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Abstract—As technology scales to lower feature sizes, devices
become more susceptible to soft errors. Soft errors can lead
to silent data corruptions (SDCs), seriously compromising the
reliability of a system. Traditional hardware-only techniques
to avoid SDCs are energy hungry, and hence not suitable
for commodity systems. Researchers have proposed selective
software-based protection techniques to tolerate hardware faults
at lower costs. However, these techniques either use expensive
fault injection or inaccurate analytical models to determine which
parts of a program must be protected for preventing SDCs.
In this work, we construct a three-level model, TRIDENT, that
captures error propagation at the static data dependency, control-
flow and memory levels, based on empirical observations of
error propagations in programs. TRIDENT is implemented as
a compiler module, and it can predict both the overall SDC
probability of a given program and the SDC probabilities of
individual instructions, without fault injection. We find that
TRIDENT is nearly as accurate as fault injection and it is
much faster and more scalable. We also demonstrate the use of
TRIDENT to guide selective instruction duplication to efficiently
mitigate SDCs under a given performance overhead bound.

Keywords—Error Propagation, Soft Error, Silent Data Corrup-
tion, Error Resilience, Program Analysis

I. INTRODUCTION

Transient hardware faults (i.e., soft errors) are predicted to
increase in future computer systems due to growing system
scale, progressive technology scaling, and lowering operating
voltages [26]. In the past, such faults were masked through
hardware-only solutions such as redundancy and voltage guard
bands. However, these techniques are becoming increasingly
challenging to deploy as they consume significant amounts of
energy, and as energy is becoming a first-class constraint in
processor design [6]. Therefore, researchers have postulated
that future processors will expose hardware faults to the
software and expect the software to tolerate them [24].

One consequence of such hardware errors is incorrect
program output, or silent data corruptions (SDCs), which are
very difficult to detect and can hence have severe conse-
quences [26]. Studies have shown that a small fraction of
the program states are responsible for almost all the error
propagations resulting in SDCs, and so one can selectively
protect these states to meet the target SDC probability while
incurring lower energy and performance costs than full dupli-
cation techniques [10], [27]. Therefore, in the development
of fault-tolerant applications (Figure 1a), it is important to
estimate the SDC probability of a program – both in the
aggregate, and on an individual instruction basis - to decide
whether protection is required, and if so, to selectively protect
the SDC-causing states of the program. This is the goal of our
work.

Fault Injection (FI) has been commonly employed to esti-
mate the SDC probabilities of programs. FI involves perturbing
the program state to emulate the effect of a hardware fault
and executing the program to completion to determine if
the fault caused an SDC. However, real-world programs may
consist of billions of dynamic instructions, and even a single
execution of the program may take a long time. Performing
thousands of FIs to get statistically meaningful results for each
instruction takes too much time to be practical [13], [14]. As a
result, researchers have attempted to analytically model error
propagation to identify vulnerable instructions [10], [21], [27].
The main advantage of these analytical models is scalability,
as the models usually do not require FIs, and they are fast to
execute. However, most existing models suffer from a lack
of accuracy, as they are limited to modeling faults in the
normal (i.e., fault-free) control-flow path of the program. Since
program execution is dynamic in nature, a fault can propagate
to not only the data-dependencies of an instruction, but also to
the subsequent branches (i.e., control flow) and memory loca-
tions that are dependent on it. This causes deviation from the
predicted propagation, leading to inaccuracies. Unfortunately,
tracking the deviation in control-flow and memory locations
due to a fault often leads to state space explosion.
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Fig. 1: Development of Fault-Tolerant Applications

This paper proposes a model, TRIDENT, for tracking error
propagation in programs that addresses the above two chal-
lenges. The key insight in TRIDENT is that error propagation
in dynamic execution can be decomposed into a combination
of individual modules, each of which can be abstracted into
probabilistic events. TRIDENT can predict both the overall
SDC probability of a program and the SDC probability of
individual instructions based on dynamic and static analysis of
the program without performing FI. We implement TRIDENT
in the LLVM compiler [17] and evaluate its accuracy and
scalability vis-a-vis FI. To the best of our knowledge, we are
the first to propose a model to estimate the SDC probability
of individual instructions and the entire program without
performing any FIs.



Our main contributions in this paper are as follows:

• Propose TRIDENT, a three-level model for tracking
error propagation in programs. The levels are static-
instruction, control-flow and memory levels, and they
build on each other. The three-level model abstracts
the data-flow of programs in the presence of faults.

• Compare the accuracy and scalability of TRIDENT
with FI, to predict the SDC probability of individual
instructions and that of the entire program.

• Demonstrate the use of TRIDENT to guide selective
instruction duplication for configurable protection of
programs from SDCs under a performance overhead.

The results of our experimental evaluation are as follows:

• The predictions of SDC probabilities using TRIDENT
are statistically indistinguishable from those obtained
through FI, both for the overall program and for
individual instructions. On average, the overall SDC
probability predicted by TRIDENT is 14.83% while the
FI measured value is 13.59% across 11 programs.

• We also create two simpler models to show the impor-
tance of modeling control-flow divergence and mem-
ory dependencies - the first model considers neither,
while the second considers control-flow divergence but
not memory dependencies. The two simpler models
predict the average SDC probabilities across programs
as 33.85% and 23.76% respectively, which is much
higher than the FI results.

• Compared to FI, whose cost is proportional to the
number of injections, TRIDENT incurs a fixed cost,
and a small incremental cost for each instruction
sampled in the program. For example, TRIDENT takes
about 16 minutes to calculate the individual SDC
probabilities of about 1,000 static instructions, which
is significantly faster than the corresponding FI exper-
iments (which often take hours or even days).

• Using TRIDENT to guide selective instruction dupli-
cation reduces the overall SDC probability by 65%
and 90% at 11.78% and 23.31% performance over-
heads, respectively (these represent 1/3rd and 2/3rd
of the full-duplication overhead for the programs
respectively). These reductions are higher than the
corresponding ones obtained using the simpler models.

II. BACKGROUND

In this section, we first present our fault model, then define
the terms we use and the compiler infrastructure we work with.

A. Fault Model

In this paper, we consider transient hardware faults that
occur in the computational elements of the processor, including
pipeline registers and functional units. We do not consider
faults in the memory or caches, as we assume that these
are protected with error correction code (ECC). Likewise, we
do not consider faults in the processor’s control logic as we
assume that it is protected. Neither do we consider faults in the
instructions’ encodings. Finally, we assume that the program

does not jump to arbitrary illegal addresses due to faults during
the execution, as this can be detected by control-flow checking
techniques [23]. However, the program may take a faulty legal
branch (the execution path is legal but the branch direction can
be wrong due to faults propagating to it). Our fault model is
in line with other work in the area [7], [10], [13], [21].

B. Terms and Definitions

Fault Occurrence: The event corresponding to the occur-
rence of a hardware fault in the processor. The fault may or
may not result in an error.

Fault Activation: The event corresponding to the mani-
festation of the fault to the software, i.e., the fault becomes
an error and corrupts some portion of the software state (e.g.,
register, memory location). The error may or may not result
in a failure (i.e., SDC, crash or hang).

Crash: The raising of a hardware trap or exception due to
the error, because the program attempted to perform an action
it should not have (e.g., read outside its memory segments).
The OS terminates the program as a result.

Silent Data Corruption (SDC): A mismatch between
the output of a faulty program run and that of an error-free
execution of the program.

Benign Faults: Program output matches that of the error-
free execution even though a fault occurred during its execu-
tion. This means either the fault was masked or overwritten
by the program.

Error propagation: Error propagation means that the fault
was activated, and has affected some other portion of the
program state, say ’X’. In this case, we say the fault has
propagated to state X. We focus on the faults that affect the
program state and therefore consider error propagation at the
application level.

SDC Probability: We define the SDC probability as the
probability of an SDC given that the fault was activated – other
work uses a similar definition [10], [14], [18], [30].

C. LLVM Compiler

In this paper, we use the LLVM compiler [17] to perform
our program analysis and FI experiments and to implement
our model. Our choice of LLVM is motivated by three reasons.
First, LLVM uses a typed intermediate representation (IR) that
can easily represent source-level constructs. In particular, it
preserves the names of variables and functions, which makes
source mapping feasible. This allows us to perform a fine-
grained analysis of which program locations cause certain
failures and map them to the source code. Second, LLVM
IR is a platform-neutral representation that abstracts out many
low-level details of the hardware and assembly language.
This greatly aids in portability of our analysis to different
architectures and simplifies the handling of the special cases
in different assembly language formats. Finally, LLVM IR has
been shown to be accurate for doing FI studies [30], and there
are many fault injectors developed for LLVM [3], [20], [25],
[30]. Many of the papers we compare our technique with in
this paper also use LLVM infrastructure [9], [10]. Therefore,
in this paper, when we say instruction, we mean an instruction
at the LLVM IR level.



III. THE CHALLENGE

We use the code example in Figure 2a to explain the main
challenge of modeling error propagation in programs. The code
is from Pathfinder [5], though we make minor modifications
for clarity and remove some irrelevant parts. The figure shows
the control-flow graphs (CFGs) of two functions: init() and
run(). There is a loop in each function: the one in init()
updates an array, and the one in run() reads the array for
processing. The two functions init() and run() are called in
order at runtime. In the CFGs, each box is a basic block
and each arrow indicates a possible execution path. In each
basic block, there is a sequence of statically data-dependent
instructions, or a static data-dependent instruction sequence.

Assume that a fault occurs at the instruction writing to $1
in the first basic block in init(). The fault propagates along
its static data-dependent instruction sequence (from load to
cmp). At the end of the sequence, if the fault propagates to the
result of the comparison instruction, it will go beyond the static
data dependency and cause the control-flow of the program to
deviate from the fault-free execution. For example, in the fault-
free execution, the T branch is supposed to be taken, but due
to the fault, the F branch is taken. Consequently, the basic
blocks under the T branch including the store instruction will
not be executed, whereas subsequent basic blocks dominated
by the F branch will be executed. This will load the wrong
value in run(), and hence the fault will continue to propagate
and it may reach the program’s output resulting in an SDC.

We identify the following three challenges in modeling
error propagation: (1) Statically modeling error propagation
in dynamic program execution requires a model that abstracts
the program data-flow in the presence of faults. (2) Due to the
random nature of soft errors, a fault may be activated at any
dynamic branch and cause control-flow divergence in execu-
tion from the fault-free execution. In any divergence, there are
numerous possible execution paths the program may take, and
tracking all of these paths is challenging. One can emulate all
possible paths among the dynamic executions at every dynamic
branch and figure out which fault propagates where in each
case. However, this rapidly leads to state space explosion. (3)
Faults may corrupt memory locations and hence continue to
propagate through memory operations. Faulty memory values
can be read by (multiple) load instructions at runtime and
written to other memory locations as execution progresses.
There are enormous numbers of store and load instructions
in a typical program execution, and tracing error propagations
among these memory dependencies requires constructing a
huge data dependency graph, which is very expensive.

$1 = load …

cmp gt $1, 0
TF

… ...

load …
store …

… ...

init() run()

(a) Example of Propagation

bb7

$0 = load …

$1 = add $0, 1

cmp gt $1, 0

…

INDEX 1 (1, 0, 0)

INDEX 2 (1, 0, 0)

INDEX 3 (0.03, 0.97, 0)

… ...

(b) Propagation in fs

Fig. 2: Running Example

As we can see in the above example, if we do not track
error propagations beyond the static data dependencies and
instead stop at the comparison instruction, we may not identify
all the cases that could lead to SDCs. Moreover, if control-
flow divergence is ignored when modeling, tracking errors in
memory is almost impossible, as memory corruptions often
hide behind control-flow divergence, as shown in the above
example. Existing modeling techniques capture neither of these
important cases, and their SDC prediction accuracies suffer
accordingly. In contrast, TRIDENT captures both the control-
flow divergences and the memory corruptions that potentially
arise as a result of the divergence.

IV. TRIDENT

In this section, we first introduce the inputs and outputs of
our proposed model, TRIDENT, and then present the overall
structure of the model and the key insights it leverages. Finally
we present the details of TRIDENT using the running example.

A. Inputs and Outputs

The workflow of TRIDENT is shown in Figure 1b. We
require the user to supply three inputs: (1) The program code
compiled to the LLVM IR, (2) a program input to execute the
program and obtain its execution profile (similar to FI methods,
we also require a single input to obtain runtime information),
and (3) the output instruction(s) in the program that are used
for determining if a fault resulted in an SDC. For example,
the user can specify printf instructions that are responsible for
the program’s output and used to determine SDCs. On the
other hand, printfs that log debugging information or statistics
about the program execution can be excluded as they do not
typically determine SDCs. Without this information, all the
output instructions are assumed to determine SDCs by default.

TRIDENT consists of two phases: (1) Profiling and (2)
inferencing. In the profiling phase, TRIDENT executes the
program, performing dynamic analysis of the program to
gather information such as the count and data dependency
of instructions. After collecting all the information, TRIDENT
starts the inferencing phase which is based on static analysis of
the program. In this phase, TRIDENT automatically computes
(1) the SDC probabilities of individual instructions, and (2)
the overall SDC probability of the program. In the latter case,
the user needs to specify the number of sampled instructions
when calculating the overall SDC probability of the program,
in order to balance the time for analysis with accuracy.

B. Overview and Insights

Because error propagation follows program data-flow at
runtime, we need to model program data-flow in the presence
of faults at three levels: (1) Static-instruction level, which cor-
responds to the execution of a static data-dependent instruction
sequence and the transfer of results between registers. (2)
Control-flow level, when execution jumps to another program
location. (3) Memory level, when the results need to be
transferred back to memory. TRIDENT is divided into three
sub-models to abstract the three levels, respectively, and we
use fs , fc and fm to represent them. The main algorithm of
TRIDENT tracking error propagation from a given location to
the program output is summarized in Algorithm 1.



Static-Instruction Sub-Model (fs ): First, fs is used to
trace error propagation of an arbitrary fault activated on a
static data-dependent instruction sequence. It determines the
propagation probability of the fault from where it was activated
to the end of the sequence. For example, in Figure 2b, the
model computes the probability of the fault propagating to
the result of the comparison instruction given that the fault
is activated at the load instruction (Line 4 in Algorithm 1).
Previous models trace error propagation in data dependant
instructions based on the dynamic data dependency graph
(DDG) which records the output and operand values of each
dynamic instruction in the sequence [9], [27]. However, such
detailed DDGs are very expensive to generate and process,
and hence the models do not scale. fs avoids generating
detailed dynamic traces and instead computes the propagation
probability of each static instruction based on its average case
at runtime to determine the error propagation in a static data-
dependent instruction sequence. Since each static instruction
is designed to manipulate target bits in a pre-defined way,
the propagation probability of each static instruction can be
derived. We can then aggregate the probabilities to calculate
the probability of a fault propagating from a given instruction
to another instruction within the same static data-dependent
instruction sequence.

Control-Flow Sub-Model (fc ): As explained, a fault may
propagate to branches and cause the execution path of the
program to diverge from its fault-free execution. We divide
the propagation into two phases after divergence: The first
phase, modeled by fc , attempts to figure out which dynamic
store instructions will be corrupted at what probabilities if a
conditional branch is corrupted (Lines 3-5 in Algorithm 1).
The second phase traces what happens if the fault propagates
to memory, and is modeled by fm . The key observation is
that error propagation to memory through a conditional branch
that leads to control-flow divergence can be abstracted into a
few probabilistic events based on branch directions. This is
because the probabilities of the incorrect executions of store
instructions are decided by their execution paths and the cor-
responding branch probabilities. For example, in the function
init() in Figure 2a, if the comparison instruction takes the F
branch, the store instruction is not supposed to be executed,
but if a fault modifies the direction of the branch to the T
branch, then it will be executed and lead to memory corruption.
A similar case occurs where the comparison instruction is
supposed to take the T branch. Thus, the store instruction is
corrupted in either case.

Memory Sub-Model (fm ): fm tracks the propagation from
corrupted store instructions to the program output, by tracking
memory dependencies of erroneous values until the output
of the program is reached. During the tracking, other sub-
models are recursively invoked where appropriate. fm then
computes the propagation probability from the corrupted store
instruction to the program output (Lines 7-9 in Algorithm 1).
A memory data-dependency graph needs to be generated for
tracing propagations at the memory level because we have to
know which dynamic load instruction reloads the faulty data
previously written by an erroneous store instruction (if any).
This graph can be expensive to construct and traverse due to
the huge number of the dynamic store and load instructions in
the program. However, we find that the graph can be pruned by
removing redundant dependencies between symmetric loops,

if there are any. Consider as an example the two loops in
init() and run() in Figure 2a. The first loop updates an array,
and the second one reads from the same array. Thus, there
is a memory dependence between every pair of iterations
of the two loops. In this case, instead of tracking every
dependency between dynamic instructions, we only track the
aggregate dependencies between the two loops. As a result, the
memory dependence graph needs only two nodes to project the
dependencies between the stores and loads in their iterations.

Algorithm 1: The Core Algorithm in TRIDENT

1 sub-models fs , fc , and fm ;
Input : I: Instruction where the fault occurs
Output: PSDC: SDC probability

2 ps = fs (I);
3 if inst. sequence containing I ends with branch Ib then
4 // Get the list of stores corrupted and their prob.
5 [<Ic, pc>, ...] = fc (Ib);
6 // Maximum propagation prob. is 1
7 Foreach(<Ic, pc>): PSDC += ps * pc * fm (Ic);
8 else if inst. sequence containing I ends with store Is

then
9 PSDC = ps*fm (Is);

C. Details: Static-Instruction Sub-Model (fs )

Once a fault is activated at an executed instruction, it starts
propagating on its static data-dependent instruction sequence.
Each sequence ends with a store, a comparison or an instruc-
tion of program output. In these sequences, the probability that
each instruction masks the fault during the propagation can be
determined by analyzing the mechanism and operand values of
the instruction. This is because instructions often manipulate
target bits in predefined ways.

Given a fault that occurs and is activated on an instruction,
fs computes the probability of error propagation when the
execution reaches the end of the static computation sequence
of the instruction. We use a code example in Figure 2b to
explain the idea. The code is from Pathfinder [5], and shows a
counter being incremented until a positive value is reached. In
Figure 2b, INDEX 1-3 form a static data-dependent instruction
sequence, which an error may propagate along. Assuming a
fault is activated at INDEX 1 and affects $1, the goal of fs
is to tell the probabilities of propagation, masking and crash
after the execution of INDEX 3, which is the last instruction
on the sequence. fs traces the error propagation from INDEX
1 to INDEX 3 by aggregating the propagation probability of
each instruction on the sequence. We use a tuple for each
instruction to represent its probabilities which are shown in the
brackets on the right of each instruction in Figure 2b. There
are three numbers in each tuple, which are the probabilities
of propagation, masking and crash respectively, given that
an operand of the instruction is erroneous (we explain how
to compute these later). For example, for INDEX 3, (0.03,
0.97, 0) means that the probability of the error continuing to
propagate when INDEX 3 is corrupted is 0.03, whereas 0.97 is
the probability that the error will be masked and not propagate
beyond INDEX 3. Finally, the probability of a crash at INDEX
3, in this case, is 0. Note that the probabilities in each tuple
should sum to 1.

After calculating the individual probabilities, fs aggregates
the propagation probability in each tuple of INDEX 1, 2 and



3 to calculate the propagation probability from INDEX 1 to
INDEX 3. That is given by 1*1*0.03=3% for the probability
of propagation, and the probabilities of masking and crash are
97% and 0% respectively. Thus, if a fault is activated at INDEX
1, there is a 3% of probability that the branch controlled by
INDEX 3 will be flipped, causing a control-flow divergence.

We now explain how to obtain the tuple for each instruc-
tion. Each tuple is approximated based on the mechanism of
the instruction and/or the profiled values of the instruction’s
operands. We observe that there are only a few types of in-
structions that have non-negligible masking probabilities: they
are comparisons (e.g., CMP), logic operators (e.g., XOR) and
casts (e.g., TRUNC). We assume the rest of instructions neither
move nor discard corrupted bits - this is a heuristic we use for
simplicity (we discuss its pros and cons in Section VII-A).

In the example in Figure 2b, the branch direction will be
modified based on whether INDEX 3 computes a positive or
negative value. In either case, only a flip of the sign bit of $1
will modify the branch direction. Hence, the error propagation
probability in the tuple of INDEX 3 is 1/32 = 0.03, assuming
a 32-bit data width. We derive crash probabilities in the tuples
for instructions accessing memory (i.e., load and store instruc-
tions). We consider crashes that are caused by program reading
or writing out-of-bound memory addresses. Their probabilities
can be approximated by profiling memory size allocated for
the program (this is found in the /proc/ filesystem in Linux).
Prior work [9] has shown that these are the dominant causes
of crashes in programs due to soft errors.

bb0

cmp …  INDEX 1
F 0.8

bb2 bb3

bb5
bb4

store ...

bb1

bb10

T 0.2

0.90.1

0.7
0.3

(a) Example of NLT

0.9

bb3 bb4
store ...

bb2
0.1

0.70.3

cmp …     INDEX 2
bb0

bb1

bb5

T 0.99

F 0.01

(b) Example of LT

Fig. 3: NLT and LT Examples of the CFG

D. Details: Control-Flow Sub-Model (fc )

Recall that the goal of fc is to figure out which dynamic
store instructions will be corrupted and at what probabilities, if
a conditional branch is corrupted. We classify all comparison
instructions that are used in branch conditions into two types
based on whether they terminate a loop. The two types are (1)
Non-Loop-Terminating cmp (NLT), and (2) Loop-Terminating
cmp (LT). Figure 3 shows two Control Flow Graphs (CFGs),
one for each case. We also profile the branch probability of
each branch and mark it beside each corresponding branch for
our analysis purpose. For example, if a branch probability is
0.2, it means during the execution there is 20% probability the
branch is taken. We will use the two examples in Figure 3 to
explain fc in each case.

1) Non-Loop-Terminating CMP (NLT): If a comparison
instruction does not control the termination of a loop, it is
NLT. In Figure 3a, INDEX 1 is a NLT, dominating a store

instruction in bb4. There are two cases for the store considered
as being corrupted in fc : (1) The store is not executed while
it should be executed in a fault-free execution. (2) The store
is executed while it should not be executed in a fault-free
execution. Combining these cases, the probability of the store
instruction being corrupted can be represented by Equation 1.

Pc = Pe /Pd (1)

In the equation, Pc is the probability of the store being
corrupted, Pe is the execution probability of the store instruc-
tion in fault-free execution, and Pd is the branch probability
of which direction dominates the store.

We illustrate how to derive the above equation using the
example in Figure 3a. There are two legal directions a branch
can take. In the first case, the branch of INDEX 1 is supposed to
take the T branch at the fault-free execution (20% probability),
but the F branch is taken instead due to the corrupted INDEX
1. The store instruction in bb4 will be executed when it is
not supposed to be executed and will hence be corrupted. The
probability that the store instruction is executed in this case is
calculated as 0.2 ∗ 0.9 ∗ 0.7 = 0.126 based on the probabilities
on its execution path (bb0-bb1-bb3-bb4). In the second case, if
the F branch is supposed to be taken in a fault-free execution
(80% probability), but the T branch is taken instead due to the
fault, the store instruction in bb4 will not be executed, while it
is supposed to have been executed in some execution path in
the fault-free execution under the F branch. For example, in
the fault-free execution, path bb0-bb1-bb3-bb4 will trigger the
execution of the store. Therefore, the probability of the store
instruction being corrupted in this case is 0.8∗0.9∗0.7 = 0.504.
Therefore, adding the two cases together, we get fc in this
example as 0.126+0.504 = 0.63. The Equation 1 is simplified
by integrating the terms in the calculations. In this example,
in Equation 1, Pe is 0.8 ∗ 0.9 ∗ 0.7 (bb0-bb1-bb3-bb4), Pd is
0.8 (bb0-bb1), thus Pc is 0.8∗0.9∗0.7/0.8 = 0.63. Note that
if the branch immediately dominates the store instruction, then
the probability of the store being corrupted is 1, as shown by
the example in Figure 2.

2) Loop-Terminating CMP (LT): If a comparison instruc-
tion controls the termination of a loop, it is LT. For example,
in Figure 3b, the back-edge of bb0 forms a loop, which can
be terminated by the condition computed by INDEX 2. Hence,
INDEX 2 is a LT. We find that the probability of the store
instruction being corrupted can be represented by Equation. 2.

Pc = Pb ∗ Pe (2)

Pc is the probability that a dynamic store instruction
is corrupted if the branch is modified, Pb is the execution
probability of the back-edge of the branch, and Pe is the
execution probability of the store instruction dominated by the
back-edge.

We show the derivation of the above equation using the
example in Figure 3b. In the first case, if the T branch
(the loop back-edge) is supposed to be taken in a fault-free
execution (99% probability), the store instruction in bb4 may
or may not execute, depending on the branch in bb2. But
if a fault modifies the branch of INDEX 2, the store will
certainly not execute. So we need to omit the probabilities
that the store is not executed in the fault-free execution to
calculate the corruption probability of the store. They are
0.99 ∗ 0.9 ∗ 0.3 = 0.27 for the path bb0-bb1-bb2-bb3 and



0.99 ∗ 0.1 = 0.099 for bb0-bb1-bb0. Hence, the probability of
a corrupted store in this case is 0.99 − 0.27 − 0.099 = 0.62.
In the second case where the F branch should be taken in
a fault-free execution (1% probability), if the fault modifies
the branch, the probability of a corrupted store instruction
is 0.01 ∗ 0.9 ∗ 0.7 = 0.0063. Note that this is usually a
very small value which can be ignored. This is because the
branch probabilities of a loop-terminating branch are usually
highly biased due to the multiple iterations of the loop. So the
total probability in this example is approximated to be 0.62,
which is what we calculated above. Equation 2 is simplified
by integrating and cancelling out the terms in the calculations.
In this example, Pb is 0.99 (bb0-bb1), Pe is 0.7*0.9 (bb1-
bb2-bb4), and thus Pc is 0.99 ∗ 0.7 ∗ 0.9 = 0.62.

E. Details: Memory Sub-Model (fm )

Recap that fm reports the probability for the error to
propagate from the corrupted memory locations to the program
output. The idea is to represent memory data dependencies
between the load and store instructions in an execution, so
that the model can trace the error propagation in the memory.

for(...){

store …;

}

…

for(...){

$0 = load …;

if(cmp ...){

print $0;

}

}

INDEX 1

INDEX 2 

INDEX 3

INDEX 4

(a) Code Example

INDEX
2

T 0.6F 0.4

INDEX
1

INDEX
4NULL

(b) Dependency Graph

Fig. 4: Examples for Memory Sub-model

We use the code example in Figure 4a to show how we
prune the size of the memory dependency graph in fm by
removing redundant dependencies (if any). There are two inner
loops in the program. The first one executes first, storing data
to an array in memory (INDEX 1). The second loop executes
later, loading the data from the memory (INDEX 2). Then the
program makes some decision (INDEX 3) and decides whether
the data should be printed (INDEX 4) to the program output.
Note that the iterations between loops are symmetric in the
example, as both manipulate the same array (one updates, and
the other one reloads). This is often seen in programs because
they tend to manipulate data in blocks due to spatial locality.
In this example, if one of the dynamic instructions of INDEX
1 is corrupted, one of the dynamic instructions of INDEX 2
must be corrupted too. Therefore, instead of having one node
for every dynamic load and store in the iterations of the loop
executions, we need only two nodes in the graph to represent
the dependencies. The rest of the dependencies in the iterations
are redundant, and hence can be removed from the graph as
they share the same propagation. The dependencies between
dynamic loads and stores are tracked at runtime with their
static indices and operand memory addresses recorded. The
redundant dependencies are pruned when repeated static load
and store pairs are detected.

We show the memory data dependency graph of fm for the
code example in Figure 4b. Assume each loop is invoked once
with many iterations. We create a node for the store (INDEX
1), load (INDEX 2) and printf (INDEX 3, as program output)
in the graph. We draw an edge between nodes to present their
dependencies. Because INDEX 3 may cause divergence of the
dependencies and hence error propagation, we weight the prop-
agation probability based on its execution probability. We place
a NULL node as a placeholder indicating masking if F branch
is taken in INDEX 3. Note that an edge between nodes may
also represent a static data-dependent instruction sequence,
e.g., the edge between INDEX 2 and INDEX 4. Therefore,
fs is recursively called every time a static data-dependent
instruction sequence is encountered. We then aggregate the
propagation probabilities starting from the node of INDEX 1
to each leaf node in the graph. Each edge may have different
propagation probabilities to aggregate – it depends on what
fs outputs if a static data-dependent instruction sequence is
present on the edge. In this example, assume that fs always
outputs 1 as the propagation probability for each edge. Then,
the propagation probability to the program output (INDEX 4),
if one of the store (INDEX 1) in the loop is corrupted, is
1∗1∗1∗0.6/(0.4+0.6)+1∗1∗0∗0.4/(0.4+0.6) = 0.6. The
zero in the second term represents the masking of the NULL
node. As an optimization, we memoize the propagation results
calculated for store instructions to speed up the algorithm. For
example, if later the algorithm encounters INDEX 1, we can
use the memoized results, instead of recomputing them. We
will evaluate the effectiveness of the pruning in Section V-C.

Floating Point: When we encounter any floating point
data type, we apply an additional masking probability based
on the output format of the floating point data. For example,
in benchmarks such as Hotspot, the float data type is used.
By default, Float carries 7-digit precision, but in (many)
programs’ output, a “%g” parameter is specified in printf
which prints numbers with only 2-digit precision. Based on
the specification of IEEE-754 [1], we assume that only the
mantissa bits (23 bits in Float) may affect the 5 digits that are
cut off in the precision. This is because bit-flips in exponential
bits likely cause large deviations in values, and so cutting-off
the 5 digits in the precision is unlikely to mask the errors
in the exponent. We also assume that each mantissa bit has
equal probability to affect the missing 5 digits of precision.
In that way, we approximate the propagation probability to
be ((32-23)+23*(2/7))/32 = 48.66%. We apply this masking
probability on top the propagation probabilities, for Float data
types used with the non-default format of printf.

V. EVALUATION

In this section, we evaluate TRIDENT in terms of its ac-
curacy and scalability. To evaluate accuracy, we use TRIDENT
to predict overall SDC probabilities of programs as well as
the SDC probabilities for individual instructions, and compare
them with those obtained using FI and the simpler models.
To evaluate scalability, we measure the time for executing
TRIDENT, and compare it with the time taken by FI. We first
present the experimental setup and then the results. We also
make TRIDENT and the experimental data publicly available1.

1https://github.com/DependableSystemsLab/Trident



A. Experimental Setup

1) Benchmarks: We choose eleven benchmarks from com-
mon benchmark suites [4], [5], [15], and publicly available
scientific programs [2], [16], [29] — they are listed in Ta-
ble I. Our benchmark selection is based on three criteria: (1)
Diversity of domains and benchmark suites, (2) whether we
can compile with our LLVM infrastructure, and (3) whether
fault injection experiments of the programs can finish within
a reasonable amount of time. We compiled each benchmark
with LLVM with standard optimizations (-O2).

TABLE I: Characteristics of Benchmarks

Bench-
mark

Suite/Author Area Program
Input

Libquan-
tum

SPEC Quantum computing 33 5

Blacksc-
holes

Parsec Finance in_4.txt

Sad Parboil Video encoding. reference.bin
frame.bin

Bfs Parboil Graph traversal graph_input.dat
Hercules Carnegie Mellon

University
Earthquake
simulation

scan
simple_case.e

Lulesh Lawrence Livermore
National Laboratory

Hydrodynamics
modeling

-s 1 -p

PuReMD Purdue University Reactive molecular
dynamics simulation

geo ffield
control

Nw Rodinia DNA sequence
optimization

2048 10 1

Pathfinder Rodinia Dynamic
programming

1000 10

Hotspot Rodinia Temperature and
power simulation

64 64 1 1
temp_64
power_64

Bfs Rodinia Graph traversal graph4096.txt

2) FI Method: We use LLFI [30] which is a publicly
available open-source fault injector to perform FIs at the
LLVM IR level on these benchmarks. LLFI has been shown
to be accurate in evaluating SDC probabilities of programs
compared to assembly code level injections [30]. We inject
faults into the destination registers of the executed instruc-
tions to simulate faults in the computational elements of the
processor as per our fault model. Further, we inject single bit
flips as these are the de-facto model for emulating soft errors
at the program level, and have been found to be accurate for
SDCs [25]. There is only one fault injected in each run, as soft
errors are rare events with respect to the time of execution of
a program. Our FI method ensures that all faults are activated,
i.e., read by an instruction of the program, as we define SDC
probabilities based on the activated instructions (Section II).
The FI method is in line with other papers in the area [3], [9],
[18], [30].

B. Accuracy

We design two experiments to evaluate the accuracy of
TRIDENT. The first experiment examines the prediction of
overall SDC probabilities of programs, and the second ex-
amines predicted SDC probabilities of individual instructions.
In the experiments, we compare the results derived from
TRIDENT with those from the two simpler models and FI.
As described earlier, TRIDENT consists of three sub-models in
order: fs , fc and fm . We create two simpler models to (1)
understand the accuracy gained by enabling each sub-model
and (2) as a proxy to investigate other models, which often
lack modeling beyond static data dependencies (Section VII-C

performs a more detailed comparison with prior work). We
first disable fm in TRIDENT, leaving the two sub-models fs
and fc enabled, to create a model: fs +fc . We then further
remove fc to create the second simplified model which only
has fs enabled, which we represent as fs .

1) Overall SDC probability: To evaluate the overall SDC
probability of a given program, we use statistical FI. We mea-
sure error bars for statistical significance at the 95% confidence
level. We randomly sample 3,000 dynamic instructions for FIs
(one fault per run) as these yield tight error bars at the 95%
confidence level (±0.07% to ±1.76%) - this is in line with
other work that uses FI. We calculate SDC probability of each
program based on how many injected faults result in SDC.
We then use TRIDENT, as well as the two simpler models,
to predict the SDC probability of each program, and compare
the results with those from FI. To ensure fair comparison, we
sample 3,000 instructions in our models as well (Section IV-A).

The results are shown in Figure 5. We use FI to represent
the FI method, TRIDENT for our three-level model, and fs+fc
and fs for the two simpler models. We find TRIDENT prediction
matches the overall SDC probabilities obtained through FI,
with a maximum difference of 14.26% in Sad, and a minimum
difference of 0.11% in Blackscholes, both in percentage points.
This gives a mean absolute error of 4.75% in overall SDC
prediction. On the other hand, fs +fc and fs have a mean
absolute error of 19.56% and 15.13% respectively compared
to FI – more than 4 and 3 times higher than those obtained
using the complete three-level model. On average, fs +fc and
fs predict the overall SDC probability as 33.85% and 23.76%
across the different programs, whereas TRIDENT predicts it to
be 14.83%. The SDC probability obtained from FI is 13.59%,
which is much more in line with the predictions of TRIDENT.

We observe that in Sad, Lulesh and Pathfinder, TRIDENT
encounters relatively larger differences between the prediction
and the FI results (14.26%, 7.48% and 8.87% respectively).
The inaccuracies are due to a combination of gaps in the imple-
mentation, assumptions, and heuristics we used in TRIDENT.
We discuss them in Section VII-A.

To compare the results more rigorously, we use a paired T-
test experiment [28] to determine how similar the predictions
of the overall SDC probabilities by TRIDENT are to the FI
results.2 Since we have 11 benchmarks, we have 11 sets of
paired data with one side being FI results and the other side
being the prediction values of TRIDENT. The null hypothesis
is that there is no statistically significant difference between
the results from FIs and the predicted SDC probabilities
by TRIDENT in the 11 benchmarks. We calculate the p-
value in the T-test as 0.764. By the conventional criteria (p-
value>0.05), we fail to reject the null hypothesis, indicating
that the predicted overall SDC probabilities by TRIDENT are
not statistically different from those obtained by FI.

We find that the model fs +fc always over-predicts SDCs
compared with TRIDENT. This is because an SDC is assumed
once an error propagates to store instructions, which is not
always the case, as it may not propagate to the program
output. On the other hand, fs may either over-predict SDCs

2We have verified visually that the differences between the two sides of
every pair are approximately normally distributed in all the T-test experiments
we conduct, which is the requirement for validity of the T-test.



Fig. 5: Overall SDC Probabilities Measured by FI and Predicted by the Three Models (Margin of Error for FI: ±0.07% to
±1.76% at 95% Confidence)

(e.g., Libquantum, Hercules) because an SDC is assumed once
an error directly hits any static data-dependent instruction
sequence ending with a store, or under-predict them (e.g., Bfs,
Blackscholes) because error propagation is not tracked after
control-flow divergence.

2) SDC Probability of Individual Instructions: We now
examine the SDC probabilities of individual instructions pre-
dicted by TRIDENT and compare them to the FI results. The
number of static instructions per benchmark varies from 76 to
4,704, with an average of 944 instructions. Because performing
FIs into each individual instruction is very time-consuming, we
choose to inject 100 random faults per instruction to bound
our experimental time. We then input each static instruction to
TRIDENT, as well as the two simpler models (fs +fc and fs ),
to compare their predictions with the FI results. As before,
we conduct paired T-test experiments [28] to measure the
similarity (or not) of the predictions to the FI results. The null
hypothesis for each of the three models in each benchmark
is that there is no difference between the FI results and the
predicted SDC probability values in each instruction.

TABLE II: p-values of T-test Experiments in the Prediction
of Individual Instruction SDC Probability Values (p > 0.05
indicates that we are not able to reject our null hypothesis –
the counter-cases are shown in red)

Benchmark TRIDENT fs+fc fs
Libquantum 0.602 0.000 0.000
Blackscholes 0.392 0.173 0.832
Sad 0.000 0.003 0.000
Bfs (Parboil) 0.893 0.000 0.261
Hercules 0.163 0.000 0.003
Lulesh 0.000 0.000 0.000
PureMD 0.277 0.000 0.000
Nw 0.059 0.000 0.000
Pathfinder 0.033 0.130 0.178
Hotspot 0.166 0.000 0.000
Bfs (Rodinia) 0.497 0.001 0.126
No. of rejections 3/11 9/11 7/11

The p-values of the experiments are listed in the Table II.
At the 95% confidence level, using the standard criteria
(p > 0.05), we are not able to reject the null hypothesis in 8
out of the 11 benchmarks using TRIDENT in the predictions.
This indicates that the predictions of TRIDENT are shown to be
statistically indistinguishable from the FI results in most of the
benchmarks we used. The three outliers for TRIDENT again
are Sad, Lulesh and Pathfinder. Again, even though the individ-
ual instructions’ SDC probabilities predicted are statistically
distinguishable from the FI results, these predicted values are
still reasonably close to the FI results. In contrast, when using
fs +fc and fs to predict SDC probabilities for each individual
instruction, there are only 2 and 4 out of the 11 benchmarks
having p-values greater than 0.05, indicating that the null
hypotheses cannot be rejected for most of the benchmarks.
In other words, the predictions from the simpler models for
individual instructions are (statistically) significantly different
from the FI results.

C. Scalability

In this section, we evaluate the scalability of TRIDENT
to predict the overall SDC probabilities of programs and the
SDC probabilities of individual instructions, and compare it
to FI. By scalability, we mean the ability of the model to
handle large numbers of instruction samples in order to obtain
tighter bounds on the SDC probabilities. In general, the higher
the number of sampled instructions, the higher the accuracy
and hence the tighter are the bounds on SDC probabilities
for a given confidence level (e.g., 95% confidence). This is
true for both TRIDENT and for FI. The number of instructions
sampled for FI in prior work varies from 1,000 [30] to a few
thousands [9], [10], [20]. We vary the number of samples from
500 to 7, 000. The number of samples is equal to the number
of FI trials as one fault is injected per trial.

Note that the total computation is proportional to both the
time and power required to run each approach. Parallelization
will reduce the time spent, but not the power consumed. We
assume there is no parallelization for the purpose of compar-
ison in the case of TRIDENT and FI, though both TRIDENT
and FI can be parallelized. Therefore, the computation can be
measured by the wall-clock time.

(a) Overall SDC Probability (b) Instruction SDC Probability
Fig. 6: Computation Spent to Predict SDC Probability

1) Overall SDC Probability: The results of the time spent
to predict the overall SDC probability of program are shown
in Figure 6a. The time taken in the figure is projected based on
the measurement of one FI trial (averaged over 30 FI runs). As
seen, the curve of FI time versus number of samples is much
steeper than that of TRIDENT, which is almost flat. TRIDENT
is 2.37 times faster than the FI method at 1,000 samples, it
is 6.7 times faster at 3,000 samples and 15.13 times faster at
7,000 samples. From 500 to 7,000 samples, the time taken
by TRIDENT increases only 1.06 times (0.2453 to 0.2588),
whereas it increases 14 times (0.2453 to 3.9164) for FI - an
exact linear increase. The profiling phase of TRIDENT takes
0.24 hours (or about 15 minutes) on average. This is a fixed
cost incurred by TRIDENT regardless of the number of sampled
instructions. However, once the model is built, the incremental
cost of calculating the SDC probability of a new instruction is
minimal (we only calculate the SDC probabilities on demand
to save time). FI does not incur a noticeable fixed cost, but its
time rapidly increases as the number of sampled instructions



increase. This is because FI has to run the application from
scratch on each trial, and hence ends up being much slower
than TRIDENT as the number of samples increase.

2) Individual Instructions: Figure 6b compares the aver-
age time taken by TRIDENT to predict SDC probabilities of
individual instructions with FI, for different numbers of static
instructions. We consider different numbers of samples for
each static instruction chosen for FI: 100, 500 and 1,000 (as
mentioned in Section IV-A, TRIDENT does not need samples
for individual instructions’ SDC probabilities). We denote the
number of samples as a suffix for the FI technique. For exam-
ple, FI-100 indicates 100 samples are chosen for performing FI
on individual instructions. We also vary the number of static
instructions from 50 to 7,000 (this is the X-axis). As seen
from the curves, the time taken by TRIDENT as the number
of static instructions vary remains almost flat. On average, it
takes 0.2416 hours at 50 static instructions, and 0.5009 hours at
7,000 static instructions, which is only about a 2X increase. In
comparison, the corresponding increases for FI-100 is 140X,
which is linear with the number of instructions. Other FI curves
experience even steeper increases as they gather more samples
per instruction.

Fig. 7: Time Taken to Derive the SDC Probabilities of Indi-
vidual Instructions in Each Benchmark

Figure 7 shows the time taken by TRIDENT and FI-100 to
derive the SDC probabilities of individual instructions in each
benchmark (due to space constraints, we do not show the other
FI values, but the trends were similar). As can be seen, there
is wide variation in the times taken by TRIDENT depending
on the benchmark program. For example, the time taken in
PureMD is 2.893 hours, whereas it is 2.8 seconds in Pathfinder.
This is because the time taken by TRIDENT depends on factors
such as (1) the total number of static instructions, (2) the
length of static data-dependent instruction sequence, (3) the
number of dynamic branches that require profiling, and (4) the
number of redundant dependencies that can be pruned. The
main reason for the drastic difference between PureMD and
Pathfinder is that we can prune only 0.08% of the redundant
dependencies in the former, while we can prune 99.83% of
the dependencies in the latter. On average, 61.87% of dynamic
load and store instructions are redundant and hence removed
from the memory dependency graph.

VI. USE CASE: SELECTIVE INSTRUCTION DUPLICATION

In this section, we demonstrate the utility of TRIDENT
by considering a use-case of selectively protecting a program
from SDC causing errors. The idea is to protect only the
most SDC-prone instructions in a program so as to achieve
high coverage while bounding performance costs. We consider
instruction duplication as the protection technique, as it has
been used in prior work [9], [10], [21]. The problem setting
is as follows: given a certain performance overhead P , what
static instructions should be duplicated in order to maximize
the coverage for SDCs while keeping the overhead below P .

Solving the above problem involves finding the SDC
probability of each instruction in the program in order to
decide which set of instructions should be duplicated. It also
involves calculating the performance overhead of duplicating
the instructions. We use TRIDENT for the former, namely,
to estimate the SDC probability of each instruction, without
using FI. For the latter, we use the dynamic execution count
of each instruction as a proxy for the performance overhead
incurred by it. We then formulate the problem as a classi-
cal 0-1 knapsack problem [22], where the objects are the
instructions and the knapsack capacity is represented by P ,
the maximum allowable performance overhead. Further, object
profits are represented by the estimated SDC probability (and
hence selecting the instruction means obtaining the coverage),
and object costs are represented by the dynamic execution
count of the instruction. Note that we assume that the SDC
probability estimates of the instructions are independent of
each other – while this is not necessarily true in practice,
it keeps the model tractable, and in the worst case leads
to conservative protection (i.e., over-protection). We use the
dynamic programming algorithm for the 0-1 knapsack problem
- this is similar to what prior work did [21].

For the maximum performance overhead P , we first mea-
sure the overhead of duplicating all the instructions in the
program (i.e., full duplication) and set this as the baseline
as it represents the worst-case overhead. The overheads are
measured based on the wall-clock time of the actual execution
of the duplicated programs (averaged on 3 executions each).
We find that full duplication incurs an overhead of 36.18%
across benchmarks. We consider 2 overhead bound levels,
namely the 1/3rd and 2/3rd of the full duplication overheads,
which are (1) 11.78% and (2) 23.31% respectively.

For each overhead level, our algorithm chooses the instruc-
tions to protect using the knapsack algorithm. The chosen in-
structions are then duplicated using a special pass in LLVM we
wrote, and the duplication occurs at the LLVM IR level. Our
pass also places a comparison instruction after each instruction
protected to detect any deviations of the original computations
and duplicated computations. If protected instructions are
data dependent on the same static data-dependent instruction
sequence, we only place one comparison instruction at the
latter protected instruction to reduce performance overhead.
This is similar to what other related work did [9], [21]. For
comparison purposes, we repeat the above process using the
two simpler models (fs +fc and fs ). We then use FI to obtain
the SDC probabilities of the programs protected using the
different models at different overhead levels. Note that FI is
used only for the evaluation and not for any of the models.

Figure 8 shows the results of the SDC probability reduction
at different protection levels. Without protection, the average
SDC probability of the programs is 13.59%. At the 11.78%
overhead level, after protection based on TRIDENT, fs +fc
and fs the corresponding SDC probabilities are 5.50%, 5.53%,
9.29% respectively. On average, the protections provided by
the three models reduce the SDC probabilities by 64%, 64%
and 40% respectively. At the 23.31% overhead level, after the
protections based on TRIDENT, fs +fc and fs respectively,
the average SDC probabilities are 1.55%, 2.00% and 4.04%.
This corresponds to a reduction of 90%, 87% and 74% of the
SDC probability in the baseline respectively. Thus, on average,



Fig. 8: SDC Probability Reduction with Selective Instruction Duplication at 11.78% and 23.31% Overhead Bounds (Margin of
Error: ±0.07% to ±1.76% at 95% Confidence)

TRIDENT provides a higher SDC probability reduction for the
same overhead level compared with the two simpler models.

Taking a closer look, the protection based on fs +fc
achieves comparable SDC probability reductions with TRI-
DENT. This is because the relative ranking of SDC probabil-
ities between instructions plays a more dominant role in the
selective protection than the absolute SDC probabilities. The
ranking of the SDC probabilities of individual instructions de-
rived by fs +fc is similar to that derived by TRIDENT. Adding
fm boosts the overall accuracy of the model in predicting the
absolute SDC probabilities (Figure 5), but not the relative SDC
probabilities – the only exception is Libquantum. This shows
the importance of modeling control-flow divergence, which is
missing in other existing techniques [9], [10], [27].

VII. DISCUSSION

We first investigate the sources of inaccuracy in TRIDENT
based on the experimental results (Section V). We then ex-
amine some of the threats to the validity of our evaluation.
Finally, we compare TRIDENT with two closely related prior
techniques, namely PVF and ePVF.

A. Sources of Inaccuracy

Errors in Store Address: If a fault modifies the address
of a store instruction, in most cases, an immediate crash would
occur because the instruction accesses memory that is out of
bounds. However, if the fault does not cause a crash, it can
corrupt an arbitrary memory location, and may eventually lead
to SDC. It is difficult to analyze which memory locations may
be corrupted as a result of such faults, leading to inaccuracy
in the case. In our fault injection experiments, we observe
that on average about 5.05% of faults affect addresses in store
instructions and survive from crashes.

Memory Copy: Another source of inaccuracy in TRIDENT
is that we do not handle bulk memory operations such as
memmove and memcpy, which are represented by special
instructions in the LLVM IR. We find such operations in
benchmark such as Sad, Lulesh, Hercules and PureMD, which
makes our technique somewhat inaccurate for these programs.

Manipulation of Corrupted Bits: As mentioned in Sec-
tion IV-C, we assume only instructions such as comparisons,
logical operators and casts have masking effects to simplify our
calculations, and that none of the other instructions mask the
corrupted bits. However, this is not always the case as other
instructions may also cause masking. For example, division
operations such as fdiv may also average out corrupted bits in
the mantissa of floating point numbers, and hence mask errors.

We find that 1% of the faults affect fdiv in program such as
Lulesh, thereby leading to inaccuracies.

Conservatism in Determining Memory Corruption: Re-
call that when control-flow divergence happens, we assume all
the store instructions that are dominated by the faulty branch
are corrupted (Section IV). This is a conservative assumption,
as some stores may end up being coincidentally correct. For
example, if a store instruction is supposed to write a zero to its
memory location, but is not executed due to the faulty branch,
the location will still be correct if there was a zero already in
that location. These are called lucky loads [7], [9].

B. Threats to Validity

Benchmarks: As mentioned in Section V-A1, we choose
11 programs to encompass a wide variety of domains rather
than sticking to just one benchmark suite (unlike performance
evaluation, there is no standard benchmark suite for reliability
evaluation). Our results may be specific to our choice of
benchmarks, though we have not observed this to be the case.
Other work in this domain makes similar decisions [9], [21].

Platforms: In this work, we focus on CPU programs
for TRIDENT. Graphic Processing Units (GPU) are another
important platform for reliability studies. We have attempted
to run TRIDENT on GPU programs, but were crippled by the
lack of automated tools for code analysis and fault injection
on GPUs. Our preliminary results in this domain using small
CUDA kernels (instrumented manually) confirm the accuracy
of TRIDENT. However, more rigorous evaluation is needed.

Program Input: As the high-fidelity fault injection exper-
iments take a long time (Section V-C), we run each program
only under 1 input. This is also the case for almost all other
studies we are aware of in this space [9], [10]. Di Leo et
at. [8] have found SDC probabilities of programs may change
under different program inputs. We plan to consider multiple
inputs in our future work.

Fault Injection Methodology: We use LLFI, a fault injec-
tor that works at the LLVM IR level, to inject single bit flips.
While this method is accurate for estimating SDC probabilities
of programs [30], [25], it remains an open question as to how
accurate it is for other failure types. That said, our focus in
this paper is SDCs, and so this is an appropriate choice for us.

C. Comparison with ePVF and PVF

ePVF (enhanced PVF) is a recent modeling technique for
error propagation in programs [9]. It shares the same goal with
TRIDENT in predicting the SDC probability of a program,
both at the aggregate level and instruction level. ePVF is



Fig. 9: Overall SDC Probabilities Measured by FI and Predicted by TRIDENT, ePVF and PVF (Margin of Error: ±0.07% to
±1.76% at 95% Confidence)

based on PVF [27], which stands for Program Vulnerability
Factor. The main difference is that PVF does not distinguish
between crash-causing faults and SDCs, and hence its accuracy
of SDC prediction is poor [9]. ePVF improves the accuracy
of PVF by removing most crashes from the SDC prediction.
Unfortunately, ePVF cannot distinguish between benign faults
and SDCs, and hence its accuracy suffers accordingly [9]. This
is because ePVF only models error propagation in static data-
dependent instruction sequence and in memory if the static
data-dependent instruction sequence ends with a store instruc-
tion, ignoring error propagation to control-flow and other parts
of memory. Both ePVF and PVF, like TRIDENT, require no
FI in their prediction of SDC, and can be implemented at the
LLVM IR level3. We implement both techniques using LLVM,
and compare their results with TRIDENT’s results.

Since crashes and SDCs are mutually exclusive, by remov-
ing the crash-causing faults, ePVF computes a relatively closer
result to SDC probability than PVF [9]. However, the crash
propagation model proposed by ePVF in identifying crashes
requires a detailed DDG of the entire program’s execution,
which is extremely time-consuming and resource hungry. As
a result, ePVF can be only executed in programs with a
maximum of a million dynamic instructions in practice [9].
To address this issue and reproduce ePVF on our benchmarks
and workloads (average 109 million dynamic instructions), we
modify ePVF by replacing its crash propagation model with
the measured results from FI. In other words, we assume ePVF
identifies 100% of the crashes accurately, which is higher than
the accuracy of the ePVF model. Hence, this comparison is
conservative as it overestimates the accuracy of ePVF.

We use TRIDENT, ePVF and PVF to compute the SDC
probabilities of the same benchmarks and workloads, and then
compare them with FI which serves as our ground truth. The
number of randomly sampled faults are 3,000. The results are
shown in Figure 9. As shown, ePVF consistently overestimates
the SDC probabilities of the programs with a mean absolute
error of 36.78% whereas it is 4.75% in TRIDENT. PVF results
in an even larger mean absolute error of 75.19% as it does
not identify crashes. The observations are consistent with those
reported by Fang et al. [9]. The average SDC probability
measured by FI is 13.59%. ePVF and PVF predict it as 52.55%
and 90.62% respectively, while TRIDENT predicts it as 14.83%
and is significantly more accurate as a result.

VIII. RELATED WORK

There is a significant body of work on estimating the
error resilience of a program either through FI [7], [11],
[13], [14], [20], [30], or through modeling error propagation
in programs [9], [10], [27]. The main advantage of FI is
that it is simple, but it has limited predictive power. Further,

3ePVF was originally implemented using LLVM, but not PVF.

its long running time often limits the FI approach from
deriving program vulnerabilities at finer granularity (i.e., SDC
probabilities of individual instructions). The main advantage
of modeling techniques is that they have predictive power
and are significantly faster, but existing techniques suffer from
poor accuracy due to important gaps in the models. The main
question we answer in this paper is that whether we can
combine the advantages of the two approaches by constructing
a model that is both accurate and scalable.

Shoestring [10] was one of the first papers to attempt to
model the resilience of instructions without using fault injec-
tion. Because Shoestring is not publicly available, we cannot
directly compare it with our TRIDENT. However, Shoestring
stops tracing error propagations after control-flow divergence,
and assumes that any fault that propagates to a store instruction
leads to an SDC. Hence, it is similar to removing fc and fm
in our model and considering only fs , which we show is
not very accurate. Further, Shoestring does not quantify SDC
probabilities of programs and instructions, unlike TRIDENT.

Gupta et al. [12] investigate the resilience characteristics
of different failures in large-scale systems. However, they do
not propose automated techniques to predict failure rates. Lu
et al. [21], Li et al. [18] identify vulnerable instructions by
characterizing different features of instructions in programs.
While they develop efficient heuristics in finding vulnerable
instructions in programs, their techniques do not quantify
error propagation, and hence cannot accurately pin-point SDC
probabilities of individual instructions.

Sridharan et al. [27] introduce PVF, an analytical model
which eliminates microarchitectural dependency from archi-
tectural vulnerability to approximate SDC probabilities of
programs. While the model requires no FIs and is hence
fast, it has poor accuracy in determining SDC probabilities
as it does not distinguish between crashes and SDCs. Fang
et al. [9] introduce ePVF, which derives tighter bounds on
SDC probabilities than PVF, by omitting crash-causing faults
from the prediction of SDCs. However, both techniques focus
on modeling the static data dependency of instructions, and do
not consider error propagation beyond control-flow divergence,
which leads to large gaps in the predictions of SDCs (as we
showed in Section VII-C).

Finally, Hari et al. [13], [14] propose a technique to obtain a
comprehensive resilience profile of programs without needing
exhaustive FIs. They prune the FI space by leveraging the
similarity in executions to identify similar error propagations
in programs. While they reduce the number of FIs by orders of
magnitude, this approach still requires many FIs to obtain the
resilience profile, requiring several hours on a 200 node cluster.
TRIDENT offers a significantly faster solution, requiring no FIs.



IX. CONCLUSION

In this paper, we proposed TRIDENT, a three-level model
for soft error propagation in programs. TRIDENT abstracts
error propagation at static instruction level, control-flow level
and memory level, and does not need any fault injection
(FI). We implemented TRIDENT in the LLVM compiler, and
evaluated it on 11 programs. We found that TRIDENT achieves
comparable accuracy as FI, but is much faster and scalable both
for predicting the overall SDC probabilities of programs, and
the SDC probabilities of individual instructions in a program.
We also demonstrated that TRIDENT can be used to guide
selective instruction duplication techniques, and is significantly
more accurate than simpler models.

As future work, we plan to extend TRIDENT to consider
(1) Multiple inputs of a program [19], and (2) Platforms other
than CPUs, such as GPUs or special-purpose accelerators.
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