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Abstract— We present a micro aerial vehicle (MAV) system,
built with inexpensive off-the-shelf hardware, for autonomously
following trails in unstructured, outdoor environments such as
forests. The system introduces a deep neural network (DNN)
called TrailNet for estimating the view orientation and lateral
offset of the MAV with respect to the trail center. The DNN-
based controller achieves stable flight without oscillations by
avoiding overconfident behavior through a loss function that
includes both label smoothing and entropy reward. In addition
to the TrailNet DNN, the system also utilizes vision modules for
environmental awareness, including another DNN for object
detection and a visual odometry component for estimating
depth for the purpose of low-level obstacle detection. All vision
systems run in real time on board the MAV via a Jetson TX1.
We provide details on the hardware and software used, as well
as implementation details. We present experiments showing the
ability of our system to navigate forest trails more robustly than
previous techniques, including autonomous flights of 1 km.

I. INTRODUCTION

Autonomously following a man-made trail in the forest is
a challenging problem for robotic systems. Applications for
such a capability include, among others, search-and-rescue,
environmental mapping, wilderness monitoring, and personal
videography. In contrast to ground-based vehicles, micro
aerial vehicles (MAVs) offer a number of advantages for
solving this problem: they are not limited by the difficulty or
traversability of the terrain, they are capable of much higher
speeds, and they have the ability to quickly switch from one
trail to another by flying through or over the forest.

In order for a complete MAV system to follow a trail, it
must not only detect the trail in order to determine its steering
commands, but it also must be aware of its surroundings. An
MAV that lacks such a capability is in danger of colliding
with overhanging branches or, even worse, with people or
pets using the trail. Environmental awareness is therefore a
critical component for trail-following robots, particularly for
low-flying MAVs.

In this paper, we present a MAV system for autonomous
trail following. The system uses a deep neural network
(DNN) that we call TrailNet for determining the MAV’s view
orientation and lateral offset within the trail. The computed
pose is then used for continuous control to allow the MAV
to fly over forest trails. In addition, vision modules for
environmental awareness enable the MAV to detect and
avoid people and pets on the trail, as well as to estimate
depth in front of the robot for the purpose of reactively
avoiding obstacles. All subsystems described in this paper
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run simultaneously in real time on board the MAV using
an NVIDIA Jetson TX1 computer. On-board processing is
essential for ensuring the safety of such a mission-critical
system.

In this work, we make the following contributions:
• A hardware/software system for environmentally aware

autonomous trail navigation using DNNs that runs in
real time on board an MAV. This is the first such system
of which we are aware that can navigate a narrow
forested trail of 1 km autonomously.1

• A novel DNN architecture for trail detection with im-
proved accuracy and computational efficiency via a less-
confident classification scheme for more stable control
as well as additional categories for estimating both view
orientation and lateral offset.

• A methodology for retraining a DNN with 6 categories
(for view orientation and lateral offset) by transfer
learning from a network with 3 categories (orientation
only).

II. PREVIOUS WORK

Today, commercial MAVs are mostly teleoperated, use
GPS for navigation, and have limited ability to automatically
avoid obstacles. Nevertheless, the research community has
made significant strides toward introducing more visual-
based processing to facilitate obstacle avoidance and state
estimation. Alvarez et al. [1] use a structure-from-motion
(SfM) algorithm to estimate depth, and hence avoid obsta-
cles, from a single forward-facing camera. Bachrach et al. [2]
build a map using an RGBD camera, which is then used
for localization and planning. Bry et al. [5] combine an
inertial measurement unit (IMU) with a laser range finder
to localize a fixed-wing MAV, enabling reliable flight in
indoor environments. Faessler et al. [9] apply the SVO
algorithm [10] to a downward-facing camera and IMU to
build a map of the environment, which is then used for
planning. Fraundorfer et al. [11] fuse a forward-facing stereo
pair of cameras with a downward-facing camera for map
building and state estimation. Scaramuzza et al. [29] also
combine IMU and three cameras for obstacle avoidance and
map building. Some of the challenges of flying low among
obstacles are described by Scherer et al. [30].

Recent attention has also been paid toward using deep
reinforcement learning (DRL) for MAVs. In foundational
work, Bhatti et al. [3] describe a system that combines visual

1https://www.youtube.com/watch?v=H7Ym3DMSGms,
https://www.youtube.com/watch?v=USYlt9t0lZY
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mapping with visual recognition to learn to play first-person
video games using DRL. Similarly, Lillicrap et al. [18] apply
DRL to learn end-to-end policies for many classic continuous
physics problems. Ross et al. [26] apply DRL to learn to
avoid obstacles in the context of an MAV flying in a forest.
Sadeghi and Levine [27] apply DRL to enable an MAV to
learn to fly indoors after training only on synthetic images.
Zhang et al. [33] use DRL to learn obstacle avoidance
policies for a simulated quadrotor.

Our work is partly inspired by, and is most closely
related to, the trail DNN research of Giusti et al. [13], who
trained a convolutional DNN that predicts view orientation
(left/right/straight) by collecting an extensive dataset via a
head-mounted rig consisting of three cameras. The trained
DNN was then used on board an MAV to determine steering
commands to follow a trail. This work builds on the earlier
ground-based robotic work of Rasmussen et al. [24].

We were also inspired by NVIDIA’s DNN-controlled self-
driving car [4], which uses three cameras located on the
car’s dashboard to collect training data for three different
directions. During training, the system computes correct
steering effort for each virtual view (created by interpolating
footage between the real cameras) to keep the vehicle straight
and in the lane. In this manner, the DNN learns to associate
visual input with the correct steering command. The trained
DNN then steers the car using a single camera, on a variety
of terrains and environments. We adapted this approach by
augmenting the IDSIA forest trail dataset [13] with our own
footage collected with a three-camera wide-baseline rig to
collect side views. In this manner, our system is able to
estimate both lateral offset and view orientation within the
trail.

III. SYSTEM DESCRIPTION

To ensure a robust and flexible platform for forest flight
experiments, we chose to use inexpensive off-the-shelf com-
ponents. Our hardware setup, shown in Figure 1, includes a
3DR Iris+ quadcopter with open source Pixhawk autopilot,
and NVIDIA Jetson TX1 with Auvidea J120 carrier board.
The vision processing described in this paper uses a single
forward-facing Microsoft HD Lifecam HD5000 USB cam-
era, run in 720p mode at 30 fps. All processing is done on
the Jetson TX1. The 3DR Iris+ quadcopter could be replaced
by a similar 450–550 drone, such as a DJI Flame Wheel, if
desired.

The MAV is equipped with a downward-facing, high fram-
erate (400 Hz) PX4FLOW optical flow sensor with sonar,
and Lidar Lite V3. Developed for the PX4 / Pixhawk project
by ETH [15], PX4FLOW provides reliable metric position
and attitude estimation by computing 2D optical flow on the
ground, then using ground distance measurements and gyro
readings to compute vehicle ground speed. Once computed,
this speed is sent to an extended Kalman filter (EKF) running
on Pixhawk to be fused with other sensor measurements
(e.g., IMU) for even more precise state estimation.

The diagram in Figure 2 illustrates our software architec-
ture. We adopted the open source PX4 flight stack [37] as

Fig. 1. Our MAV following a trail in a forest.

Fig. 2. System diagram.

firmware for the Pixhawk autopilot. PX4 provides a flexible
and robust control over a range of MAV configurations. It
includes software-in-the-loop (SITL) simulation, which we
use for controller testing and debugging. The Jetson TX1
on-board computer communicates with PX4 via MavLink
protocol. We run the Robot Operating System (ROS) and
Ubuntu Linux4Tegra (L4T) on the Jetson TX1. As shown in
the figure, the system uses the following ROS nodes: GSCam
for reading USB camera input, JOY for reading Xbox/Shield
game controller commands used for teleoperation (during
training and for emergency override), and MAVROS for
communicating with PX4.

Vision processing is performed by three nodes. A DNN
node using TensorRT runtime applies our TrailNet trained
by Caffe/DIGITS. An object detection node runs a version
of the YOLO DNN [36]. And a third node runs the DSO
visual odometry algorithm [8], whose output is converted
to a camera-centric depth map for obstacle detection and
avoidance.

The controller node is responsible for computing desired
movement commands (waypoints) per current trail DNN pre-



Fig. 3. TrailNet architecture used in this paper to determine the MAV’s view orientation and lateral offset with respect to the trail center. The bulk of
the network (labeled s-ResNet-18) is the standard ResNet-18 [14] architecture, but without batch normalization and with ReLU replaced by shifted ReLU.
The first convolution layer is 7 × 7, whereas all the others are 3 × 3. Some layers downsample using stride of 2; all others use stride of 1. All weights
except the lateral offset layer are trained with the IDSIA trail dataset, after which these weights are frozen, and the lateral offset layer weights are trained
with our dataset. A final joint optimization step could be performed but was deemed to be not necessary.

dictions, detected obstacles/objects and teleoperation com-
mands. For safety, the teleoperation commands always take
precedence over DNN predictions, so a human operator
can override the MAV at any time to prevent undesirable
movements. In our final experiments, this overriding was not
neccessary. The computed waypoint is then sent to MAVROS
which resubmits it to PX4 via MavLink. We use a right-
handed ENU (east-north-up) inertial coordinate frame for
waypoint computation, which must be converted to PX4’s
right-handed NED (north-east-down) coordinate frame. The
controller node runs at 20 Hz.

A few additional system details are worth mentioning.
We added a Lidar Lite V3 laser range finder to im-
prove the distance-to-ground estimation. We also replaced
PX4FLOW’s default 16 mm narrow-angle lens with a 6 mm
wide-angle lens, changed the firmware to accommodate the
new focal length, and used custom PX4FLOW firmware that
provides better exposure control. These changes considerably
improved the system’s performance in low light environ-
ments such as forests and in situations when flying debris
blown by the MAV’s rotors reduces optical flow accuracy.

IV. VISION-BASED PROCESSING

In this section we describe the processing performed by the
three vision-based modules using the forward-facing camera.

A. Estimating lateral offset and view orientation with DNN

Figure 3 shows the TrailNet DNN used in this work for
estimating the MAV’s lateral offset and view orientation with
respect to the trail. The network is standard ResNet-18 [14]
but with several changes: we removed batch normalization;
replaced ReLUs with shifted ReLU (SReLU) [6] activation
functions, which are computationally efficient approxima-
tions to the highly effective exponential linear units (ELUs)
[6]; and introduced a double-headed fully connected output
layer.

Like [13], we treat the problem as one of classification
with soft labels, rather than regression, because of the ease of
data collection and labeling, as well as reduced sensitivity to
noise. A significant difference with [13] is that our network
outputs 6 categories rather than 3 to capture not only the

3 orientations with respect to the trail (facing left / facing
center / facing right) but also the 3 lateral offsets (shifted
left / centered / shifted right) with respect to the trail center.
In our experience, these additional categories are essential to
accurate state estimation and hence to reliable trail following.
With just 3 categories, if the MAV flies close to the trail
edge but parallel to the trail, the DNN will not cause it to
turn, because it is already oriented straight. Eventually, this
negligence will cause it to hit tree branches near the edge.
Thus, robust navigation is precluded with just 3 categories,
because of the difficulty of resolving the ambiguity of
needing to turn to correct an orientation error, and needing
to fly in a non-straight path to correct a lateral offset error.

Training DNNs requires large amounts of data. Our ap-
proach to training the 6-category DNN applies principles
of transfer learning. We first trained a 3-category DNN to
predict view orientation (left / center / right), see Figure 3,
using the IDSIA Swiss Alps trail dataset available from [13].
This dataset includes footage of hikes recorded by 3 cameras
(aimed left 30◦, straight, and right 30◦), with enough cross-
seasonal and landscape variety to train all but the lateral
offset layers of our network.

To train the rest of the network, we used a dataset of our
own collected in the Pacific Northwest using the 3-camera
rig shown in Figure 4, in which GoPro cameras (120◦ ×
90◦ FOV) were mounted on a 1 meter bar (so the distance
between adjacent cameras was 0.5 m). Utilizing a Segway
MiniPro, we gathered data over several trails by recording
video footage of all cameras simultaneously as the Segway
was driven along the middle of the trail. The videos were
cropped to 60◦ horizontal FOV and used to train the second
3-category head of the network used to predict lateral offset
(left / center / right), while freezing all the other weights.2

Note that, unlike the rig used in [13], the wide baseline
between our cameras (similar to the work of [4]) enables the

2Originally we created, from each of the 3 physical cameras, 3 virtual
60◦ horizontal FOV cameras aimed left, straight, and right. This yielded 9
simultaneous videos covering the 3 lateral positions and 3 orientations for
each trail. Although these data could be used to train the full 6-category
network, we found it sufficient to use only the 3 central views to train
the lateral offset layer, and moreover, the approach outlined here better
demonstrates the network’s ability to generalize across different locales.



Fig. 4. Three-camera wide-baseline rig used to gather training data in
the Pacific Northwest. Note that, unlike the rig used in [13], the lateral
separation between cameras in this rig allows the network to determine the
lateral offset of the MAV. The baseline between the left and right cameras
is 1 m, and the center camera is within 0.5 cm of the midpoint.

network to disambiguate lateral offset from view orientation.
During training, we use a typical data augmentation

pipeline: random horizontal flips (with appropriate label
changes); random contrast (0.2 radius), brightness (0.2 ra-
dius), saturation (0.4 radius), sharpness (0.3 radius) and jitter
with random permutations of these transformations; random
scale jitter (min: 0.9, max: 1.2); random rotations (max abs
angle: 15); and random crops.

We experimented with different loss functions. The most
robust results were obtained using the following loss func-
tion:

L = −
∑
i

pi ln(yi)︸ ︷︷ ︸
cross entropy

−λ1(−
∑
i

yi ln(yi))︸ ︷︷ ︸
entropy reward

+λ2φ(y)︸ ︷︷ ︸
side swap

penalty

(1)

where pi and yi are the smoothed ground truth label and
network prediction of category i ∈ {left , center , right},
respectively, y is a 3-element vector containing all yi, λ1 and
λ2 are scalar weights, and the side swap penalty penalizes
gross mistakes (i.e., swapping left and right):

φ(y) =


yleft if î = right

yright if î = left

0 if î = center

(2)

where î = argmaxi pi is the ground truth category. This loss
function is used for training both the view orientation and
lateral offset heads of the network.3 Label smoothing [32] in
the first term and the entropy reward term [21] together help
reduce overconfident behavior of the network, which proved
to be critical to stable flight.

We created a novel controller to mix probabilistic DNN
predictions. This design simplifies transforming DNN predic-
tions into flight commands. Each time our trail DNN sends its
prediction, the controller computes a small counterclockwise
turning angle α by

α = β1(y
vo
right − yvoleft) + β2(y

`o
right − y`oleft), (3)

which is the weighted sum of differences between the right
and left predictions of the view orientation (vo) and lateral

3The side swap penalty was only used for the lateral offset head. For the
view orientation head, we set φ(y) = 0 because it was not needed.

Fig. 5. People on the trail detected by YOLO running on board the MAV.

offset (`o) heads of the network, where β1 and β2 are scalar
angle parameters that control turning speed. We set β1 =
β2 = 10◦. Once the turn angle is known, we compute a new
waypoint located some distance in front of the MAV and at a
turn angle relative to MAV’s body frame. The distance to the
waypoint affects the vehicle’s speed. We set the orientation to
face the new waypoint direction. The waypoint is converted
to the inertial frame and sent (with a fixed distance to the
ground) to MAVROS module for PX4 flight plan execution.

B. Object detection with DNN

For safety, it is important for the system not to collide with
objects such as people, cars, animals, and so on. The object
detection DNN is responsible for detecting such objects,
which may not be visible to the SLAM system (described in
the next section) if they are independently moving. For each
detected object, the network provides bounding box image
coordinates. When the box size exceeds a threshold percent-
age of the image frame, the controls from Equation (3) are
overridden to cause the MAV to stop and hover. We explored
several popular object detection DNN architectures:

• R-CNN with fast variants [12]. Unfortunately, these are
not a viable option to run in real time on the Jetson
TX1.

• SSD [35] is a single shot, fast, and accurate network.
However, it uses custom layers which are not currently
supported by TensorRT and therefore cannot run effi-
ciently on Jetson TX1.

• YOLO [25] (and the more recent version [36]) is single
shot, fast, and accurate. The original YOLO DNN uses
some features (like leaky ReLU activations) which are
not currently supported by TensorRT, or features like
batch normalization which are not supported in 16-bit
floating-point mode (FP16).

As a result, the network that we have chosen to use
for object detection is based on YOLO [25] with small
modifications to allow efficient execution using FP16 mode
of TensorRT on Jetson TX1. We retrained the network on
the PASCAL VOC dataset, which is the same dataset used
in the original YOLO. An example of the YOLO output on
an image from the camera is shown in Figure 5.



C. Obstacle detection and avoidance with Monocular SLAM

In addition to higher-level navigation tasks such as trail
following and semantic object detection, an autonomous
MAV must be able to quickly detect and avoid obstacles in
its path, even if these obstacles have never been seen before
(and hence not available for training). Such obstacles can be
static, such as trees or walls, or dynamic, such as people,
animals, or moving vehicles. For safety reasons, the system
should be robust in the presence of complex, highly dynamic
environments such as forest trails, and in the face of changes
in lighting, shadows, and pose.

One approach to low-level obstacle detection is traditional
stereo-based matching. However, motivated by the desire
to develop a system that could eventually be miniaturized,
as well as to minimize system complexity, we focused on
monocular techniques. A number of depth-from-single-image
techniques have been developed over the years using both
traditional machine learning [20], [28] as well as more recent
deep learning methods [7], [19]. Other approaches have
been developed that estimate depth using a monocular video
stream [23], [34].

For this work, we chose to use the direct sparse odometry
(DSO) method described in [8]. DSO computes semi-dense
3D maps of the environment and is computationally efficient.
We used the open-source version of this code, which we
adapted to run efficiently on the ARM architecture of the
Jetson TX1. On this platform, DSO provides 30 Hz updates
to the camera pose estimates as well as the depth image,
and updates its keyframes at between 2 and 4 Hz. Figure 6
shows an example image from the forward-facing camera,
along with a pseudocolored depth map computed by DSO.

During flight, DSO provides an estimate of the camera’s
global pose xdso and an inverse depth image Idso. Using the
rectified camera intrinsics, we convert Idso into a 3D point
cloud in the local space of the camera. To use these points
for navigation or obstacle detection, we must put them in
the MAV’s frame of reference, including proper metric scale.
This similarity transform is determined using the odometry
information provided by the MAV’s other sensors.

Specifically, at any given time PX4FLOW + Pixhawk is
used to generate an estimate of the current pose (xmav) of
the vehicle in the inertial frame. When the visual odometry
system provides an xdso, Idso pair, we associate it with the
latest pose. Once several of these measurement pairs have
been generated, Procrustes analysis is used to generate the
rigid similarity transformation between the MAV’s frame of
reference and that of the visual odometry measurements. This
transform is then used to put the points extracted from Idso
into the MAV’s frame of reference, where we can then detect
nearby objects. The set of measurement pairs (xdso paired
with xmav) is updated when the MAV’s motion generates
sufficient parallax. These pairs are kept in a circular buffer,
so eventually older measurements are discarded in favor of
new ones. This moving window has the effect of potentially
changing the metric scale over time, but more importantly it
allows the system to be robust to measurement error and

Fig. 6. An image (left) from the on-board camera, and the sparse depth
map (right) from DSO, using a jet color map (red is close, blue is far).

Fig. 7. Estimating absolute distance by aligning the DSO and MAVROS
poses using Procrustes analysis. After several seconds, the estimation settles
to the ground truth value. Shown are the mean and ±1σ from five trials.

avoid pathological initializations. An experiment showing
metric depth estimation is illustrated in Figure 7.

V. EXPERIMENTAL RESULTS

A. DNN comparison

In developing our trail detection network, we explored
several architectures: ResNet-18 [14], SqueezeNet [16], a
miniatured version4 of AlexNet [17], the DNN architecture
of Giusti et al. [13],5 and our final TrailNet architecture.6

After much experimentation, we settled on the proposed
architecture due primarily to its ability to achieve reliable
autonomous flight over long distances. Other important crite-
ria in comparing architectures included accuracy in category
predictions, computational efficiency, and power efficiency.

Table I compares the different network architectures. All
architectures output 6 categories (that is, 3 probabilities for
view orientation and 3 probabilities for lateral offset), except
for Giusti et al. [13], which only outputs 3 categories. For
quantitative comparison, we used the IDSIA trail dataset [13]
collected on Swiss Alps forest trails. Since details on dataset
preparation are not provided in [13], we have chosen to use
trails 001, 002, 004, 007, 009 for training and 003, 008 and
010 for testing. As the number of images is different in each
trail, we used undersampling and oversampling to balance
the dataset.

Note that the classification accuracy on the dataset does
not necessarily correlate with the closed-loop system’s abil-
ity to navigate autonomously. Autonomy was measured by
the percentage of time that the MAV did not need to be
overridden by a human operator to prevent collision with
trees/bushes on either side of the trail as the MAV flew along

4To fit onto the TX1, several layers of AlexNet were removed.
5Our implementation of the Giusti et al. DNN replaces tanh with ReLU,

which significantly improves training speed with no loss in accuracy.
6In early experiments we also tried VGGNet-16 [31], but the network

was too large to fit onto the TX1.



Fig. 8. Top-down view of a 250 meters drone trajectory (red) through the
forest, with 3D map overlaid (gray dots) generated by DSO SLAM.

a specific 250 m trail in the Pacific Northwest that was not
encountered during our data collection. This same trail was
used to test each network. Only our TrailNet was able to
fly autonomously through the entire 250 m trail, despite that
it did not achieve the highest classification accuracy on the
offline dataset.

B. Autonomous trail following

We tested our TrailNet system by autonomously navigat-
ing in several different environments, including a 100 m
fairly straight forest trail, a 250 m zigzag forest trail with
6 turns (the same trail used in the experiments above), a
1 km zigzag forest trail over hilly terrain, and a straight trail
in an open field. The latter trail was particularly difficult
to detect due to lack of defining features with respect to
the surrounding grass. The trails were approximately 1.5 m
wide, and the height ranged from 1 to 2 m. Figure 8 shows
a trajectory through the zigzag trail.

One surprising discovery was that an overconfident net-
work actually performs worse in practice than one that
provides less confident predictions. Our original network
yielded 0.9–0.99 probability for the winning class, leaving
very low probabilities for the remaining classes. As a result,
the MAV delayed turning until too late due to extreme bias
toward flying straight. Essentially, this behavior was caused
by the network overfitting to the training data. To prevent this
overconfident behavior, we added the entropy reward term
and label smoothing to our loss function, Equation (1), which
makes our model less confident and allows the system to mix
predicted probabilities to compute smoother trail direction
angles for better control.

To further demonstrate the improved performance of our
system, we designed an experiment in which the MAV was
flown along a straight trajectory along a 2 m wide trail at
2 m/s speed at 2 m altitude. We disturbed the trajectory
by injecting a rotation to the left or right for 2 seconds,
after which we let the MAV self-correct to fly straight

Fig. 9. Top-down trajectories of MAV (traveling left to right) controlled
by three different DNNs (3-class Giusti et al. DNN [13], 3-class standard
ResNet-18, and our 6-class TrailNet DNN). The MAV was disturbed by
a 2-second rotation at three locations (indicated by arrows). Note that our
network recovered from the disturbances faster than the other networks,
following a nearly straight path.

in order to turn back to the trail. Figure 9 displays the
results of this experiment. A 3-class view orientation-only
standard ResNet-18 performed the worst: The MAV simply
followed the path created by the disturbances, with almost no
noticeable correction. The 3-class Giusti et al. DNN [13] also
struggled to recover in a reasonable amount of time after each
disturbance. In contrast, our 6-class TrailNet DNN allowed
the MAV to quickly return to the straight course after each
disturbance, resulting in a nearly straight trajectory.

All modules run simultaneously on the Jetson TX1. To-
gether, these systems use 80% of the CPU (4 cores) and
100% of the GPU, when running DSO at 30 Hz, TrailNet at
30 Hz, and YOLO at 1 Hz. Note that DSO and the DNNs
are complementary to each other, since the former uses the
CPU, while the latter use the GPU.

VI. CONCLUSION

We have presented an autonomous MAV system that is
capable of navigating forest trails under the canopy using
deep neural networks (DNNs). Our TrailNet DNN improves
upon existing work in the following ways: utilizing shifted
ReLU activation functions for increased accuracy and com-
putational efficiency, incorporating 3 additional categories
via transfer learning to enable the estimation of both lat-
eral offset and view orientation with respect to the trail,
and a novel loss function to prevent overconfidence in the
network. Together, these improvements yield smoother and
more robust control. We also demonstrate the ability to
generate environmental awareness with additional perceptual
modules, including DNN-based object detection and obstacle
detection via monocular visual odometry. All software runs
simultaneously in real time on a Jetson TX1 on board
the MAV. Together, these improvements take us one step
closer toward fully autonomous, safe robotic navigation in
unstructured environments.
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DNN ncat loss terms nlayer nparam ttrain trun accuracy autonomy
Giusti et al. [13] 3 YNN 6 0.6M 2 hr. 2 ms 79% 80%

ResNet-18 6 YNN 18 10M 10 hr. 19 ms∗ 92% 88%
mini AlexNet 6 YNN 7 28M 4 hr. 8 ms 81% 97%
SqueezeNet 6 YYY 19 1.2M 8 hr. 3 ms 86% 98%

TrailNet (ours) 6 YYY 18 10M 13 hr. 11 ms 84% 100%

TABLE I
COMPARISON OF VARIOUS DNN ARCHITECTURES FOR TRAIL FOLLOWING. THE COLUMNS SHOW THE NUMBER OF CATEGORIES (ncat), WHETHER

THE LOSS TERMS (CE/ER/SSP) FROM EQUATION (1) ARE USED, NUMBER OF LAYERS (nlayer ), NUMBER OF PARAMETERS (nparam), TRAINING TIME

(ttrain), PER-FRAME EXECUTION TIME (trun), ACCURACY ON THE IDSIA DATASET, AND AUTONOMY ON A 250 M TRAIL. NOTE THAT OUR

TRAILNET ACHIEVES THE HIGHEST AUTONOMY DESPITE NOT YIELDING THE HIGHEST ACCURACY. ∗ALL MODELS WERE RUN IN FP16 MODE, EXCEPT RESNET-18, WHICH WAS

RUN IN FP32 MODE.
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