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Abstract
The prevailing paradigm for enhancing the reasoning abilities of Large Language Models (LLMs) revolves
around post-training on high-quality, reasoning-intensive data. While emerging literature suggests
that reasoning data is increasingly incorporated also during the mid-training stage—a practice that is
relatively more proprietary and less openly characterized—the role of such data in pretraining remains
unclear. In particular, due to the opaqueness of pretraining corpora in most frontier models, the effect of
reasoning data introduced at different phases of pre- and/or post-training is relatively less reported in
the scientific literature. This raises several important but unsettled questions: Is adding reasoning data
earlier during pre-training any better than introducing it during post-training, when the token counts
are controlled? Could earlier inclusion risk overfitting and harm generalization, or instead establish
durable foundations that later fine-tuning cannot recover? To address these questions, we conduct
the first systematic study of how reasoning data—varying in scale, diversity, and quality—affects LLM
performance when introduced at different stages of training. Our findings reveal that front-loading
reasoning data into pretraining is critical (19% average gain), establishing foundational capabilities that
cannot be fully replicated by later-stage SFT, even with more data. We uncover an asymmetric principle
for optimal data allocation: pretraining benefits most from broad diversity in reasoning patterns (11%
average gain), while SFT is more sensitive to data quality (15% average gain with high quality data).
Furthermore, we show that high-quality pretraining data has latent effects, activated only after SFT, and
that naively scaling SFT data can be detrimental, washing away the benefits of early reasoning injection.
Collectively, our results challenge the conventional separation of language modeling and reasoning,
providing a principled guide for strategically allocating data across the entire training pipeline to build
more capable models.

1. Introduction

The reasoning abilities of Large Language Models (LLMs) have advanced considerably, with post-training on
reasoning data driving significant breakthroughs in reasoning tasks, such as math competitions (Hendrycks et al.,
2021b), PhD-level scientific QA (Rein et al., 2024; Phan et al., 2025), and software engineering (Jimenez et al.,
2024). This progress has been largely driven by mid- or post-training LLMs on high-quality, reasoning-intensive
datasets—often featuring long chain-of-thought (CoT) examples (Guha et al., 2025; Moshkov et al., 2025; Zhou
et al., 2025; Gandhi et al., 2025; Wang et al., 2025). While this approach has proven effective, it treats reasoning
as a specialized skill to be layered onto a generalist base. In addition, the impact of incorporating reasoning
data during pretraining—and the potential synergistic effects on subsequent post-training—remains a critical
yet less explored frontier. This research gap persists due to the prohibitive computational cost of end-to-end
pretraining experiments and the opacity surrounding proprietary training recipes, which has concentrated
community efforts on the more accessible post-training phase.

* Work done during internship at NVIDIA
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Figure 1: We systematically inject reasoning-style data (𝒟res) at different phases of training—pretraining versus
SFT—while varying its diversity, quantity, and quality. Our results show an asymmetric principle: diversity and
scale matter most during pretraining, whereas quality dominates in SFT. This allocation strategy compounds
through reinforcement learning (RL), yielding sustained gains across complex reasoning benchmarks.

The synergy between post-training phases has been widely explored (Liu et al., 2025; Chen et al., 2025b;
Chu et al., 2025), yet conclusions vary with training data and scale, and their applicability to pretraining
remains vague in the current literature. In this work, we investigate not just which reasoning data, but when to
train with such reasoning data by studying the synergy between pretraining and post-training. Our central
goal is to determine the ideal balance of such reasoning data across the two phases in order to maximize
downstream accuracies after reinforcement learning. This motivates the following research questions:

• Is a reasoning-rich pretraining essential, or can a model “catch up"? We investigate whether a model pretrained
without reasoning data can match the performance of its reasoning-aware counterparts by simply undergoing
a more intensive SFT phase.

• Does inclusion of reasoning data make the base llm overfitted and less generalizable to sustain gains in subsequent
training phases? While recent literature highlights overspecialization of reasoning during post-training can
be detrimental (Gupta et al., 2025; Luo et al., 2025b), investigations of this effect in pretraining remain
limited.

• Does data diversity in pretraining impact stability and specialization during SFT? Specifically, does using the
same reasoning data in both pretraining and SFT lead to robust skill mastery, or does a narrow pretraining
focus risk catastrophic forgetting when the model is later fine-tuned on different tasks?

• Does the complexity and quality of reasoning data matter when incorporated during pretraining of the base
model? Current literature explores this mostly from SFT stage (Zhou et al., 2023; Guha et al., 2025), making it
obscure whether difficulty or noisiness in the early phase of training directly impacts reasoning development
or not.

This work provides a systematic analysis of the interplay between reasoning data and the distinct phases of
LLM training. Our primary findings are summarized as:

• Front-loading reasoning data into pretraining creates a durable, compounding advantage. Injecting
reasoning data during pretraining establishes a superior foundation that widens at every stage of post-
training, culminating in a +19% lead on expert-level benchmarks. This refutes the catch-up and overfitting
hypotheses, proving that SFT cannot compensate for a weak foundation and that pretraining choices dictate
the final performance ceiling.

• The optimal data strategy is asymmetric: prioritize diversity in pretraining and quality in SFT. Our
results reveal a clear, phase-dependent principle. Pretraining benefits most from diversity and scale (a
+11% gain with diverse corpus), while SFT is dominated by data quality (a +15% gain with high-quality
reasoning data). This provides an actionable heuristic for data allocation that is more nuanced than simplistic
“more is better” approaches.

• Naive scaling of SFT data is ineffective and harmful. Blindly scaling SFT with mixed-quality data yields
no average improvement and actively harmed mathematical reasoning by -5% on average, while a marginal
(0.4%) addition of high-quality data consistently improved performance.
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• High-quality pretraining data can have a latent effect unlocked by SFT. We found that high-quality data
added to a diverse pretraining mix showed minimal immediate benefit but “unlocked” an additional +4%
gain over model pretrained with diverse, mixed quality data after SFT—revealing a deeper synergy where
pretraining can instill a latent potential in the model that is only activated during the alignment phase.

2. Methodology

Our methodology is designed to systematically determine the optimal strategy for allocating reasoning data
between the pretraining and supervised fine-tuning stages of llm development. We frame this as an optimiza-
tion problem where the goal is to maximize the final model’s downstream accuracies, 𝒫. This is a function of
the reasoning data introduced during pretraining, 𝒟PT

res , and the data used for supervised fine-tuning, 𝒟SFT
res .

Our objective is to find the optimal data configurations, (𝒟PT*
res ,𝒟SFT*

res ), that solves the following:

(𝒟PT*
res ,𝒟SFT*

res ) = arg max
𝒟PT

res ,𝒟SFT
res

𝒫(𝜃final)

where 𝜃final represents the parameters of the final model trained on data recipes defined by the choice of
reasoning data at both stages.

Let 𝒟base denote the general pretraining corpus and we define a modelℳ(𝜃) with parameters 𝜃 trained in
two stages:

Pretraining: 𝜃PT = argmin
𝜃

E(𝑥,𝑦)∼𝒟base∪𝒟PT
res
ℒLM(𝑓𝜃(𝑥), 𝑦),

SFT: 𝜃SFT = argmin
𝜃

E(𝑥,𝑦)∼𝒟SFT
res
ℒSFT(𝑓𝜃(𝑥), 𝑦),

Evaluation Objective.

The central research question can be expressed as analyzing the function:

𝒫(𝒟PT
res ,𝒟SFT

res ) = E𝑡∼𝒯

[︁
Acc

(︀
𝑓𝜃SFT

(𝑡)
)︀]︁
, (1)

where 𝒯 is a set of downstream reasoning tasks (math, science, code, general reasoning).

Our study can be summarized as optimizing the allocation of 𝒟res between pretraining and SFT:

max
𝒟PT

res , 𝒟SFT
res

𝒫(𝒟PT
res ,𝒟SFT

res ) s.t. ℬ = |𝒟PT
res |+ |𝒟SFT

res |, (2)

where ℬ is the total budget of reasoning data available.

This captures the trade-off of early, scale/diversity vs late, quality/complexity: 𝒟PT
res ←→ 𝒟SFT

res

2.1. Model Architecture and Baseline
We select a hybrid transformer with a mixture of Mamba 2 (Dao & Gu, 2024), self-attention and FFN layers
(NVIDIA, 2025a) with an 8B parameter for our base model,ℳ and pretrain from scratch for 1 trillion tokens.
This size strikes a balance between computational feasibility and the capacity to learn complex reasoning
patterns.

2.2. Data Pipeline
Our experimental design relies on a careful distinction between two categories of data: (1) a large-scale,
general-purpose pretraining corpus, and (2) a reasoning-focused, instruction-tuning (SFT-style) datasets of
varying quality and scale. This separation allows us to precisely control the injection of reasoning data at
different stages of training.

General Pretraining Corpus (𝒟base).

For the base training corpus, we adopt the dataset introduced in NVIDIA (2025b), which contains 6.2T tokens
drawn from high-quality Common Crawl, mathematics, and code sources. This corpus provides broad coverage
of languages and technical domains, serving as the backbone of all pretraining experiments.
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Reasoning Datasets (𝒟res).

To investigate the impact of data quality, diversity, and complexity, we curate four distinct reasoning-focused
datasets in the question-answer format:

• Large-Scale, Diverse Data (𝒟LDQ). To simulate a “quantity-over-quality" strategy, we employ the Nemotron-
Pretraining-SFT-v1 dataset (NVIDIA, 2025b). This massive 336 billion token dataset offers extensive domain
coverage, with a composition of approximately 56% math, 17% code, and 27% science and general-purpose
reasoning. The dataset covers tasks ranging from simple Q&A to multi-turn dialogues, but with heterogeneous
quality and reasoning depth, reflecting large-scale real-world availability.

• Small-Scale, High-Quality Data (𝒟SHQ). To capture the effect of long chain-of-thought traces from strong
teacher models, we include the dataset of Guha et al. (2025), comprising 1.2M carefully curated examples
(71% math, 21% code, 8% science). Compared to 𝒟LMQ, this corpus is smaller, less diverse, but significantly
higher quality, emphasizing detailed reasoning paths.

• Large-Scale, Mixed-Quality Data (𝒟LMQ). To balance diversity with quality, we construct a combined
dataset that is a straightforward union of the two datasets above: 𝒟LMQ = 𝒟LDQ∪𝒟SHQ. This mix preserves
large-scale coverage while injecting a fraction of curated, high-quality reasoning traces.

• Answer-Length Filtered Data (𝒟ALF). To investigate the feature of data quality, we create a subset of 𝒟LLQ
by retaining examples where the answer length exceeds 4096 tokens, based on the principle that longer
responses often correspond to more complex CoT reasoning. This dataset allows us to isolate the impact of
reasoning complexity in different training phases.

2.3. Synergy between Pretraining and SFT
In this work, we aim to disentangle the contribution of reasoning data when incorporated at different points in
the training pipeline. We structure the study into three stages: (i) large-scale Pretraining, where reasoning data
may or may not be injected alongside the base corpus, (ii) Supervised Finetuning (SFT), where pretrained
models are further adapted on reasoning data of varying quality and diversity, and (iii) Reinforcement
Learning (RLVR) to determine the sustainability of early reasoning gain in the final model. This subsection
details the pretraining design; the SFT stage is described in the following section.

Phase 1: Pretraining.

Prior work has primarily explored reasoning supervision either on top of fully pretrained llms (Wang et al.,
2025) or by introducing small amounts of long chain-of-thought (CoT) data into intermediate checkpoints
(AI et al., 2025). These approaches leave open two questions: how to inject reasoning data at scale during
end-to-end pretraining, and whether the benefits persist when combined with high-quality base corpora. To
address these questions, we pretrain all models from scratch for 1T tokens using a mix of 80% of 𝒟base and
different types of 𝒟res for 20%.

Based on the reasoning data introduced, we train four distinct models:

• ℳbase: This model serves as our baseline and is pretrained without any reasoning data.
• ℳLDQ: Pre-trained with large-scale, diverse 𝒟LDQ reasoning dataset along with 𝒟base.
• ℳSHQ: Pre-trained with 𝒟SHQ and 𝒟base allowing us to isolate the effect of data quality versus the quantity
and diversity ofℳLDQ.

• ℳLMQ: Finally, this model is exposed to our combined reasoning 𝒟LMQ dataset.

In the subsequent analysis, we useℳres to denote the aggregate performance of the models pretrained with
reasoning data, representing the average score acrossℳSHQ,ℳLDQ, andℳLMQ.

Phase 2: Supervised Finetuning.

Following pretraining, each of the four model variants (ℳbase,ℳLDQ,ℳSHQ,ℳLMQ) is adapted through
supervised finetuning (SFT). This second phase is crucial for understanding the synergies, redundancies, and
trade-offs between the data introduced during pretraining versus the SFT stage. To this end, we design a
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controlled set of SFT experiments, where each pretrained model is finetuned on different reasoning corpora
introduced in Section 2.2 to address the following rearch questions:

• The “Catch-Up” Hypothesis: Can intensive SFT on high-quality reasoning data allow the baseline model,
ℳbase, to match or exceed the accuracy of models that were exposed to reasoning data during pretraining?
This directly tests the criticality of early data injection versus late-stage specialization.

• Impact of Pretraining Data Scale and Diversity: We investigate how the scale and diversity of reasoning
data used during pretraining influence the final model’s capacity to absorb high-quality instruction data.
Specifically, we ask: Does scaling up diverse reasoning data in pretraining provide lasting benefits even after
all models are finetuned on the same high-quality SFT corpus? By fine-tuning both the model pretrained on
large, diverse data (ℳLDQ) and on smaller, less diverse data (ℳSHQ) on the same high-quality SFT set,
we can determine whether a broad or a deep initial exposure to reasoning yields a better foundation for
downstream specialization.

• Impact of SFT Data Quality and Complexity: By fine-tuning all four base models on datasets of varying
quality (𝒟LDQ vs. 𝒟SHQ) and complexity (𝒟ALF), we can measure the marginal utility of data quality at
the SFT stage as a function of the model’s initial pretraining condition.

This design enables us to address three critical dimensions: (1) the synergy between pretraining and
SFT data, (2) the marginal gains of increasing SFT data scale when reasoning was already introduced in
pretraining, and (3) the role of data complexity and diversity in determining whether reasoning supervision
should be injected early, late, or across both stages. Together with the pretraining experiments, these SFT
studies form a fully crossed setup, providing the first systematic assessment of how reasoning-style SFT data
interacts with pretraining to shape the reasoning abilities of large language models.

Phase 3: Reinforcement Learning.

To further observe the impact of reasoning centric pretraining and heavy supervised finetuning, we deploy RL
using Group Relative Policy Optimization (grpo) (Shao et al., 2024) with verifiable rewards on top of the
base models. Here we use nemotron-crossthink Akter et al. (2025) which has shown to be effective to
enhance reasoning across diverse domains.

3. Experimental Setup

3.1. Training

Pretraining.

To prepare base models, we pretrain a 8B llm on our pretraining data blend till 1T tokens using 512 H100
80GB SXM5 GPUs. During training, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with 𝛽1 = 0.9,
𝛽2 = 0.95 and weight decay of 0.1. We use a 8-way tensor and pipeline parallelism to train the model. We set
the maximum value of learning rate to 3𝑒−4, minimum to 3𝑒−6, and use a batch size of 6M tokens with a 8192
context length.

Post-Training.

After pretraining, each 8B llm is finetuned on 4.8M reasoning samples from 𝒟𝑟𝑒𝑠. SFT uses AdamW with
(𝛽1, 𝛽2) = (0.9, 0.95), weight decay 0.01, warmup ratio 0.05, learning rate 5×10−6, batch size 512, and context
length 32k. We then apply grpo via the veRL framework1 for one epoch on nemotron-crossthink data
with constant LR 1×10−6, batch size 128, PPO mini-batch 128, and context length 8192. Each step samples 128
prompts with 8 rollouts (temperature= 1.0, top-𝑝 = 1.0), and a KL penalty coefficient of 0.001.

3.2. Evaluation Metrics
We report average accuracies of all tasks under each of the following categories.
1https://github.com/volcengine/verl
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Base Model Evaluations.

We conduct a thorough benchmark assessment to evaluate the generalizability of the base models, using a
series of datasets using LM Eval Harness (Gao et al., 2024).

• General Purpose Reasoning (gprPT avg). We consider four standard commonsense and logical reasoning
tasks in 0-shot: ARC challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi
et al., 2021), and reading comprehension task: RACE (Lai et al., 2017).

• Math Reasoning (mathPT avg). We evaluate the math reasoning ability with two benchmarks–they
encompass math challenges from elementary to college level complexity demanding qualitative reasoning
(8-shot GSM8K (Cobbe et al., 2021), 4-shot MATH-500 (Hendrycks et al., 2021b)).

• Science Reasoning (sciencePT avg). We evaluate on 5-shot MMLU (Hendrycks et al., 2021a) and MMLU-
Pro (Wang et al., 2024) that spans multiple domains, from professional to academic, testing the model on
specialized subjects.

• Code Reasoning (codePT avg). For code tasks (HumanEval (Chen et al., 2021), MBPP (Odena et al.,
2021)) we evaluate the EvalPlus variants along with the sanitization of generations (Liu et al., 2023), in a
0-shot setup. We estimate avg@32, pass@1 from 32 generations per prompt.

SFT Model Evaluations.

To evaluate the reasoning ability of different SFT models, we focus on reasoning centric benchmarks unlike in
base model evaluations, where mostly focus on the generalizability of the llm. We conduct evaluations using
NeMo-Skills2.

• Math Reasoning (mathSFT avg). In addition to the GSM8K and MATH-500, we evaluate the models on
two more complex math tasks—AIME24 and AIME25 (Veeraboina, 2023).

• Science Reasoning (scienceSFT avg). On top of MMLU and MMLU-Pro, we evaluate on graduate level QA
task: GPQA-Diamond (Rein et al., 2024).

• Code Reasoning (codeSFT avg). We choose LiveCodeBench (Jain et al., 2025) to test complex code
reasoning ability.

• Instruction Following (insSFT avg). For broader evaluation on diverse capabilities, we use IFEval (Zeng
et al., 2024).

We report Pass@1 average of 16 runs for AIME-2024, AIME-2025 and average of 4 runs for MATH-500, GSM8K,
MMLU, MMLU-Pro, GPQA-Diamond, LiveCodeBench and IFEval.

RL Model Evaluations.

In this phase, we evaluate the models on complex reasoning tasks such as AIME24,25, MATH-500, GSM8K,
MMLU, MMLU-Pro, GPQA-Diamond, LiveCodeBench following the evaluation metric in sft phase.

4. Experiments and Results

Immediate Foundational Gains from Reasoning Data in Pretraining.

Table 1 shows the average accuracies of our four model variants immediately after the 1T token pretraining
phase. The results provide clear evidence that integrating reasoning-style corpora from the start builds a
significantly more capable foundation. Every model exposed to reasoning data surpasses baselineℳbase. The
largest improvements come from models trained on large-scale, diverse data;ℳLDQ achieves highest average,
driven by a +28.4% gain in mathematics and a +9% gain in code over the baseline. Interestingly, the smaller,
less diverse, high-quality dataset (ℳSHQ) provides a modest lift, suggesting that at this early stage, the scale
and diversity of the reasoning data are more critical than its curated quality for establishing a broad and robust
reasoning foundation.
2https://github.com/NVIDIA/NeMo-Skills
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Model Average mathPT avg sciencePT avg codePT avg gprPT avg

ℳbase 52.70 47.17 47.13 40.89 75.63

ℳSHQ 54.98 52.60 46.90 44.32 76.09
ℳLDQ 64.09 75.56 54.38 49.94 76.48
ℳLMQ 64.07 72.37 54.49 52.60 76.83

ℳres 61.05 66.84 51.92 48.95 76.46

Table 1: Average Accuracies of base models trained without or with varying 𝒟res. Pretraining with diverse
reasoning data yields immediate gains, with scale and diversity driving math and code improvements more
than quality.

Pretraining Advantage is Maintained and Amplified Post-SFT.

We evaluate whether a strong SFT phase can close the accuracy gap established during pretraining with diverse
reasoning data 𝒟res. At the same time, we examine whether the inclusion of such data causes the model to
overfit and reduce generalization, thereby diminishing subsequent post-training gains. The results in Table 2
indicate that the advantage gained during the pre-training phase not only persists but is amplified. The group
of models pretrained with reasoning data (ℳres + SFT) outperforms the baseline group (ℳbase + SFT) by
a significant 9.3% on average. This result strongly refutes the “catch-up" hypothesis, showing that SFT is
not a substitute for a strong reasoning foundation built during pretraining. While recent works have found
reasoning-centric post-training to be most effective on math domains, the improvement on science is minimal
(Prabhakar et al., 2025; Luo et al., 2025a; Huan et al., 2025). However, the accuracy disparity in our findings
is most prominent in science domains, an area often overlooked in reasoning-focused post-training work.
This suggests that pretraining with reasoning data does more than teach facts; it helps the model develop
effective internal representations for abstract and logical structures to enhance problem solving ability across
domains. It does not overfit the model rather infuses the critical thinking ability that comes into full potential
after post-training (Appendix C). Consequently, the model’s capacity to absorb and leverage the SFT data is
fundamentally enhanced, leading to greater learning efficiency and a higher performance ceiling. SFT acts as a
powerful enhancer, but its ultimate effectiveness is constrained by the quality of the foundation established
during pretraining.

Model Average mathSFT avg scienceSFT avg codeSFT avg insSFT avg

ℳbase + SFT 26.62 34.48 20.92 7.09 43.98
ℳres + SFT 35.92 40.61 34.77 16.75 51.52

Table 2: Average Accuracies of SFT models pretrained with varying 𝒟res. SFT amplifies the pretraining
advantage—models with reasoning-rich pretraining significantly outperform baseline.

Model Avg. Math Reasoning Science & Code Reasoning
math-500 gsm8k aime24 aime25 gpqa mmlu mmlu-pro LCB

ℳbase + SFT + RL 37.92 72.05 83.83 12.29 16.04 28.16 41.10 36.69 13.16
ℳLMQ + SFT + RL 56.66 87.13 93.07 45.21 33.96 31.69 72.91 56.91 32.43

Table 3: Average accuracies of RL models pretrained and fine-tuned with varying 𝒟res. Introducing
reasoning data early provides significant reasoning boost after post-training.

Pretraining Strategy Dictates Final Accuracy on Expert-Level Tasks.

The final RL phase reveals the definitive impact of our pretraining interventions, particularly on expert-level
reasoning benchmarks. We selectℳLMQ +SFT andℳbase +SFT using 𝒟SHQ as our two extreme pretraining
backbones. As shown in Table 3, the accuracy gap between the two models continues to diverge, with the fully-
alignedℳLMQ models achieving a 18.57% lead over theℳbase model on average. The most striking results
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Model Average mathSFT avg scienceSFT avg codeSFT avg insSFT avg

ℳbase + SFT 29.92 42.79 35.83 10.48 30.59
ℳbase + SFT(2×) 34.01 48.05 40.69 14.60 32.70

ℳSHQ + SFT 37.33 50.52 40.00 24.76 34.06
ℳLDQ + SFT 46.70 60.79 50.67 28.57 46.79
ℳLMQ + SFT 50.95 64.67 53.74 35.55 49.82

Table 4: Impact of diverse pretraining 𝒟res on SFT phase. Doubling SFT for the baseline fails to “catch up" to
reasoning-pretrained models, while the latent advantage of the mixed-quality pretraining (ℳLMQ) emerges,
making it the top performer.

appear on the highly challenging AIME competition math problems, where the reasoning-pretrained models
deliver a 39.32% improvement over the baseline. This provides conclusive evidence that early investment in
reasoning data yields compounding returns, becoming the decisive factor in achieving frontier accuracies on
the most demanding tasks.

5. Ablations

Does the scale and diversity of the reasoning data matter in Pretraining?

As detailed in Table 1, plainly increasing size and diversity of 𝒟res in pretraining has significant improvement
on the base model. The model pretrained on large, diverse data (ℳLDQ) achieves an absolute +9.09% average
gain over the model trained on the smaller, less diverse corpus (ℳSHQ), with the largest gains observed in
math, science, and code—domains that explicitly demand structured reasoning. gprPT avg shows limited
sensitivity to diversity due to the nature of tasks that require commonsense and general knowledge. In contrast,
scaling 𝒟LDQ with 𝒟SHQ (high-quality but less diverse) as inℳLMQ provides minimal further benefit on
the reasoning tasks—underscoring that broad exposure to diverse reasoning patterns during pretraining is
impactful for building a strong foundation.

The Pretraining Advantage Persists and Resists “Catch-Up" Attempts via SFT.

A central question is whether a model without a reasoning-rich pretraining (ℳbase) can compensate for this
deficit by undergoing a more intensive SFT phase. We test this “catch-up" hypothesis by fine-tuningℳbase with
twice the amount of SFT data. The results in Table 4 prove this hypothesis false. While doubling the SFT data
improves the baseline’s average score by 4.09%, this enhanced baseline still fails to match the performance of
even our weakest reasoning-pretrained model,ℳSHQ+SFT (+3.32%). This provides strong evidence that
pretraining instills a foundational reasoning capability that cannot be fully replicated by simply scaling the SFT
phase.

Post-SFT, high-quality data reveals latent value.

The downstream consequences of these pretraining choices become more nuanced after SFT. To isolate and
test whether these effects persist into post-training, we finetune all base models with the same high-quality SFT
recipe (𝒟SHQ). Results in Table 4 confirm that models pretrained on diverse corpora continue to substantially
outperform less diverse counterparts even after SFT, confirming that a diverse pretraining foundation enhances
a model’s capacity to benefit from SFT. More surprisingly, while the immediate gains of scaling with high-quality
but narrow data (ℳLMQ) were muted at the pretraining stage, SFT reveals a latent advantage:ℳLMQ achieves
an additional +4.25% improvement overℳLDQ post-SFT. This reveals a critical finding that high-quality but
less diverse data may act as a complementary amplifier, whose benefits emerge after alignment—underlining
the latent impact of quality of data during the pretraining.

SFT is dominated by data quality, not diversity.

We finetune all reasoning-pretrained models (ℳres) on each of our distinct reasoning datasets, and report the
averaged results in Table 5. The findings reveal a striking contrast: while diversity is beneficial in pretraining,
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Model Average mathSFT avg scienceSFT avg codeSFT avg insSFT avg

ℳbase + SFT[𝒟SHQ] 29.92 42.79 35.83 10.48 30.59

ℳres + SFT[𝒟LMQ] 31.21 30.91 27.73 9.79 56.41
ℳres + SFT[𝒟LDQ] 31.54 32.28 28.43 10.85 54.61
ℳres + SFT[𝒟SHQ] 44.99 58.66 48.14 29.63 43.56

Table 5: Impact of diverse SFT 𝒟res on SFT phase. Fine-tuning on the small, high-quality corpus (𝒟SHQ) is
highly effective, while using large, diverse corpora (𝒟LDQ) degrades reasoning.

Model Average mathSFT avg scienceSFT avg codeSFT avg insSFT avg

ℳLDQ + SFT[𝒟LDQ] 32.84 28.38 35.22 10.16 57.61
ℳLDQ + SFT[2×𝒟LDQ] 32.99 23.46 39.65 11.75 57.10

ℳLDQ + SFT[𝒟ALF] 42.66 60.95 47.29 22.54 39.87
ℳLDQ + SFT[𝒟′

ALF] 43.04 61.61 45.78 22.53 42.23

Table 6: Impact of scaling reasoning data in SFT phase. Naively doubling mixed-quality data is detrimental
to math reasoning, whereas targeted scaling of high-quality data yields consistent gains.

blindly scaling diverse reasoning data during SFT degrades performance. Models trained with 𝒟LDQ or 𝒟LMQ

during SFT underperform relative to those finetuned on the smaller, high-quality, long-CoT dataset, 𝒟SHQ,
despite having been exposed to reasoning data during pretraining. In fact, the use of large-scale, mixed-quality
data at the SFT stage not only erodes the benefits of reasoning-rich pretraining but can even lead to worse
outcomes than the baselineℳbase finetuned with 𝒟SHQ in math, code, and science tasks which benefit from
reasoning. This result confirms the widely held view that data quality and long reasoning data is critical for
effective SFT (Zhou et al., 2023; Zhao et al., 2024; Prabhakar et al., 2025). Our findings, however, extend this
understanding by showing that simply applying high-quality data at every stage is not optimal. Instead, the
most effective strategy is asymmetric: pretraining benefits most from broad and diverse reasoning data to
establish generalizable priors, whereas sft requires high-quality, reasoning-heavy data for targeted refinement.

How should we expand reasoning data during SFT?

We next ablate the effect of scaling reasoning data during the SFT phase by contrasting two strategies: (i)
scaling with data of similar quality and diversity, and (ii) scaling with data of higher quality and reasoning
depth.

As shown in Table 6, simply doubling the amount of diverse but mixed-quality data yields negligible
improvement in average accuracy with a 4.92% drop in math accuracy—suggesting that increasing the volume
of noisy or shallow reasoning data may dilute the useful signal and actively harm reasoning-specific domains.
The small gains in science and code do not offset this regression, highlighting the limits of quantity-driven
scaling in SFT.

In contrast, when scaling 𝒟ALF with high-quality 𝒟SHQ (𝒟
′

ALF), the average accuracy improves further,
with math and instruction-following tasks benefiting most. Importantly, this qualitative expansion is achieved
with only a marginal increase in dataset size (0.4% more samples). These contrasting outcomes provide clear
evidence that SFT is a phase of targeted refinement, not broad data absorption; the most effective scaling
strategy is to strategically enhance the training corpus with high-quality, reasoning-intensive examples.

6. Related Work

Reasoning in Pretraining and Midtraining.

Cheng et al. (2024) study instruction pretraining by converting raw text into short QA pairs and report gains on
general-purpose reasoning tasks that require minimal reasoning. While effective for broad linguistic alignment,
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their setup does not explicitly target reasoning-intensive domains such as mathematics, graduate level science, or
code. Moreover, their pipeline of self-distilled instruction generation demonstrates that Instruct-PT outperforms
vanilla PT after instruction tuning, but it does not assess whether these marginal pretraining gains persist
once models undergo reasoning-heavy SFT and reinforcement learning. In contrast, our work systematically
varies the complexity, quantity, and diversity of reasoning-style SFT data—containing intermediate thoughts
and answers—across both pretraining and SFT, allowing us to probe whether early exposure yields durable
downstream advantages.

More recent efforts have begun to explore the interplay between pretraining and instruction tuning. Liang
et al. (2025) augment the instruction-tuning pool to better align with the distribution of pretraining data, rein-
forcing consistency between the two stages. While complementary in spirit, their method is applied only during
SFT and does not address whether reasoning-specific supervision at the pretraining stage provides sustained
benefits. Similarly, Wang et al. (2025); AI et al. (2025) introduce a mid-training phase, continuing pretraining
on a small but high-quality reasoning dataset before SFT and RLVR. They report substantial downstream gains,
particularly in mathematics benchmarks, highlighting the promise of mid-training interventions. However,
because their corpus is heavily math-centric, it is difficult to disentangle whether the improvements stem from
scale, complexity, or domain diversity, and the generalizability to science or code remains unclear.

A complementary direction is pursued by Gandhi et al. (2025), who inject algorithmically generated
“cognitive behavioral” reasoning traces during mid-training, demonstrating improvements after reinforcement
learning. This underscores the potential of early reasoning supervision but remains limited in scope: the
interventions are restricted to small datasets and narrow tasks, leaving open questions about scalability, diversity,
and phase-specific allocation of reasoning data. Our work builds on these insights by conducting the first
systematic, large-scale analysis of reasoning data across both pretraining and SFT, providing a principled
framework for understanding when and how reasoning supervision should be applied.

7. Conclusion

Our study provides the first systematic investigation of how reasoning data, varying in scale, diversity, and
quality, influences llms across the entire training pipeline. We show that reasoning must be introduced early:
front-loading into pretraining creates durable foundations that post-training alone cannot recover. Crucially, we
uncover an asymmetric allocation principle—diversity drives pretraining effectiveness, while quality governs
SFT—providing a clear, actionable blueprint for data strategy. Further, we demonstrate that high-quality
pretraining data can yield latent benefits activated only during SFT, and that naive SFT scaling with noisy data
can be actively harmful. Collectively, these findings challenge the conventional division between pretraining
and reasoning, positioning reasoning-aware pretraining as a critical ingredient in building more capable,
generalizable, and compute-efficient language models.
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Benchmark ℳbase ℳSHQ ℳLDQ ℳLMQ ℳres

ARC-C 80.89 80.46 81.40 81.83 81.15

RACE 73.59 75.41 78.28 79.43 76.68

WinoGrande 70.64 71.43 69.53 69.38 70.25

HellaSwag 77.38 77.06 76.69 76.67 76.95

GSM8K 59.74 65.20 82.71 85.14 73.20

Math-500 34.60 40.00 68.40 59.60 50.65

MMLU 61.67 61.45 65.87 65.42 63.60

MMLU-Pro 32.59 32.34 42.89 43.56 37.85

HumanEval 37.44 41.04 48.63 51.68 44.70

HumanEvalPlus 32.59 35.03 42.74 46.28 39.16

Mbpp 41.64 47.47 48.85 51.47 47.36

Mbpp[sanitized] 51.87 53.74 59.53 60.97 56.53

mathPT avg 47.17 52.60 75.56 72.37 61.92

sciencePT avg 47.13 46.90 54.38 54.49 50.72

codePT avg 40.89 44.32 49.94 52.60 46.94

gprPT avg 75.63 76.09 76.48 76.83 76.25

Overall 52.70 54.98 64.09 64.07 61.05

Table 7: Breakdown of base model accuracies across benchmarks. With increasing diversity and quality, the
difference betweenℳbase and models pretrained with reasoning data increases.

A. Appendix

B. Experiments and Results

C. Additional Ablations

Anatomy of high-quality reasoning data in SFT.

Our previous results establish that SFT benefits immensely from high-quality data, but what precisely constitutes
“quality” remains unclear. In this ablation, we investigate a defining characteristic of such data: the depth and
complexity of its reasoning traces. Specifically, we compare datasets that differ both in reasoning length and
construction method. The high-quality corpus 𝒟SHQ consists of answers generated by strong teacher models,
characterized by long chain-of-thoughts with an average length exceeding 10k tokens. In contrast, 𝒟LDQ

provides reasoning data from diverse domains but with much shorter and noisier reasoning traces (average
∼550 tokens). This distinction highlights a potential mechanism underlying quality: longer reasoning chains
may serve as richer supervisory signals, encouraging models to internalize structured multi-step inference
rather than surface-level heuristics.

To test this hypothesis, we extract from 𝒟𝐿𝐿𝑄 only the longest reasoning traces, creating a new dataset
𝒟𝐴𝐿𝐹 . Although it represents only ∼2% of the original 𝒟𝐿𝐿𝑄 corpus, 𝒟𝐴𝐿𝐹 is highly skewed toward domains
with inherently deeper reasoning (75% math, with the remainder in science, code, and general reasoning). We
then conduct SFT on top of theℳ𝑙𝑙𝑞 model using both𝒟𝐿𝐿𝑄 (quantity and diversity) and𝒟𝐴𝐿𝐹 (length-filtered
complexity).

As shown in Table 9, emphasizing depth in reasoning traces has a significant impact on downstream
reasoning tasks. While finetuning with 𝒟𝐿𝐿𝑄 yields only modest improvements, switching to the 50 times
smaller, filtered by reasoning depth via answer length 𝒟𝐴𝐿𝐹 boosts the overall score to 9.87%, with particularly
strong gains in math, science and code. Interestingly, this comes at the cost of slightly reduced accuracy on
instruction-following tasks, reflecting a trade-off between breadth and reasoning-specific depth. These results
provide strong evidence that longer chain-of-thought supervision is a critical marker of quality in sft data.
Even when drawn from a noisy, large-scale corpus, selecting for reasoning depth alone can yield outsized
improvements, making length-filtering a simple yet cost-effective heuristic for constructing impactful reasoning
datasets for sft phase.
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Benchmark ℳbase + SFT ℳSHQ + SFT ℳLDQ + SFT ℳLMQ + SFT ℳres + SFT

IFEval 30.59 34.06 46.79 49.82 43.56

AIME-24 8.12 18.33 35.21 41.88 31.81

AIME-25 11.88 18.12 29.38 33.12 26.87

GSM8K 81.24 86.58 91.05 92.84 90.16

Math-500 69.90 79.05 87.50 90.85 85.80

MMLU 52.14 62.90 71.15 73.49 69.18

MMLU-Pro 39.45 48.63 53.45 55.54 52.54

GPQA-Diamond 15.91 8.46 27.40 32.20 22.69

LiveCodeBench 10.48 24.76 28.57 35.55 29.63

mathSFT avg 42.79 50.52 60.79 64.67 58.66

scienceSFT avg 35.83 40.00 50.67 53.74 48.14

codeSFT avg 10.48 24.76 28.57 35.55 29.63

insSFT avg 30.59 34.06 46.79 49.82 43.56

Overall 35.52 42.32 52.28 56.14 50.25

Table 8: Breakdown of model accuracies across benchmarks after training SFT phase on the 𝒟SHQ. Model
pretrained with reasoning data obtains the highest gain after heavy SFT phase of training.

Model Average mathSFT avg scienceSFT avg codeSFT avg insSFT avg

ℳLDQ + SFT[𝒟LDQ] 32.84 28.38 35.22 10.16 57.61
ℳLDQ + SFT[𝒟ALF] 42.71 60.95 47.50 22.54 39.87

Table 9: Impact of depth in reasoning traces in data on SFT phase. Model trained on longer CoT reasoning
data outperforms the one trained on diverse reasoning traces.

+ SFT[ ]

+ SFT[ ]

+ SFT[ ]

+ SFT[ ]

Figure 2: The model that saw the same high-quality data in both
pretraining and SFT (ℳSHQ) handily beats the baseline (ℳ𝑏𝑎𝑠𝑒)
that only saw the data once.

Data Redundancy Reinforces Founda-
tional Skills, Not Overfitting.

A critical consideration in our two-phase
approach is whether using the same rea-
soning data in both pretraining and SFT
leads to catastrophic forgetting or brittle
overfitting, a known concern in sequen-
tial fine-tuning (Luo et al., 2025b; Chen
et al., 2025a). Our results, shown in Fig-
ure 2, suggest this concern is unfounded
and that the opposite is true: for reason-
ing, strategic redundancy is highly benefi-
cial. The baseline model,ℳ𝑏𝑎𝑠𝑒, exposed
to the high-quality 𝒟SHQ data only during SFT, is the lowest performer across all categories. In contrast,ℳSHQ,
which sees this same data in both phases, demonstrates a significant performance uplift, indicating that the
second exposure reinforces rather than overwrites learning. We hypothesize this occurs because the two
training phases serve different learning functions. During pretraining, the reasoning data is integrated slowly
into the model’s core representations alongside vast, diverse knowledge, forcing an internalization of abstract
logical patterns. The SFT phase then acts not as a new learning task, but as a powerful reinforcement signal on
an already-prepared foundation. This benefit is amplified by a diverse pretraining context: the top-performing
ℳLMQ model leverages its broad exposure to various reasoning styles to most effectively capitalize on the
repeated, high-quality signal from 𝒟SHQ. This suggests that data redundancy between pretraining and SFT
should be viewed as a powerful mechanism for skill consolidation, where a diverse pretraining builds the
capacity for reasoning and redundant SFT sharpens it.
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