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Abstract

Given two consecutive frames, video interpolation aims
at generating intermediate frame(s) to form both spatially
and temporally coherent video sequences. While most
existing methods focus on single-frame interpolation, we
propose an end-to-end convolutional neural network for
variable-length multi-frame video interpolation, where the
motion interpretation and occlusion reasoning are jointly
modeled. We start by computing bi-directional optical
flow between the input images using a U-Net architecture.
These flows are then linearly combined at each time step to
approximate the intermediate bi-directional optical flows.
These approximate flows, however, only work well in locally
smooth regions and produce artifacts around motion bound-
aries. To address this shortcoming, we employ another U-
Net to refine the approximated flow and also predict soft vis-
ibility maps. Finally, the two input images are warped and
linearly fused to form each intermediate frame. By apply-
ing the visibility maps to the warped images before fusion,
we exclude the contribution of occluded pixels to the inter-
polated intermediate frame to avoid artifacts. Since none
of our learned network parameters are time-dependent, our
approach is able to produce as many intermediate frames as
needed. To train our network, we use 1,132 240-fps video
clips, containing 300K individual video frames. Experimen-
tal results on several datasets, predicting different numbers
of interpolated frames, demonstrate that our approach per-
forms consistently better than existing methods.

1. Introduction

There are many memorable moments in your life that
you might want to record with a camera in slow-motion
because they are hard to see clearly with your eyes: the
first time a baby walks, a difficult skateboard trick, a dog
catching a ball, etc. While it is possible to take 240-fps
(frame-per-second) videos with a cell phone, professional

high-speed cameras are still required for higher frame rates.
In addition, many of the moments we would like to slow
down are unpredictable, and as a result, are recorded at
standard frame rates. Recording everything at high frame
rates is impractical–it requires large memories and is power-
intensive for mobile devices.

Thus it is of great interest to generate high-quality slow-
motion video from existing videos. In addition to trans-
forming standard videos to higher frame rates, video inter-
polation can be used to generate smooth view transitions.
It also has intriguing new applications in self-supervised
learning, serving as a supervisory signal to learn optical
flow from unlabeled videos [15, 16].

It is challenging to generate multiple intermediate video
frames because the frames have to be coherent, both spa-
tially and temporally. For instance, generating 240-fps
videos from standard sequences (30-fps) requires interpo-
lating seven intermediate frames for every two consecutive
frames. A successful solution has to not only correctly in-
terpret the motion between two input images (implicitly or
explicitly), but also understand occlusions. Otherwise, it
may result in severe artifacts in the interpolated frames, es-
pecially around motion boundaries.

Existing methods mainly focus on single-frame video in-
terpolation and have achieved impressive performance for
this problem setup [15, 16, 19, 20]. However, these methods
cannot be directly used to generate arbitrary higher frame-
rate videos. While it is an appealing idea to apply a single-
frame video interpolation method recursively to generate
multiple intermediate frames, this approach has at least two
limitations. First, recursive single-frame interpolation can-
not be fully parallelized, and is therefore slow, since some
frames cannot be computed until other frames are finished
(e.g., in seven-frame interpolation, frame 2 depends on 0
and 4, while frame 4 depends on 0 and 8). Errors also accu-
mulates during recursive interpolation. Second, it can only
generate 2i−1 intermediate frames (e.g., 3, 7). As a re-
sult, one cannot use this approach (efficiently) to generate
1008-fps video from 24-fps, which requires generating 41
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intermediate frames.
In this paper we present a high-quality variable-length

multi-frame interpolation method that can interpolate a
frame at any arbitrary time step between two frames. Our
main idea is to warp the input two images to the specific
time step and then adaptively fuse the two warped images
to generate the intermediate image, where the motion inter-
pretation and occlusion reasoning are modeled in a single
end-to-end trainable network. Specifically, we first use a
flow computation CNN to estimate the bi-directional optical
flow between the two input images, which is then linearly
fused to approximate the required intermediate optical flow
in order to warp input images. This approximation works
well in smooth regions but poorly around motion bound-
aries. We therefore use another flow interpolation CNN
to refine the flow approximations and predict soft visibility
maps. By applying the visibility maps to the warped im-
ages before fusion, we exclude the contribution of occluded
pixels to the interpolated intermediate frame, reducing ar-
tifacts. The parameters of both our flow computation and
interpolation networks are independent of the specific time
step being interpolated, which is an input to the flow inter-
polation network. Thus, our approach can generate as many
intermediate frames as needed in parallel,

To train our network, we collect 240-fps videos from
YouTube and hand-held cameras [29]. In total, we have
1.1K video clips, consisting of 300K individual video
frames with a typical resolution of 1080 × 720. We
then evaluate our trained model on several other indepen-
dent datasets that require different numbers of interpola-
tions, including the Middlebury [1], UCF101 [28], slowflow
dataset [10], and high-frame-rate MPI Sintel [10]. Experi-
mental results demonstrate that our approach significantly
outperforms existing methods on all datasets. We also eval-
uate our unsupervised (self-supervised) optical flow results
on the KITTI 2012 optical flow benchmark [6] and obtain
better results than the recent method [15].

2. Related Work
Video interpolation. The classical approach to video in-
terpolation is based on optical flow [7, 2], and interpola-
tion accuracy is often used to evaluate optical flow algo-
rithms [1, 32]. Such approaches can generate intermediate
frames at arbitrary times between two input frames. Our ex-
periments show that state-of-the-art optical flow method [9],
coupled with occlusion reasoning [1], can serve as a strong
baseline for frame interpolation. However, motion bound-
aries and severe occlusions are still challenging to existing
flow methods [4, 6], and thus the interpolated frames tend
to have artifacts around boundaries of moving objects. Fur-
thermore, the intermediate flow computation (i.e., flow in-
terpolation) and occlusion reasoning are based on heuristics
and not end-to-end trainable.

Mahajan et al. [17] move the image gradients to a given
time step and solve a Poisson equation to reconstruct the
interpolated frame. This method can also generate multi-
ple intermediate frames, but is computationally expensive
because of the complex optimization problems. Meyer et
al. [18] propose propagating phase information across ori-
ented multi-scale pyramid levels for video interpolation.
While achieving impressive performance, this method still
tends to fail for high-frequency contents with large motions.

The success of deep learning in high-level vision tasks
has inspired numerous deep models for low-level vision
tasks, including frame interpolation. Long et al. [16] use
frame interpolation as a supervision signal to learn CNN
models for optical flow. However, their main target is op-
tical flow and the interpolated frames tend to be blurry.
Niklaus et al. [19] consider the frame interpolation as a lo-
cal convolution over the two input frames and use a CNN to
learn a spatially-adaptive convolution kernel for each pixel.
Their method obtains high-quality results. However, it is
both computationally expensive and memory intensive to
predict a kernel for every pixel. Niklaus et al. [20] im-
prove the efficiency by predicting separable kernels. But
the motion that can be handled is limited by the kernel size
(up to 51 pixels). Liu et al. [15] develop a CNN model
for frame interpolation that has an explicit sub-network for
motion estimation. Their method obtains not only good in-
terpolation results but also promising unsupervised flow es-
timation results on KITTI 2012. However, as discussed pre-
viously, these CNN-based single-frame interpolation meth-
ods [19, 20, 15] are not well-suited for multi-frame interpo-
lation.

Wang et al. [33] investigate to generate intermediate
frames for a light field video using video frames taken from
another standard camera as references. In contrast, our
method aims at producing intermediate frames for a plain
video and does not need reference images.
Learning optical flow. State-of-the-art optical flow meth-
ods [35, 36] adopt the variational approach introduce by
Horn and Schunck [8]. Feature matching is often adopted
to deal with small and fast-moving objects [3, 23]. How-
ever, this approach requires the optimization of a complex
objective function and is often computationally expensive.
Learning is often limited to a few parameters [13, 26, 30].

Recently, CNN-based models are becoming increasingly
popular for learning optical flow between input images.
Dosovitskiy et al. [5] develop two network architectures,
FlowNetS and FlowNetC, and show the feasibility of learn-
ing the mapping from two input images to optical flow using
CNN models. Ilg et al. [9] further use the FlowNetS and
FlowNetC as building blocks to design a larger network,
FlowNet2, to achieve much better performance. Two recent
methods have also been proposed [22, 31] to build the clas-
sical principles of optical flow into the network architecture,



achieving comparable or even better results and requiring
less computation than FlowNet2 [9].

In addition to the supervised setting, learning optical
flow using CNNs in an unsupervised way has also been ex-
plored. The main idea is to use the predicted flow to warp
one of the input images to another. The reconstruction error
serves as a supervision signal to train the network. Instead
of merely considering two frames [38], a memory module
is proposed to keep the temporal information of a video se-
quence [21]. Similar to our work, Liang et al. [14] train
optical flow via video frame extrapolation, but their train-
ing uses the flow estimated by the EpicFlow method [23] as
an additional supervision signal.

3. Proposed Approach
In this section, we first introduce optical flow-based in-

termediate frame synthesis in section 3.1. We then explain
details of our flow computation and flow interpolation net-
works in section 3.2. In section 3.3, we define the loss func-
tion used to train our networks.

3.1. Intermediate Frame Synthesis
Given two input images I0 and I1 and a time t ∈ (0, 1),

our goal is to predict the intermediate image Ît at time
T = t. A straightforward way is to accomplish this is to
train a neural network [16] to directly output the RGB pix-
els of Ît. In order to do this, however, the network has to
learn to interpret not only the motion pattens but also the
appearance of the two input images. Due to the rich RGB
color space, it is hard to generate high-quality intermediate
images in this way. Inspired by [1] and recent advances in
single intermediate video frame interpolation [19, 20, 15],
we propose fusing the warped input images at time T = t.

Let Ft→0 and Ft→1 denote the optical flow from It to I0
and It to I1, respectively. If these two flow fields are known,
we can synthesize the intermediate image Ît as follows:

Ît = α0 � g(I0, Ft→0) + (1− α0)� g(I1, Ft→1), (1)

where g(·, ·) is a backward warping function, which can be
implemented using bilinear interpolation [40, 15] and is dif-
ferentiable. The parameter α0 controls the contribution of
the two input images and depend on two factors: temporal
consistency and occlusion reasoning. � denotes element-
wise multiplication, implying content-aware weighting of
input images. For temporal consistency, the closer the time
step T = t is to T = 0, the more contribution I0 makes to
Ît; a similar property holds for I1. On the other hand, an
important property of the video frame interpolation prob-
lem is that if a pixel p is visible at T = t, it is most likely
at least visible in one of the input images,1 which means

1It is a rare case but it may happen that an object appears and disappears
between I0 and I1.
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Figure 1: Illustration of intermediate optical flow approxi-
mation. The orange pixel borrows optical flow from pixels
at the same position in the first and second images.

the occlusion problem can be addressed. We therefore in-
troduce visibility maps Vt←0 and Vt←1. Vt←0(p) ∈ [0, 1]
denotes whether the pixel p remains visible (0 is fully oc-
cluded) when moving from T = 0 to T = t. Combining the
temporal consistency and occlusion reasoning, we have

Ît=
1

Z
�
(
(1−t)Vt←0�g(I0, Ft→0)+tVt←1�g(I1, Ft→1)

)
,

where Z = (1− t)Vt→0 + tVt→1 is a normalization factor.

3.2. Arbitrary-time Flow Interpolation
Since we have no access to the target intermediate image

It, it is hard to compute the flow fields Ft→0 and Ft→1.
To address this issue, we can approximately synthesize the
intermediate optical flow Ft→0 and Ft→1 using the optical
flow between the two input images F0→1 and F1→0.

Consider the toy example shown in Fig. 1, where each
column corresponds to a certain time step and each dot rep-
resents a pixel. For the orange dot p at T = t, we are in-
terested in synthesizing its optical flow to its corresponding
pixel at T = 1 (the blue dashed arrow). One simple way
is to borrow the optical flow from the same grid positions
at T = 0 and T = 1 (blue and red solid arrows), assuming
that the optical flow field is locally smooth. Specifically,
Ft→1(p) can be approximated as

F̂t→1(p) = (1− t)F0→1(p) (2)
or

F̂t→1(p) = −(1− t)F1→0(p), (3)

where we take the direction of the optical flow between the
two input images in the same or opposite directions and
scale the magnitude accordingly ((1− t) in (3)). Similar to
the temporal consistency for RGB image synthesis, we can
approximate the intermediate optical flow by combining the
bi-directional input optical flow as follows (in vector form).

F̂t→0 = −(1− t)tF0→1 + t2F1→0

F̂t→1 = (1− t)2F0→1 − t(1− t)F1→0. (4)



I0 F0→1 F1→0

It F̂t→1 F̂t→0

I1 Ft→1 Ft→0

‖Ft→1 − F̂t→1‖2 ‖Ft→0 − F̂t→0‖2

Figure 2: Samples of flow interpolation results, where t =
0.5. The entire scene is moving toward the left (due to cam-
era translation) and the motorcyclist is independently mov-
ing left. The last row shows that the refinement from our
flow interpolation CNN is mainly around the motion bound-
aries (the whiter a pixel, the bigger the refinement).

This approximation works well in smooth regions but
poorly around motion boundaries, because the motion near
motion boundaries is not locally smooth. To reduce artifacts
around motion boundaries, which may cause poor image
synthesis, we propose learning to refine the initial approx-
imation. Inspired by the cascaded architecture for optical
flow estimation in [9], we train a flow interpolation sub-
network. This sub-network takes the input images I0 and
I1, the optical flows between them F0→1 and F0→1, the
flow approximations F̂t→0 and F̂0→1, and two warped in-
put images using the approximated flows g(I0, F̂t→0) and
g(I1, F̂t→1) as input, and outputs refined intermediate opti-
cal flow fields Ft→1 and Ft→0. Sample interpolation results
are displayed in Figure 2.

As discussed in Section 3.1, visibility maps are essential
to handle occlusions. Thus, We also predict two visibility
maps Vt←0 and Vt←1 using the flow interpolation CNN, and
enforce them to satisfy the following constraint

Vt←0 = 1− Vt←1. (5)

Without such a constraint, the network training diverges.
Intuitively, Vt←0(p) = 0 implies Vt←1(p) = 1, meaning
that the pixel p from I0 is occluded at T = t, we should
fully trust I1 and vice versa. Note that it rarely happens that
a pixel at time t is occluded both at time 0 and 1. Since

I0 I1

Ft→0 Ft→1

g(I0, Ft→0) g(I1, Ft→1)

Vt←0 Vt←1

Ît Ît w/o visibility maps
PSNR=30.23 PSNR=30.06

Figure 3: Samples of predicted visibility maps (best viewed
in color), where t= 0.5. The arms move downwards from
T =0 to T =1. So the area right above the arm at T =0 is
visible at t but the area right above the arm at T =1 is oc-
cluded (i.e., invisible) at t. The visibility maps in the fourth
row clearly show this phenomenon. The white area around
arms in Vt←0 indicate such pixels in I0 contribute most to
the synthesized Ît while the occluded pixels in I1 have little
contribution. Similar phenomena also happen around mo-
tion boundaries (e.g., around bodies of the athletes).

we use soft visibility maps, when the pixel p is visible both
in I0 and I1, the network learns to adaptively combine the
information from two images, similarly to the matting ef-
fect [24]. Samples of learned visibility maps are shown in
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Figure 4: Network architecture of our approach.

the fourth row of Fig. 3.
In order to do flow interpolation, we need to first com-

pute the bi-directional optical flow between the two input
images. Recent advances in deep learning for optical flow
have demonstrated great potential to leverage deep CNNs to
reliably estimate optical flow. In this paper, we train a flow
computation CNN, taking two input images I0 and I1, to
jointly predict the forward optical flow F0→1 and backward
optical flow F1→0 between them.

Our entire network is summarized in Fig. 4. For the flow
computation and flow interpolation CNNs, we adopt the U-
Net architecture [25]. The U-Net is a fully convolutional
neural network, consisting of an encoder and a decoder,
with skip connections between the encoder and decoder fea-
tures at the same spatial resolution For both networks, we
have 6 hierarchies in the encoder, consisting of two convo-
lutional and one Leaky ReLU (α=0.1) layers. At the end of
each hierarchy except the last one, an average pooling layer
with a stride of 2 is used to decrease the spatial dimension.
There are 5 hierarchies in the decoder part. At the begin-
ning of each hierarchy, a bilinear upsampling layer is used
to increase the spatial dimension by a factor of 2, followed
by two convolutional and Leaky ReLU layers.

For the flow computation CNN, it is crucial to have large
filters in the first few layers of the encoder to capture long-
range motion. We therefore use 7×7 kernels in the first two
convoluional layers and 5 × 5 in the second hierarchy. For
layers in the rest of entire network, we use 3 × 3 convolu-
tional kernels. The detailed configuration of the network is
described in our supplementary material.

3.3. Training

Given input images I0 and I1, a set of intermediate
frames {Iti}Ni=1 between them, where ti ∈ (0, 1), and our
predictions of intermediate frames {Îti}Ni=1, our loss func-
tion is a linear combination of four terms:

l = λrlr + λplp + λwlw + λsls. (6)

Reconstruction loss lr models how good the reconstruc-

Table 1: Statistics of dataset we use to train our network.

Adobe240-fps [29] YouTube240-fps
#video clips 118 1,014
#video frames 79,768 296,352
mean #frames per clip 670.3 293.1
resolution 720p 720p

tion of the intermediate frames is:

lr =
1

N

N∑
i=1

‖Îti − Iti‖1. (7)

Such a reconstruction loss is defined in the RGB space,
where pixel values are in the range [0, 255].

Perceptual loss. Even though we use the L1 loss to
model the reconstruction error of intermediate frames, it
might still cause blur in the predictions. We therefore use
a perceptual loss [11] to preserve details of the predic-
tions and make interpolated frames sharper, similar to [20].
Specifically, the perceptual loss lp is defined as

lp =
1

N

N∑
i=1

‖φ(Ît)− φ(It)‖2, (8)

where φ denote the conv4 3 features of an ImageNet pre-
trained VGG16 model [27]

Warping loss. Besides intermediate predictions, we also
introduce the warping loss lw to model the quality of the
computed optical flow, defined as

lw =‖I0−g(I1, F0→1)‖1+‖I1−g(I0, F1→0)‖1+ (9)

1

N

N∑
i=1

‖Iti−g(I0, F̂ti→0)‖1+
1

N

N∑
i=1

‖Iti−g(I1, F̂ti→1)‖1.

Smoothness loss. Finally, we add a smoothness term [15]
to encourage neighboring pixels to have similar flow values:

ls = ‖∇F0→1‖1 + ‖∇F1→0‖1. (10)

The weights have been set empirically using a validation set
as λr =0.8, λp =0.005, λw =0.4, and λs =1. Every com-
ponent of our network is differentiable, including warping
and flow approximation. Thus our model can be end-to-end
trained.

4. Experiments
4.1. Dataset

To train our network, we use the 240-fps videos
from [29], taken with hand-held cameras. We also collect
a dataset of 240-fps videos from YouTube. Table 1 sum-
marizes the statistics of the two datasets and Fig. 5 shows
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Figure 5: Snapshot of our training data.

a snapshot of randomly sampled video frames. In total, we
have 1,132 video clips and 376K individual video frames.
There are a great variety of scenes in both datasets, from in-
door to outdoor, from static to moving cameras, from daily
activities to professional sports, etc.

We train our network using all of our data and test
our model on several independent datasets, including
the Middlebury benchmark [1], UCF101 [28], slowflow
dataset [10], and high-frame-rate Sintel sequences [10]. For
Middlebury, we submit our single-frame video interpola-
tion results of eight sequences to its evaluation server. For
UCF101, in every triple of frames, the first and third ones
are used as input to predict the second frame using 379 se-
quences provided by [15]. The slowflow dataset contains
46 videos taken with professional high-speed cameras. We
use the first and eighth video frames as input, and interpo-
late intermediate 7 frames, equivalent to converting a 30-fps
video to a 240-fps one. The original Sintel sequences [4]
were rendered at 24 fps. 13 of them were re-rendered at
1008 fps [10]. To convert from 24-fps to 1008-fps using a
video frame interpolation approach, one needs to insert 41
in-between frames. However, as discussed in the introduc-
tion, it is not directly possible with recursive single-frame
interpolation methods [19, 20, 15] to do so. Therefore, we
instead predict 31 in-between frames for fair comparisons
with previous methods.

Our network is trained using the Adam optimizer [12] for
500 epochs. The learning rate is initialized to be 0.0001 and
decreased by a factor of 10 every 200 epochs. During train-
ing, all video clips are first divided into shorter ones with
12 frames in each and there is no overlap between any of
two clips. For data augmentation, we randomly reverse the
direction of entire sequence and select 9 consecutive frames
for training. On the image level, each video frame is resized

Table 2: Effectiveness of multi-frame video interpolation on
the Adobe240-fps dataset.

PSNR SSIM IE

1 interp 30.26 0.909 8.85
3 interp 31.02 0.917 8.43
7 interp 31.19 0.918 8.30

Table 3: Effectiveness of different components of our model
on the Adobe240-fps dataset.

PSNR SSIM IE

w/o flow interpolation 30.34 0.908 8.93
w/o vis map 31.16 0.918 8.33
w/o perceptual loss 30.96 0.916 8.50
w/o warping loss 30.52 0.910 8.80
w/o smoothness loss 31.19 0.918 8.26

full model 31.19 0.918 8.30

to have a shorter spatial dimension of 360 and a random
crop of 352× 352 plus horizontal flip are performed.

For evaluation, we report Peak Signal-to-Noise Ra-
tio (PSNR) and Structural Similarity Index (SSIM) scores
between predictions and ground-truth in-between video
frames, as well as the interpolation error (IE) [1], which
is defined as root-mean-squared (RMS) difference between
the ground-truth image and the interpolated image.

4.2. Ablation Studies
In this section, we perform ablation studies to analyze

our model. For the first two experiments, we randomly sam-
pled 107 videos from Adobe240-fps dataset for training and
the remaining 12 ones for testing.
Effectiveness of multi-frame video interpolation. We first
test whether jointly predicting several in-between frames
improves the video interpolation results. Intuitively, pre-
dicting a set of in-between frames together might implic-
itly enforce the network to generate temporally coherent se-
quences.

To this end, we train three variants of our model: pre-
dicting intermediate single, three, and seven frames, which
are all evenly distributed across time steps. At test time, we
use each model to predict seven in-between frames. Table 2
clearly demonstrates that the more intermediate frames we
predict during training, the better the model is.
Impact of different components design. We also investi-
gate the contribution of each component in our model. In
particular, we study the impact of flow interpolation by re-
moving the flow refinement from the second U-Net (but
keep using the visibility maps). We further study the use
of visibility maps as means of occlusion reasoning. We can
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Figure 6: Performance comparisons on each sequence of
the Middlebury dataset. Numbers are obtained from the
Middlebury evaluation server.

Table 4: Results on the UCF101 dataset.

PSNR SSIM IE

Phase-Based [18] 32.35 0.924 8.84
FlowNet2 [1, 9] 32.30 0.930 8.40
DVF [15] 32.46 0.930 8.27
SepConv [20] 33.02 0.935 8.03

Ours (Adobe240-fps) 32.84 0.935 8.04
Ours 33.14 0.938 7.80

observe from Table 3 that removing each of three compo-
nents harms performance. Particularly, the flow interpola-
tion plays a crucial role, which verifies our motivation to
introduce the second learned network to refine intermedi-
ate optical flow approximations. Adding visibility maps
improves the interpolation performance slightly. Without
it, there are artifacts generated around motion boundaries,
as shown in Figure 3. Both of these validate our hypothe-
sis that jointly learning motion interpretation and occlusion
reasoning helps video interpolation.

We also study different loss terms, where the warp-
ing loss is the most important one. Although adding the
smoothness terms slightly hurts the performance quantita-
tively, we fount it is useful to generate visually appealing
optical flow between input images.
Impact of the number of training samples. Finally, we
investigate the effect of the number of training samples.
We compare two models: one trained on the Adobe240-fps
dataset only and the other one trained on our full dataset.
The performance of these two models on the UCF101
dataset can be found in last two rows Table 4. We can see
that our model benefits from more training data.

4.3. Comparison with state-of-the-art methods

In this section, we compare our approach with state-of-
the-art methods including phase-based interpolation [18],
separable adaptive convolution (SepConv) [20], and deep
voxel flow (DVF) [15]. We also implement a baseline ap-
proach using the interpolation algorithm presented in [1],

Table 5: Results on the slowflow dataset.

PSNR SSIM IE

Phase-Based [18] 31.05 0.858 8.21
FlowNet2 [1, 9] 34.06 0.924 5.35
SepConv [20] 32.69 0.893 6.79

Ours 34.19 0.924 6.14

Table 6: Results on the high-frame-rate Sintel dataset.

PSNR SSIM IE

Phase-Based [18] 28.67 0.840 10.24
FlowNet2 [1, 9] 30.79 0.922 5.78
SepConv [20] 31.51 0.911 6.61

Ours 32.38 0.927 5.42

where we use FlowNet2 [9] to compute the bi-directional
optical flow results between two input images. FlowNet2 is
good at capturing global background motion and recovering
sharp motion boundaries for the optical flow. Thus, when
coupled with occlusion reasoning [1], FlowNet2 serves as a
strong baseline.
Single-frame video interpolation. The interpolation error
(IE) scores on each sequence form the Middlebury dataset
are shown in Figure 6. In addition to SepConv, we also
compare our model with other three top-performing mod-
els on the Middlebury dataset2, where the interpolation al-
gorithm [1] is coupled with different optical flow meth-
ods including MDP-Flow2 [37], PMMST [39], and Deep-
Flow [34]. Our model achieves the best performance on 6
out of all 8 sequences. Particularly, the Urban sequence is
generated synthetically and the Teddy sequence contains
actually two stereo pairs. The performance of our model
validates the generalization ability of our approach.

On UCF101, we compute all metrics using the motion
masks provided by [15]. The quantitative results are shown
in Table 4, highlighting the performance of each interpo-
lation model’s capacity to deal with challenging motion
regions. Our model consistently outperforms both non-
neural [18] and CNN-based approaches [20, 15]. Sam-
ple interpolation results on a sample from UCF101 can be
found at Figure 7. More results can be found in our supple-
mentary material.
Multi-frame video interpolation. For the slowflow
dataset, we predict 7 in-between frames. All experiments
are performed on the half-resolution images with a spatial
dimension of 1280 × 1024. On this dataset, our approach
achieves the best PSNR and SSIM scores and FlowNet2

2http://vision.middlebury.edu/flow/eval/
results/results-i1.php

http://vision.middlebury.edu/flow/eval/results/results-i1.php
http://vision.middlebury.edu/flow/eval/results/results-i1.php


2 input images actual in-between PhaseBased [18] FlowNet2 [1, 9] DVF [15] SepConv [20] ours

Figure 7: Visual results of a sample from UCF101. Our model produces less artifacts around the brush and the hand (best
viewed in color). Please see the supplementary material for more image and video results.
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Figure 8: PSNR at each time step when generating 31 inter-
mediate frames on the high-frame-rate Sintel dataset.

achieves the best SSIM and L1 error scores. FlowNet2 is
good at capturing global motions and thus produces sharp
prediction results on those background regions, which fol-
low a global motion pattern. Detailed visual comparisons
can be found in our supplementary material.

On the challenging high-frame-rate Sintel dataset, our
approach significantly outperforms all other methods. We
also show the PSNR scores at each time step in Figure 8.
Our approach produces the best predictions for each in-
between time step except slightly worse than SepConv at
the last time step.

In summary, our approach achieves state-of-the-art re-
sults over all datasets, generating single or multiple inter-
mediate frames. It is remarkable, considering the fact our
model can be directly applied to different scenarios without
any modification.

4.4. Unsupervised Optical Flow

Our video frame interpolation approach has an unsu-
pervised (self-supervised) network (the flow computation
CNN) that can compute the bi-directional optical flow be-
tween two input images. Following [15], we evaluate our
unsupervised forward optical flow results on the testing set
of KITTI 2012 optical flow benchmark [6]. The average

Table 7: Optical flow results on the KITTI 2012 benchmark.

LDOF[3] EpicFlow[23] FlowNetS[5] DVF[15] Ours
EPE 12.4 3.8 9.1 14.6 13.0

end-point error (EPE) scores of different methods are re-
ported in Table 7. Compared with previous unsupervised
method DVF [15], our model achieves an average EPE of
13.0, an 11% relative improvement. Very likely this im-
provement results from the multi-frame video interpolation
setting, as DVF [15] has a similar U-Net architecture to
ours.

5. Conclusion
We have proposed an end-to-end trainable CNN that can

produce as many intermediate video frames as needed be-
tween two input images. We first use a flow computation
CNN to estimate the bidirectional optical flow between the
two input frames, and the two flow fields are linearly fused
to approximate the intermediate optical flow fields. We then
use a flow interpolation CNN to refine the approximated
flow fields and predict soft visibility maps for interpolation.
We use more than 1.1K 240-fps video clips to train our net-
work to predict seven intermediate frames. Ablation studies
on separate validation sets demonstrate the benefit of flow
interpolation and visibility map. Our multi-frame approach
consistently outperforms state-of-the-art single frame meth-
ods on the Middlebury, UCF101, slowflow, and high-frame-
rate Sintel datasets. For the unsupervised learning of optical
flow, our network outperforms the recent DVF method [15]
on the KITTI 2012 benchmark.
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