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ABSTRACT

Communication-avoiding algorithms have been a subject of grow-

ing interest in the last decade due to the growth of distributed

memory systems and the disproportionate increase of computa-

tional throughput to communication bandwidth. For distributed

1D FFTs, communication costs quickly dominate execution time

as all industry-standard implementations perform three all-to-all

transpositions of the data. In this work, we reformulate an existing

algorithm that employs the Fast Multipole Method to reduce the

communication requirements to approximately a single all-to-all

transpose. We present a detailed and clear implementation strategy

that relies heavily on existing library primitives, demonstrate that

our strategy achieves consistent speed-ups between 1.3x and 2.2x

against cuFFTXT on up to eight NVIDIA Tesla P100 GPUs, and

develop an accurate compute model to analyze the performance

and dependencies of the algorithm.
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1 INTRODUCTION

The cost of communication relative to the speed of computation

on modern architectures has recast how algorithmic innovation

is defined and performed, changing the metrics and goals of effi-

cient algorithms [5]. Communication-avoiding and communication-

reducing algorithms have demanded great interest in the past

decade.

Of particular interest has been the Fast Fourier Transform (FFT),

a staple of mathematical computing as it has been named one of

the most important algorithms of the 20th century [3] (also on

the list, the FMM). Many optimized, production-level implemen-

tations of the FFT exist across nearly all architectures, including

FFTW [10], FFTPACK [22], cuFFT [19], and MKL DFTI [14]. Some

of these libraries also support distributed implementations of the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SC17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5114-0/17/11. . . $15.00

https://doi.org/10.1145/3126908.3126919

FFT, although renewed effort to reduce communication and en-

ergy consumption has spurred research into improving distributed

implementations [2, 11, 18].

In addition, large amount of interest has been invested in the fast

multipole method (FMM) [12, 16, 26], which is particularly suited

for high performance by requiring local dense linear computations

while remaining globally sparse and admitting hierarchical and par-

allelizable computation, reduced communication, and compressed

representations of data and operators. Furthermore, compressed

and dense algorithms of this type often harmoniously improve the

energy-efficiency of the computations as well [17].

In this work, we revisit an algorithm to reduce the communi-

cation required in the Fast Fourier Transform (FFT) by up to 3x

using FMMs and dense linear algebra [8, 15]. The original work

recognized the potential communication savings, but no previous

work has demonstrated these savings can be realized on existing

architectures when compared to optimized FFT libraries. With the

very high compute to communication ratio of NVIDIA’s recently

released DGX-1 node encasing eight NVIDIA Telsa P100 GPUs in-

terconnected with NVLink, the benefits of the FMM-FFT can be

realized with a careful reformulation of the algorithm that relies

heavily on optimized primitives in cuBLAS and cuFFT. The novel

contributions of this work include

• A clear and detailed implementation of the FMM-FFT in

compact tensor notation and identification of stages that can

be evaluated with optimized standard libraries.

• Generalizations of the FMM-FFT, specifically P > G and

B > 2, that allow it to perform efficiently using level-3 BLAS

and optimized FFTs to achieve maximum performance.

• Results demonstrating consistent speed-ups up to 2.14x over

the optimized and industry-standard cuFFTXT library on

NVIDIA Telsa P100 GPUs.

• A performance model and parameter analysis demonstrat-

ing the implementation strategies achieve over 90% of peak

practical performance.

2 RELATEDWORK

Throughout this paper, we refer to Table 1 for notation.

For parallel distributed-memory in-order 1D FFTs, industry-

standard implementations universally use variations of the original

Cooley and Tukey algorithm [4], which rely on factorizations of the

problem size, N = MP , and are detailed well in [25]. The common

distributed memory implementations rely on three all-to-all com-

munication steps (transpositions), which become the bottleneck for

even moderate sized FFTs on modern architectures.

Edelman et al. [8] present an alternative factorization of the

Fourier matrix that requires only a single all-to-all transposition,

but also needs the FMM to retrieve O(N logN ) performance. This

FMM-FFT appears to be a generalization of a previous algorithm
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by Dutt et al. [7] for nonequispaced FFTs, which can be interpreted

as Edelman’s formulation with P = 1. This work was revisited by

Langston et al. [15] where the original Fortran code was updated

with FFTW [10] and some GPU-accelerated computations were

demonstrated. Langston et al. show the communication savings and

provided some insight into the FMMs compute costs and trade-offs,

but a clear and efficient implementation strategy and demonstra-

tion that the algorithm could be competitive to industry-standard

libraries was lacking.

Tang et al. [24] developed an alternative algorithm based on

convolution and oversampling which reduces the communication

requirements to a single all-to-all transposition and a negligible

halo exchange of the oversampled values. Park et al. [20] further

analyze and present results for this method with Intel Xeon Phi

coprocessors.

To our knowledge, the algorithms presented in [24] and [8] are

the only in-order 1D FFTs that require a single all-to-all transposi-

tion while retaining the O(N logN ) asymptotic work complexity.

Both are approximate algorithms, however, and require careful

bounding of the error and choice of parameters.

The FMM-FFT has several distinct advantages, some of which

have been noticed by previous authors and some of which have

been overlooked. Langston et al. notes the ability within the FMM-

FFT to specify the error a priori regardless of the complexity or

distribution of the input as well as the potential for parallelization

of the compute stages within the FMM. Both [15, 24] note the

perceived complexity of the FMM-FFT preventing its adoption and

efficient implementation. Indeed, it remains unclear exactly how the

the FMM-FFT was implemented in [8, 15] and all references to any

standard linear algebra kernels are to matrix-vector products and

GEMV, which are computationally suboptimal for the FMM-FFT.

3 FMM-FFT OVERVIEW

The Fourier matrix of size N is defined by

[FN ]i j = ω
i j
N (1)

where ωN = exp(−2πı/N ). Direct application of the Fourier matrix

would require O(N 2) computations, but the famous FFT applies FN
exactly in O(N logN ) computations via any number of equivalent

matrix factorizations. In a distributed-memory setting, the radix-P
splitting [25] is common and employs the factorizaton

FN = ΠM,P (IM ⊗ FP )ΠP,M TP,M (IP ⊗ FM )ΠM,P

where N = MP , [TP,M ]i j = δi j ω
(i modM )· ⌊i/M ⌋

N is a diagonal ma-

trix of twiddle factors, and ΠM,P is a block-to-cyclic permutation

which acts on êi , the ith column of the identity matrix IN , as

ΠM,P êp+mP = êm+pM
0≤p<P
0≤m<M

The radix-P split FFT is then implemented in six steps:

(1) Transpose P-major toM-major.

(2) Compute P local FFTs of sizeM .

(3) Apply twiddle factors T.
(4) TransposeM-major to P-major.

(5) ComputeM local FFTs of size P .
(6) Transpose P-major toM-major.

Notation Description

N The size of the 1D FFT to perform.

M , P N = MP . The FFT factors of N . There are P FMMs

of sizeM ×M to perform.

G The number of distributed–memory processing ele-

ments.

L, B L ≥ B ≥ 2. The leaf and base level of the FMM trees.

ML ML = M/2L . The number of points per leaf per FMM.

Q The quadrature order of multipole and local expan-

sions.

Mℓ
, Lℓ

The multipole and local expansions at tree level ℓ.

S, T The input (source) and output (target) of the FMMs.

Table 1: Table of notation.

These steps require three transpositions, which in a distributed

setting result in three all-to-all communications between the pro-

cessing elements.

The FMM-FFT [7, 8] instead factorizes the Fourier matrix as

FN = (IP ⊗ FM )ΠM,P (IM ⊗ FP )ΠP,M HP,M ΠM,P

where

HP,M = diag(IM ,C1, . . . ,CP−1)[
Cp

]
mn = ρp

[
cot

( π
M

(n −m) +
π

N
p
)
+ ı

]
and ρp = exp(−ıπp/P) sin(πp/P)/M . Each Cp matrix is a kernel
matrix and can be applied approximately with a periodic 1D FMM.

Rather than perform all three transpositions in the factorization,

we instead consider the matrix ĤM,P = ΠP,M HP,M ΠM,P , which

can be interpreted as performing P − 1 distributed and interleaved

FMMs. A distributed FMM requires communication, but much less

communication than two transpositions. With this view, the dis-

tributed FMM-FFT can then be implemented as

(1) Compute P − 1 distributed FMMs of sizeM ×M .

(2) ComputeM local FFTs of size P .
(3) Transpose P-major toM-major.

(4) Compute P local FFTs of sizeM .

Although it does not appear to be recognized in [8] or [15], we note

that steps (2)–(4) are precisely a distributed 2D FFT of sizeM × P ,
for which efficient implementations exist on many architectures.

Thus, the FMM-FFT is essentially a two-stage computation,

FN = FM,P ĤM,P (2)

where ĤM,P is the interleaved P − 1 distributed periodic 1D FMMs

of sizeM and FM,P is the distributedM × P 2D FFT.

4 FMMS OF THE FMM-FFT

In this section, we detail our implementation strategies and opti-

mizations of the FMMs within the FMM-FFT and refer to Table 1

throughout for notation. The FMMs to perform are one dimensional,

periodic, and uniform with sources and targets located at the in-

tegers. Each FMM computes the action of one cotangent kernel

matrix

[C̃p ]mn = cot

( π
M

(n −m) +
π

N
p
)
.
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The FMM decreases the computational cost of applying a Cp matrix

from O(M2) to O(M) for a fixed user-defined accuracy by partition-

ing the rows and columns hierarchically and applying a low-rank,

implicit representation of the matrix. We use interpolative FMMs of

the form found in [6, 9], but fuse operations so that every stage is a

level-3 BLAS or BLAS-like dense computation, which we express

in tensor notation.

4.1 Tensor Notation

In this work, we rely heavily on efficient means of expressing and

computing dense linear algebra. To these means, we use tensor

notation to compactly represent computations to be performed [21].

An array with multidimensional access,

A[i + j ∗ ldA<1> + k ∗ ldA<2> + ℓ ∗ ldA<3>],

will be written in generalized column-major form as

Ai jkℓ
0≤i<dimA<0>
0≤j<dimA<1>

0≤k<dimA<2>
−1≤ℓ<dimA<3>+1

with the dimensions of each tensor mode included where appro-

priate. For convenience, we allow the last index to also take on

negative values or values larger than dim.
All tensors in this paper are represented compactly, where the

leading dimension of the ith order is precisely the product of the

dimensions of all previous orders,

ldA<i> =
i−1∏
k=0

dimA<k>.

Once the representation of a tensor has been established, we

express tensor contractions in Einstein notation, but also include

the iteration range of each mode involved in the contraction where

appropriate.

Cip j = Aikp Bk jp
0≤i<I
0≤j< J

0≤p<P
0≤k<K

In the above, k is the “contraction index” as it appears in both

tensors on the right, i and j are “row/col indices” as they appear

once on the left and once on the right, and p is a “batch index” as

it appears in all three tensors. We also allow iteration ranges to

take on negative values or values larger than dim, which indicates

overlapping iteration domains or iteration into halo regions.

4.2 FMM Representations

On each processing element, we store the input, the multipole

expansions, the local expansions, and the output of the FMMs.

The input is presumed to be block-partitioned across processing

elements and prescribed to be p-major by the factorization (2).

Furthermore, we require a halo exchange of both end boxes in

order to compute the S2T stage of Section 4.6.

Spmb
0≤p<P
0≤m<ML

−1≤b<2L/G+1

The output is also presumed to be block-partitioned across process-

ing elements and prescribed to be p-major by the factorization (2),

but does not require any halo space.

Tpmb
0≤p<P
0≤m<ML
0≤b<2L/G

We choose to represent the multipole expansions as p-major.

The p = 0 slice of the input does not participate in an FMM (since

C0 = IM ). At each non-base level of the tree, ℓ < B, the multipole

boxes are distributed across the processing elements and a halo

exchange of two boxes on each end is required to compute the M2L

stage of Section 4.7. At the base level of the tree, ℓ = B, the M2L

stage requires all boxes from all processing elements.

Mℓ
pqb

0≤p<P−1
0≤q<Q

−2≤b<2ℓ/G+2
B<ℓ≤L

MB
pqb

0≤p<P−1
0≤q<Q
0≤b<2B

We choose to represent the local expansions as p-major as well. The

local expansion requires no halo space and is partitioned across the

processing elements.

Lℓ
pqb

0≤p<P−1
0≤q<Q
0≤b<2ℓ/G

4.3 Basis Functions

Edelman et al. use an enhanced basis set that requires approximately

two fewer basis functions to acheive a given level of accuracy [8].

This complicates the FMM by making the M2M and L2L operators

depend on the level of the tree. Instead, we use Chebyshev basis

functions to yield a simpler algorithm that requires less precompu-

tation and storage overhead.

Define the Lagrange basis polynomials over the Chebyshev

points of the first kind as

ℓi (z) =
∏

0≤k<Q
k,i

z − zk
zi − zk

with zj = cos

(
(2j + 1)π

2Q

)
.

4.4 S2M and L2T

The outgoing far-field representation (multipole expansion) at the

leaf of the tree is constructed from the sources contained within

that leaf via the S2M stage. At the leaf level, there areML sources

per box per FMM. We map the sources of each leaf box to [−1, 1]

via

sm = −1 +
2m + 1

ML
, 0≤m<ML .

The S2M operator,

S2Mqm = ℓq (sm )
0≤q<Q
0≤m<ML

,

is a matrix that maps input located at the source points sm into

the outgoing multipole coefficients. The same S2M matrix is used

within each FMM and each box, so the S2M stage can be expressed

as the tensor contraction

ML
(p−1)qb = S2Mqm Spmb

1≤p<P
0≤b<2L

0≤q<Q
0≤m<ML

This computation can be performedwith a single call to the BatchedGEMM

primitive, which is a level-3 BLAS extension that is has optimized

parallel implementations as of MKL 11.3β and cuBLAS 4.1 [21].

Similarly, the L2T stage maps incoming local expansion coeffi-

cients to output located at the target points. With the samemapping

of the target points to the interval [−1, 1], the L2T is the transpose

operation of the S2M, but also accumulates with the result of the
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S2T stage:

Tpmb = L2Tmq LL
(p−1)qb + Tpmb

1≤p<P
0≤b<2L

0≤q<Q
0≤m<ML

where

L2Tmq = S2Mqm .

This is also a tensor contraction that can be performed with a single

call to BatchedGEMM.

4.5 M2M and L2L

The multipole coefficients of two sibling boxes are translated and

combined into their parents’ coefficients via the M2M stage. The

representation of the parent box is also a polynomial expansion

over [−1, 1], implying the multipole coefficients of the two child

boxes are located at the Chebyshev nodes scaled to [−1, 0] and [0, 1].

Thus, we define a left (−) and a right (+) operator,

M2M±
qk = ℓq

(
zk ± 1

2

)
and compute

Mℓ
pqb = M2M−

qk M
ℓ+1
pk (2b+0) +M2M+qk M

ℓ+1
pk (2b+1)

for each ℓ = L − 1, . . . ,B. Because the multipole coefficients are

stored p-major, the above tensor contractions can be flattened into

Mℓ
pqb = M2Mqk M

ℓ+1
pk (2b)

0≤p<P−1
0≤b<2ℓ

0≤q<Q
0≤k<2Q

where

M2M =
[
M2M− M2M+

]
.

Each level’s M2M computation can be performed with a single call

to BatchedGEMM.

Similarly, the L2L stage translates the coefficients of a parent box

into each of the child boxes, but will also accumulate this data with

the result of the M2L stage. Performing the same scaled translation

and flattening, the L2L stage is expressed as

Lℓ+1
pq(2b) = L2Lqk Lℓ

pkb + Lℓ+1
pq(2b)

0≤p<P−1
0≤b<2ℓ

0≤q<2Q
0≤k<Q

for each ℓ = B, . . . ,L − 1, where

L2Lqk = M2Mkq .

Each level’s L2L computation can be performed with a single call

to BatchedGEMM.

4.6 S2T

The S2T stage of a periodic 1D FMM applies a block-tridiagonal

submatrix of each Cp matrix by direct multiplication. This is often

expressed as a box interacting with every “neighbor" box, which

can be written as the tensor contraction

Tpib = S2Tpi js Spj(b+s)
0≤i, j<ML

−1≤s≤1
0≤p<P
0≤b<2L/G

where we have defined the S2T tensor as elements of the Cp matri-

ces

S2Tpi js =

{
cot

(
π
M (j − i) + π

2
L s +

π
N p

)
p > 0

δi jδs0 p = 0

This can be simplified by flatting the s and j indices and recog-

nizing the Toeplitz structure. That is, we redefine the S2T tensor

as

S2Tpk =

{
cot

( π
N (p + Pk)

)
p > 0

δk0 p = 0

and perform the equivalent contraction

Tpib = S2Tp(j−i) Spjb
0≤i<ML

−ML ≤j<2ML

0≤p<P
0≤b<2L/G

This can be interpreted as an “interleaved and overlapped convo-

lution”, where every P elements of S participate in up to three

convolutions of length 3ML .

4.7 M2L

The M2L stage of the FMM applies dense matrices by direct multi-

plication to each box of the multilevel tree. Every box receives a

contribution from three non-neighbor “cousin" boxes, which can

be written as

Lℓ
pib = M2Lℓpi js M

ℓ
pj(b+s)

0≤p<P−1
0≤i, j<Q

0≤b<2ℓ
s={−2,2,3} (b even)

s={−3,−2,2} (b odd)

where

M2Lℓpi js = cot

(
π

2
ℓ
(
zj

2

−
zi
2

+ s) +
π

N
(p + 1)

)
.

At the base level, the contraction is performedwith all non-neighbor

boxes,

LB
pib = M2LBpi js M

B
pj(b+s)

0≤p<P−1
0≤i, j<Q

0≤b<2B
2≤s≤2B−2

,

where the indexing inMB
is interpreted cyclically.

Both of these operations are dense and can be implemented with

high computational intensity. We employ the logical structuring

strategies of [23]. For 1D FMMs this amounts to treating sibling

boxes together, along with standard tiling strategies for dense com-

putations to achieve high performance implementations of these

custom operations.

Note that with B = 2, each box at the base level has only one

non-neighbor box. The motivation for the cut-off base level, B ≥ 2,

is the ability to trade the continued replication of the local essential

trees and the latencies of the communication and computations

therein for a single all-to-all gather of the multipole expansions

and a dense computation [13].

4.8 Reduction

The constant ı term in each Cp matrix induces a reduction across

the input for each p > 0,

rp−1 = 1mb Spmb
1≤p<P
0≤m<ML
0≤b<2L

To compute rp more efficiently, we recognize that every column

of the S2M andM2M matrices sum to one by construction. Thus,

these matrices preserve the sum of elements of vectors that they

act on and

rp = 1qb M
B
(p−1)qb

1≤p<P
0≤q<Q
0≤b<2B

This can be computed with a single GEMV on the compressed data

at the base level of the tree.
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4.9 Summary

Algorithm 1 summarizes the steps detailed in Section 4 for per-

forming P − 1 FMMs within the FMM-FFT, followed by the post-

processing and the 2D FFT. Many of these steps have no depen-

dencies and can be executed in parallel. For example, the S2M

overlapped with the S-halo communication, the S2T can be exe-

cuted in parallel with any portion of the far-field computation and

overlapped with theM-communication stages, etc. On GPU, this

parallelism is accomplished with CUDA streams and asynchronous

communication.

Algorithm 1 The FMM-FFT via tensor contractions.

1: ML
(p−1)qb = S2Mqm Spmb // S2M

2: SendRecv S halo. // COMM S

3: Tpib = S2Tp(j−i) Spjb // S2T

4: for ℓ = L − 1, . . . ,B do

5: Mℓ
pqb = M2Mqk M

ℓ+1
pk (2b) // M2M

6: for ℓ = L, . . . ,B − 1 do

7: SendRecvMℓ
halo. // COMM Mℓ

8: Lℓ
pib = M2Lℓpi js M

ℓ
pj(b+s) // M2L-ℓ

9: All-to-all gatherMB
. // COMM MB

10: LB
pib = M2LBpi js M

B
pj(b+s) // M2L-B

11: rp = 1qb M
B
(p−1)qb // REDUCE

12: for ℓ = B, . . . ,L − 1 do

13: Lℓ+1
pq(2b) = L2Lqk Lℓ

pkb + Lℓ+1
pq(2b) // L2L

14: Tpmb = L2Tmq LL
(p−1)qb + Tpmb // L2T

15: Tpmb = ρp (Tpmb + ırp ) // POST

16: FM,P T // 2D FFT

An additional optimization notes that cuFFTXT provides cus-

tomizable input and output callback functions [19] which can be

used to abstract the load and store operations. This is used to fuse

the post-processing stage (Line 15) and the 2D FFT (Line 16), pre-

venting one extra round trip of T through global memory.

5 ANALYSIS

The FMM-FFT of Section 4 is reformulated so that every stage is

implemented as a dense operation with high compute intensity.

Thus, it should admit an accurate roofline model that we may use

to predict the performance of the FMM-FFT.

In computing this model, many of the stages’ floating point

operation count and memory operation count involve sums over

the levels of the tree. For convenience, we define

L−1∑
ℓ=B

⌈
2
ℓ

G

⌉
=

{
2
L/G − 2

B/G B > logG

2
L/G − B − 1 + logG B ≤ logG

≡
2
L

G
−v(B,G) ≡ v(L,B,G).

with the assumption L > logG.

5.1 Flops

Note that each FMM is real-valued and all operators of Section 4

are real-valued. When applied to complex input, the FMM stage

requires only 2x the number of flops. Furthermore, with complex

data layout as array-of-structs of the real and complex components,

the p-major tensor data layout used in Section 4 is such that each

real-complex matrix-matrix multiply can be flattened into a single

real-real matrix-matrix multiply. Let C be 1 if the input is real and

2 if the input is complex. The the total flop count for each stage is

• S2M, L2T: 2CML2
L(P − 1)Q/G.

• M2M, L2L: 4C(2L/G −v(B,G))(P − 1)Q2
.

• S2T: 6CM2

L2
L(P − 1)/G.

• M2L-ℓ: 6C(2L+1/G −v(B + 1,G))(P − 1)Q2
.

• M2L-B: 2C2B (2B − 3)(P − 1)Q2/G.
• Reduce: C2B (P − 1)Q .

Collecting terms and substituting 2
L = N /PML ,

C

[
20

Q2

ML
+ 6ML + 4Q

] (
1 −

1

P

)
N

G

+O
(
C(2B (2B − 3)/G −v(B,G))(P − 1)Q2

)
The first three terms agree precisely with Edelman’s flop count [8]

when P = G, C = 2, and B = 2, but demonstrates the weak de-

pendence on P when P > G. The intuition is that by doubling P ,
the flops of each tensor contraction doubles butM halves and each

FMM requires one less level in the tree. The constants in front of the

last three terms depends on precisely how the top of the tree–when

the number of boxes is less than the number of processes–is han-

dled. We include B ≥ 2 to potentially trade latency/communication

dominated steps at the very top of the tree for a computation domi-

nated M2L between all pairs of non-neighbor boxes. See [13] for

more details on local essential trees in FMMs.

5.2 Communication

We agree with the communication analysis presented in [8, 15].

Each process sends

• S: 2C(P − 1)ML .

• Mℓ
: 4C(L − B)(P − 1)Q .

• MB
: 2

BC(P − 1)Q .
This is extremely small compared to the number of flops performed.

The cost and latency of the communication can be reliably hidden by

overlapping with the FMMs’ computation at the scales considered

in this work.

5.3 Mops

The number of memory reads and writes required by Algorithm 1

in each stage is

• S2M+L2T:

2QML + 3C(P − 1)ML2
L/G + 2C(P − 1)Q2L/G.

• M2M+L2L:

4Q2 + (2 + 1 + 4 + 1)C(P − 1)Q(2L/G −v(B,G)).
• S2T:

4ML(P − 1) + (2L/G + 2 + 2L/G)CML(P − 1).

• M2L-ℓ:

4(P − 1)Q2(L − B) + 2v(L + 1,B + 1,G)C(P − 1)Q .
• M2L-B:
(2B − 3)(P − 1)Q2 + (2B + 2B/G)C(P − 1)Q .

• Reduce:

C(P − 1) +C2B (P − 1)Q .



SC17, November 12–17, 2017, Denver, CO, USA Cris Cecka

Collecting and keeping dominant terms, the total memory opera-

tions is bounded below by

2QML + 4Q
2 + 4PML + PQ

2(4 log
N

MLP
− 4B + 2B − 3)

+C

(
5 + 14

Q

ML

) (
1 −

1

P

)
N

G

+ O(C(2B + 2B/G −v(B,G))(P − 1)Q)

where the first line of terms come from the FMM operators, the sec-

ond line is the reads/write of the input and output of the multipole

and local expansions, and the last term depends on how the top of

the tree is handled.

This count could be further lowered by additional fusion of the

FMM steps. For example, the M2L and L2L stages could be fused

to prevent 1 read and 1 write (2Q/ML of the second line) of the

L data. This, however, requires more modular, composable BLAS

primitives capable of performance on par with cuBLAS.

Note that the PML and PQ2
terms come from the S2T and M2L

operators. As these stages require custom BLAS-like kernels, we

choose to compute the entries of the S2T and M2L operators on-the-

fly rather than reading them from memory. When these operators

are not considered in the mop count, the computational intensity

of the FMMs actually increases with P , providing a computation-

memory trade-off.

5.4 Practical Roofline

The S2M, M2M, L2L, and L2T stages can all be expressed as the level-

3 BLAS primitive BatchedGEMM available in cuBLAS 8.0 which

achieves very high efficiency on the P100 GPU [21]. In Figure 1,

the performance of a pure GEMM of size N 2 × N × N is compared

with the performance of a BatchedGEMM that computes N matrix-

matrix multiplies of size N × N × N .

From the GEMM performance, we define the practical architec-

ture parameters

γf ,K40
= 2.8 TFlop/sec γf ,P100 = 10 TFlop/sec

γd,K40
= 1.2 TFlop/sec γd,P100 = 5 TFlops/sec

βK40 = 100 GByte/sec βP100 = 360 GBytes/sec

and the model minimum wall-time for a computation as

T =W /min(γ , β ∗W /D) (3)

where T is the compute time in seconds,W is the total compute

operation count in TFlops, and D is the total memory operation

count in GBytes.

6 FMM-FFT RESULTS

The experimental setup consists of two systems. Two K40c GPUs

with achieved βK40
= 13.2 GB/s P2P interconnect via PCIe and

eight P100 GPUs with achieved βP100 = 36 GB/s P2P interconnect

via NVLink.

In Figure 2 (top), the profile of the 1D FFT forN = 2
27 = 1.34×108

shows it is severely communication bound–each yellow bar is asyn-

chronous P2P communication–due to the three transposition steps

despite nearly perfect overlap of the communication and computa-

tion. In contrast, the profile of the FMM-FFT in Figure 2 (bottom)

shows a large amount of computation–all the non-yellow kernels–

followed by a 2D FFT which also overlaps significant portions of

the communication and computation. The computation in the FMM

portion of the FMM-FFT is parallelized via CUDA streams and also

overlaps all of the FMM communication.

In total, Figure 2 shows 255 FMMs of size 524k × 524k are com-

puted in 32ms with 35 kernel launches:

• S2M: 1 BatchedGEMM.

• M2M: 10 BatchedGEMMs, one for each level.

• S2T: 1 custom kernel launched 1 time.

• M2L: 1 custom kernel launched 11 times.

• Reduce: 1 GEMV.

• L2L: 10 BatchedGEMMs, one for each level.

• L2T: 1 BatchedGEMM.

For large N , the data transpositions dominate the performance

of the 1D and 2D FFTs. The FMM-FFT saves two transpositions and

the theoretical cross-over point can be approximated in terms of

the architecture parameters

β

min(γ , β ·W /D)
=

N

W

For large N on P100, this ratio is computed to be approximately

0.031 byte/flop, which agrees well with 0.036 computed in [8]. With

the architecture parameters from Section 5.4, the communication

to flop ratio of the K40c system is approximately 0.0012 byte/flop

and the P100 system is approximately 0.0009 byte/flop. However,

the model intensity for the FMM-FFT in this regime is only 7.8

flops/byte in double precision, so the roofline peak performance

is only 2.7 TFlops in double-precision on P100. That is, the FMM

stage remains slightly memory bound and the true predictor of

success is not the communication to computation ratio but rather

the communication to memory bandwidth ratio and the expected

computational intensity. Regardless, the memory bandwidth to

communication ratios are increasing in addition to computation to

communication ratios, so algorithms such as the FMM-FFT remain

likely to become increasingly important.

6.1 Performance

The FMM-FFT is executed in single, double, single-complex, and

double-complex precision on each system and for each set of ad-

missible parameters. Figure 3 reports the performance of the fastest

FMM-FFT normalized to the performance of the 1D FFT from

cuFFTXT on the same architecture and input. All reported results

achieve less than 4 × 10
−7

relative ℓ2 error in single-complex preci-

sion and 2 × 10
−14

relative ℓ2 error in double-complex precision.

On 2xK40c GPUs, the FMM-FFT is only marginally faster than

the 1D FFT from cuFFTXT. This is due to the smaller architecture

parameter ratios and the performance deficits of BatchedGEMM

within cuBLAS 8.0 documented in Section 5.4. On 2xP100, the FMM-

FFT realizes significant gains of 1.3x over the 1D FFT for large N in

both single and double-precision. On 8xP100, the FMM computation

is scaled nearly perfectly, but the FFT communication scales more

poorly, allowing the FMM-FFT to achieve approximately 2.1x over

the 1D FFT.

Interpreting the FMMs as a method for converting between a 2D

FFT and a 1D FFT, the black bar indicates the budget of time that the

FMMs have to work within. In optimized FFT libraries, distributed
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Figure 1: The performance of cuBLAS GEMM and BatchedGEMM on the K40c and P100 GPUs. The FMM-FFT relies heavily

on the performance of BatchedGEMM and the roofline model predicts the maximum performance of a computation from

its computational intensity. The roofline architecture parameters defined in Section 5.4 are overlaid in each plot.

Figure 2: Performance profiles of the in-order, double-complex 1D FFT from cuFFTXT (top) and the FMM-FFT (bottom) with

N = 2
27

on 2xP100 GPUs connected via NVLINK. The yellow is asynchronous communication and all other kernels are com-

pute. The FMM-FFT uses parameters P = 256,ML = 64,B = 3,Q = 16. Each profile shows only one of the two GPUs for brevity.

2D FFTs often achieve nearly 3x performance of distributed 1D FFTs

precisely due to the avoidance of two of the three transpositions [10,

11].

The red bar indicates the maximum practical speed-up over the

1D FFT that can be achieved with Algorithm 1 predicted by the

roofline model of Section 5.4. For N ≲ 2
21
, the performance of the

distributed 1D and 2D FFTs in cuFFTXT is latency and synchroniza-

tion bound, which also causes the roofline model to fail as latency is

not taken into account. Regardless, the FMM-FFT still outperforms

the 1D FFT in this regime as it has fewer synchronizations and

fewer kernel launches for small N . For large N , the roofline model

becomes an effective predictor of performance and we use it in the

next section to provide a more complete view of the FMM-FFT as a

function of each of its parameters.

6.2 Component Efficiency

Figure 4 shows the breakdown of the time spent in each kernel of

the double-complex FMM stage on 2xP100. When N is small and

performance is dominated by latency, the fastest FMM-FFT also

minimizes the total number of kernel launches by keeping L = B,
which requires the M2L-B and S2T stages to perform the majority

of the computation. When N is large, the M2L-B stage is negligible

and the time is dominated by BatchedGEMM and the S2T stage.

This is a significant divergence from most FMM studies where the

M2L and S2T stages are the most expensive and balancing their

costs is primary.
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Figure 4: The fraction of time spent in each kernel of the

double-complex FMMstage on 2xP100. The BatchedGEMM

and S2T kernels dominate performance for large N .

To demonstrate the benefits of our implementation strategy,

Figure 5 plots the efficiency of each stage of the FMM, the entire
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Figure 3: Speedup of the FMM-FFT over the 1D FFT from cuFFTXT, NVIDIA’s multi-GPU FFT library. For each N , only the

fastest FMM-FFT found by searching the parameter space is reported along with its peak practical performance from the

roofline model and 2D FFT stage.
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FFT efficiency, we assume the measured 2D FFT implementation is 100% efficient, indicating the gains that can be achieved by

optimizing the FMM stage only.

FMM stage, and the entire FMM-FFT. The efficiency is computed as

the ratio of the roofline minimum wall-time, Equation (3), for that

stage to the measured time spent in that stage. The M2L-B stage

appears to consistently be the most inefficient but negligible for

large N , while the BatchedGEMM stage is the most efficient and

critical for large N . The implementations of the M2L-ℓ and S2T

appear to achieve approximately 60% of their peak performance,

which is about expected for dense linear kernels implemented in

CUDA rather than assembly [1].

For the full FMM-FFT efficiency, we’ve assume the 2D FFT is

100% efficient in order to highlight the gains that could be achieved

by further optimizing the FMM stage. The FMM-FFT is achieving

approximately 90% of its peak performance and optimizing the

FMM stage is a practice of significantly diminishing returns. Instead,

further optimizations should be performed on the 2D FFT itself.
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Additional kernel fusion optimizations within Algorithm 1 that

reduce the total memory operations are likely to have the highest

impact on the performance of the FMM stage rather than further

optimizing the S2T and M2L stages.

6.3 Parameter Dependence

In the following sections, we investigate each parameter of the

FMM-FFT independently using the roofline model constructed in

Section 5 and measured performance.

6.3.1 ML Dependence. The performance of the FMM-FFT strongly

depends onML , the number of points per leaf box per FMM, by con-

trolling the amount of computation that the near-field and far-field

stages each perform. The computational cost of the S2T stage for

constant N grows withM2

L2
L = MLN /P while the computational

cost of the far-field decreases with 2
L = N /MLP as the depth of

the tree decreases.

Edelman et al. [8] and Langston et al. [15] count the number of

floating point operations in the near-field and far-field as a function

of ML to minimize the computation performed and balance the

costs. However, the number of operations performed is not directly

proportional to performance in this case. IncreasingML causes the

total operation count of the S2T stage to increase but also increases

its computational intensity. The total operation count of the far-field

stages decrease, but the computational intensity remains nearly the

same (only the S2M and L2T gain a small amount of intensity).

In Figure 6, we plot the total operation count of the FMM stage

as a function ofML for N = 1.34 × 10
8
, P = 256, B = 3, G = 2 and

compare with the performance predicted by the roofline model. As

shown, the optimal ML for performance is higher than would be

predicted by the flop count and measured performance agrees with

the model. Most of the large-N cases in this paper use ML = 64

rather thanML = 32 as in [8, 15].
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Figure 6: Dependence onML of the performance of the FMM

stage with N = 2
27, P = 256,B = 3,G = 2.

6.3.2 P Dependence. The performance of the FMM-FFT depends

more weakly on P , the number of FMMs to be performed. Increasing

P with constant N does not significantly change the total operation

count except at the very top of the tree. Furthermore, increasing

P does not significantly change the computational intensity of the

FMM stage either.

The largest influence that P has on performance comes from

the FFT and secondarily from the BatchedGEMM. 2D FFTs are

often optimized for square cases [10, 11, 19] where the computation

and communication can be more effectively overlapped. Figure 7

demonstrates this by plotting the flop count, model time, and mea-

sured cuFFTXT 2D FFT time as a function of P for N = 1.34 × 10
8

with ML = 64, B = 3, G = 2. For large aspect ratios, the 2D FFT

performance is approximately 3x slower than for more square cases.

In fact, cuFFTXT rejects 2D FFTs with one dimension less than 32.

The measured FMM time does not include the post-processing or

2D FFT stages. As expected, the performance is stable as P increases

and agrees with model performance. The small performance degra-

dation when P = 32 is primarily due to the resulting small GEMM

sizes–the number of rows in each BatchedGEMM is only 62 in

that case.

Thus, even though very small P is favored by the analysis, mod-

erate or large P is favored in practice when using tuned BLAS and

2D FFT libraries.

6.3.3 B Dependence. Despite the analysis, for large N the de-

pendence of performance on B is weaker than might be expected.

In Figure 8, we plot the total operation count and the performance

predicted by the roofline model as a function of B for N = 1.34×108

with P = 256, ML = 64, and G = 2. Only for B ≥ 11 does the in-

creased floating point operations at the base level begin to affect

the performance.

Therefore, B > 2 can be used to effectively combat local essential

tree replication and latency for small and moderate numbers of

processing elements without negatively impacting performance.
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Figure 7: Dependence on P of the performance of the FMM

stagewithN = 2
27,ML = 64,B = 3,G = 2. Small P degrades the

performance of the 2D FFT as well as the BatchedGEMM.
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Figure 8: Dependence on B of the performance of the FMM

stage with N = 2
27, P = 256,ML = 64,G = 2.

6.3.4 Q Dependence. The Q parameter controls the expansion

order of the FMM stage. Figure 9 (top) shows the relatively weak

dependence of the flop count and model performance on Q . We do

not show measured performance for the FMMs here because the
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M2L kernel was tuned statically with Q = 16 for double-precision

and Q = 8 for single-precision.

Figure 9 (bottom) demonstrates the achieved accuracy of the

full double-complex FMM-FFT as a function of Q as compared

to the 1D FFT from cuFFTXT in the relative ℓ2 norm with each

component generated uniformly in [−1, 1]. We observe the same

odd-even behavior as Edelman et al. [8], but report an extra digit of

accuracy, likely due to Edelman reporting the maximum error over

all FMMs rather than the error of the full FMM-FFT. We find that

accuracy is not improved for increasingQ above 18 due to machine

precision and roundoff error.

FFTs that produce less accurate results are then potentially faster

by 1.5x. Whether this can be realized practically–whether the ef-

ficiency of the BatchedGEMMs and M2L holds in this regime–

remains to be seen.
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Figure 9: (Top) Dependence on Q of the performance of the

FMMs with N = 2
28, P = 128,ML = 64,B = 3,G = 2. (Bottom)

Dependence on Q of the accuracy of the FMM-FFT.

7 CONCLUSION

Wehave presented a reformulation of the low-communication FMM-

accelerated in-order 1D FFT from [8], detailed a clear and efficient

algorithm to compute it, and demonstrated its success on 2xK40c

and up to 8xP100 GPUs. To our knowledge, this is the first imple-

mentation that consistently outperforms a vendor-provided and

industry-standard FFT library. To accomplish this, each stage of the

FMM is presented as a dense tensor contraction to be computedwith

high intensity kernels. All but two of the stages of the FMM-FFT

can be computed with existing optimized linear algebra primitives.

Due to the reliance on dense computations, we show a roofline

model accurately predicts the performance of the FMM-FFT, which

we use to analyze performance with respect to each parameter.

We measure up to 2.14x performance increase over cuFFTXT on

8xP100 GPUs. Because the implementation strategy in this work re-

lies heavily on standard primitives, the algorithm is highly portable

across architectures.

Further optimizations include exploiting additional symmetries

of the operatorsM2L, S2T ,M2M , and S2M to further reduce mem-

ory requirements and floating point operations, kernel fusion to

reduce memory operations, and the use of more highly optimized

2D FFTs.

The results presented in this paper are all performed on a single

node with GPUs connected by PCIe or NVLINK. Extending the

results to multiple nodes is necessary and the reliance on standard

primitives makes this much easier. In addition, the performance on

multiple nodes is very likely to improve relative performance and

energy efficiency due to higher internode communication costs.
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