�lter can over-blur sharp features under motion. In addition, back-

projection also introduces non-zero variance estimates, which causes

further spatial bias (see Figure 13(e,f)).

Incompatible with Stochastic Primary Ray E�ects. Our �lter relies

on measuring variance from the bu�er of primary ray hits (G-bu�er).

We therefore require that the primary rays do not contain Monte

Carlo noise, thus making our method incompatible with stochas-

tic primary ray e�ects such as stochastic transparency, stochastic

depth-of-�eld, and stochastic motion blur.

Incompatible with Highly Aliased Primary Rays. We demonstrated

our �lter works well on foliage and other �ne-detail geometry (e.g.,

the bushes and tree leaves in SanMiguel). However, with extremely

aliased sub-pixel geometry in the G-bu�er, our edge-stopping func-

tions will prevent the �lter from �nding valid samples in the image

neighborhood, causing li�le illumination �ltering.

7 CONCLUSION

In this paper we have presented a novel reconstruction algorithm

suitable for real-time rendering. With the achieved performance

and quality of our �lter, we have signi�cantly narrowed the perfor-

mance gap limiting the use of path tracing in real-time graphics,

presenting what we believe is the �rst practical real-time recon-

struction �lter operating on just a single path per pixel.

�e quality improvements of SVGF stem from its reliance on our

spatiotemporal variance estimate, which we use as an imperfect

proxy for per-pixel variance. We use our estimate to control a

spatial wavelet-based �lter, which hierarchically �lters color as

well as our variance estimate. �erefore the reconstruction error,

which is highest where the variance estimate is imprecise, is kept

local, and the reliability of the reconstruction grows with each

iteration.

Consequently, SVGF is able to achieve a much higher quality of

reconstruction as compared to previous work. We believe our work

represents a signi�cant step in the exploration of the large design

space of non-linear spatiotemporal reconstruction, and we wish

to continue exploring more algorithms in this area that are faster,

higher quality, and free from artifacts discussed in Section 6.
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