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Abstract. We introduce Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer language model
designed to increase throughput for reasoning workloads while achieving state-of-the-art accuracy
compared to similarly-sized models. Nemotron-Nano-9B-v2 builds on the Nemotron-H architecture,
in which the majority of the self-attention layers in the common Transformer architecture are replaced
with Mamba-2 layers, to achieve improved inference speed when generating the long thinking traces
needed for reasoning. We create Nemotron-Nano-9B-v2 by first pre-training a 12-billion-parameter
model (Nemotron-Nano-12B-v2-Base) on 20 trillion tokens using an FP8 training recipe. After
aligning Nemotron-Nano-12B-v2-Base, we employ the Minitron strategy to compress and distill
the model with the goal of enabling inference on up to 128k tokens on a single NVIDIA A10G
GPU (22GiB of memory, bfloat16 precision). Compared to existing similarly-sized models (e.g.,
Qwen3-8B), we show that Nemotron-Nano-9B-v2 achieves on-par or better accuracy on reasoning
benchmarks while achieving up to 6× higher inference throughput in reasoning settings like 8k
input and 16k output tokens (Figure 1). We are releasing Nemotron-Nano-9B-v2, Nemotron-Nano-
12B-v2-Base, and Nemotron-Nano-9B-v2-Base checkpoints along with the majority of our pre- and
post-training datasets on Hugging Face.

1. Introduction

We introduce NVIDIA Nemotron Nano 2, a hybrid Mamba-Transformer reasoning model (Waleffe
et al., 2024; Lieber et al., 2024; DeepMind, 2025; NVIDIA, 2025) that achieves on-par or better
benchmark accuracies at 3×–6× higher throughput than Qwen3-8B (Yang et al., 2025) for generation-
heavy scenarios like 1k input / 8k output or 8k input / 16k output tokens (Figure 1). Nemotron
Nano 2 builds on the architecture of Nemotron-H (NVIDIA, 2025), but utilizes key new datasets and
recipes for pre-training, alignment, pruning and distillation. We share these recipes, the checkpoints,
as well as the majority of the pre- and post-training datasets.

The initial base model, Nemotron-Nano-12B-v2-Base, was pre-trained using FP8 precision (§2.4) over
20 trillion tokens using a Warmup-Stable-Decay (Hu et al., 2024) learning rate schedule (§2.5). It then
underwent a continuous pre-training long-context extension phase to become 128k-capable without
degrading other benchmarks (§2.6). Overall, new and improved datasets led to significant accuracy
improvements over Nemotron-H-8B on math, multilingual, MMLU-Pro and other benchmarks (§2.2).

Nemotron Nano 2 was then post-trained through a combination of Supervised Fine-Tuning (SFT),
Group Relative Policy Optimization (GRPO) (Shao et al., 2024), Direct Preference Optimization
(DPO) (Rafailov et al., 2023), and Reinforcement Learning from Human Feedback (RLHF) (Ouyang
et al., 2022; Christiano et al., 2017). We applied multiple SFT stages across various domains,
followed by targeted SFT on key areas such as tool use, long-context performance, and truncated
(budgeted) training. GRPO and RLHF sharpened instruction-following and conversational ability,
while additional DPO stages further strengthened tool use. Overall, post-training was performed
on roughly 90 billion tokens, the majority in single-turn prompt–response format with reasoning
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Figure 1 | Comparison of Nemotron Nano 2 and Qwen3-8B in terms of accuracy and throughput.
Nemotron Nano 2 achieves comparable or better accuracies on complex reasoning benchmarks, while
achieving up to 6.3× higher throughput for such workloads. We abbreviate input sequence length
to ISL and output sequence length to OSL and measure throughput on a single A10G GPU in
bfloat16.

traces. About 5% of the data contained deliberately truncated reasoning traces, enabling fine-grained
thinking budget control at inference time (§3.4).

Finally, both the base model and aligned model were compressed so as to enable inference over
context lengths of 128k tokens on a single NVIDIA A10G GPU (22 GiB of memory, bfloat16
precision). This was done by extending a compression strategy based on Minitron (Muralidharan
et al., 2024; Sreenivas et al., 2024; Taghibakhshi et al., 2025) to compress reasoning models subject
to constraints.

We are releasing the following models on Hugging Face:

• NVIDIA-Nemotron-Nano-9B-v2: the aligned and pruned reasoning model,
• NVIDIA-Nemotron-Nano-9B-v2-Base: a pruned base model,
• NVIDIA-Nemotron-Nano-12B-v2-Base: the base model before alignment or pruning.

Additionally, we are releasing the majority of our pre-training dataset in the Nemotron-Pre-
Training-Dataset-v1 collection of more than 6 trillion tokens:

• Nemotron-CC-v2: Follow-up to Nemotron-CC (Su et al., 2025) with eight additional
Common Crawl snapshots (2024–2025), synthetic rephrasing, deduplication, and synthetic
Q&A data translated into 15 languages.

• Nemotron-CC-Math-v1: 133B-token math dataset from Common Crawl using Lynx +
LLM pipeline (Karimi Mahabadi et al., 2025a). Preserves equations, standardizes to LaTeX,
outperforms previous math datasets on benchmarks.

• Nemotron-Pretraining-Code-v1: Curated GitHub code references with multi-stage filtering,
deduplication, and quality filters. Includes code Q&A data in 11 programming languages.

• Nemotron-Pretraining-SFT-v1: Synthetic SFT-style dataset covering STEM, multilingual,
academic, and reasoning domains.

Finally, we are releasing an updated post-training dataset:
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Figure 2 | Nemotron-Nano-12B-v2-Base layer pattern. As in Nemotron-H models, roughly 8% of the
total layers in the model are self-attention layers which are evenly dispersed throughout the model.

Model Number of
layers

Model
dimension

FFN
dimension

Q
heads

KV
heads

State
dimension

Mamba
groups

Nemotron-Nano-12B-v2-Base 62 5120 20480 40 8 128 8

Table 1 | Summary of Nemotron-Nano-12B-v2-Base architecture.

• Nemotron-Post-Training-Dataset-v2: Adds to NVIDIA’s post-training dataset releases
with an extension of SFT and RL data into five target languages: Spanish, French, German,
Italian and Japanese. The data supports improvements of math, code, general reasoning, and
instruction following capabilities.

The rest of this technical report is organized as follows: In §2, we discuss the Nemotron Nano 2 model
architecture, pre-training process, and base model evaluation results. In §3, we discuss the alignment
process. In §4, we describe the pruning and distillation methods used for model compression.

2. Pretraining

In this section, we discuss the architecture and pretraining of the Nemotron-Nano-12B-v2-Base
model. We also compare this model against other state-of-the-art models in terms of accuracy on
popular benchmarks.

2.1. Model Architecture

As in Nemotron-H (NVIDIA, 2025), Nemotron-Nano-12B-v2-Base consists of a mixture of Mamba-
2 (Dao & Gu, 2024), self-attention, and FFN layers. The layer pattern and key architecture details
are summarized in Figure 2 and Table 1. Concretely, we use 62 layers, with 6 of them being
self-attention layers, 28 being FFN, and 28 being Mamba-2 layers. We use a hidden dimension of
5120, FFN hidden dimension of 20480, and Grouped-Query Attention (Ainslie et al., 2023) with 40
query heads and 8 key-value heads. For Mamba-2 layers, we use 8 groups, a state dimension of 128,
a head dimension of 64, an expansion factor of 2, and a window size for convolution of 4. For FFN
layers, we use squared ReLU (So et al., 2022) activation. Again as in Nemotron-H, we do not use
any position embeddings and use RMSNorm (Zhang & Sennrich, 2019), separate embedding and
output layer weights, no dropout, and we do not use bias weights for linear layers.
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2.2. Pre-Training Data

Nemotron-Nano-12B-v2-Base was pre-trained on a large corpus of high-quality curated and synthetically-
generated data.

2.2.1. Curated Data

We have separate data curation pipelines for the following broad data categories: general web crawl
data (English and multilingual), math data, and code data. We discuss each in turn next.

English web crawl data. We used the Nemotron-CC dataset (Su et al., 2025), but updated to
include eight more recent Common Crawl snapshots (CC-MAIN-2024-33 through CC-MAIN-2025-13)
using the same pipeline. For synthetic rephrasing, we mostly switched to Qwen3-30B-A3B (from
Mistral Nemo 12B). Additionally, we used data from CC-NEWS through April 23, 2025, to help
improve the knowledge cutoff of the model. The CC-NEWS data was filtered for English and globally
fuzzily de-duplicated; no other filtering was used.

Multilingual data. We extracted data for fifteen languages from the following three Common
Crawl snapshots: CC-MAIN-2024-51, CC-MAIN-2025-08, and CC-MAIN-2025-18. The fifteen
languages included were Arabic, Chinese, Danish, Dutch, French, German, Italian, Japanese, Korean,
Polish, Portuguese, Russian, Spanish, Swedish, and Thai. As we did not have reliable multilingual
model-based quality classifiers available, we just applied heuristic filtering instead. This was done in
a similar manner to the filtering of low-quality English data in the Nemotron-CC pipeline, except
that we had to selectively disable some heuristic filters that had very high false positive rates for
some languages. De-duplication was done in the same way as for Nemotron-CC. Additionally, we
used data from Wikipedia and FineWeb-2 (Penedo et al., 2025) for these fifteen languages.

Math data. Mathematical content on the web is expressed in a wide range of formats, including
inline and block LATEX, MathML, Unicode symbols, and custom renderers such as MathJax or
KaTeX. We conducted a detailed analysis of prior math-specific extraction pipelines—including
OpenWebMath (Paster et al., 2023), MegaMath (Zhou et al., 2025), jusText (Endrédy & Novák,
2013), Trafilatura (Barbaresi, 2021), and Resiliparse (Bevendorff et al., 2018)—and found that none
could reliably preserve mathematical expressions or code structure. These tools frequently discard or
distort equations and flatten code formatting, severely limiting the utility of the extracted content
for pretraining.

To address this, we built a new pipeline specifically designed for high-fidelity mathematical ex-
traction from Common Crawl. We first aggregated a comprehensive list of math-related URLs
from prior datasets (e.g., InfiMM-WebMath (Han et al., 2024), OpenWebMath (Paster et al., 2023),
FineMath (Allal et al., 2025), and MegaMath (Zhou et al., 2025)), then re-fetched their raw HTML
documents from 98 Common Crawl snapshots (2014–2024). Each page was rendered using the lynx
text-based browser to preserve layout and math structure. We then applied Phi-4 (Abdin et al.,
2024)(14B-parameters) to remove boilerplate, standardize notation into LATEX, and correct inconsis-
tencies. A FineMath classifier (Allal et al., 2025) was used to retain high-quality documents, followed
by fuzzy deduplication via MinHash-based (Broder, 2000) Locality Sensitive Hashing (LSH) (Indyk
& Motwani, 1998) via the NeMo-Curator framework.1 We finally decontaminated the dataset using
LLM Decontaminator (Yang et al., 2023).

This process resulted in a 133B-token corpus, Nemotron-CC-Math-3+, and a higher-quality 52B-token
subset, Nemotron-CC-Math-4+, containing only the top-scoring samples. When used for pretraining,
this dataset yields substantial improvements across math (MATH-500), code (HumanEval+, MBPP+,

1https://github.com/NVIDIA-NeMo/Curator
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MBPP), and general-domain evaluations (MMLU, MMLU-STEM, MMLU-Pro), surpassing all
existing open math datasets. For full details, see Karimi Mahabadi et al. (2025a).

Code data. In line with previous models in the Nemotron family (NVIDIA, 2025, 2024; Parmar
et al., 2024), we pretrained Nemotron-Nano-12B-v2-Base with large-scale raw source code. All source
code used to train this model originated from GitHub and went through a multi-stage processing
pipeline to arrive at the final source code training data. We performed license-based removal with a
license detection pipeline similar to that used by the BigCode project (Lozhkov et al., 2024), but
with fewer accepted licenses (see Appendix A for additional details). De-duplication is especially
important for source code, where many files can be found exactly duplicated across numerous
repositories. Consequently we performed both exact (via hashing) and fuzzy deduplication (using
MinHash LSH). In order to build a better understanding of each file in our dataset, we annotated all
files with a variety of measures and then performed filtering using these annotations. We found the
heuristic filters from OpenCoder (Huang et al., 2025) to be effective and leveraged them to filter
files that are less valuable or even detrimental for LLM pretraining.

2.2.2. Synthetically-Generated Data

STEM data. We generated synthetic data for STEM subjects, including Astronomy, Biology,
Chemistry, Math, and Physics using 88.6k questions collected from multiple sources as the seed
data. In addition to the widely used GSM8K, MATH, and AOPS training sets, we collected more
diverse questions from Stemez2 and textbooks with permissive licenses from OpenStax3 and Open
Textbook Library.4 We used Qwen2.5-VL-72B-Instruct (Bai et al., 2025) to extract questions
from the exercise sections in the textbooks with additional instructions such as dropping question
numbering, ignoring questions that require image interpretation, and formatting equations using
LaTeX. We manually curated the extracted questions to fix occasional OCR errors and removed
non-self-contained questions (e.g., a question that refers to an example in the same chapter).

To expand both the quantity and diversity of questions, we conducted three iterations of question
generation using four models (i.e., Qwen3-30B-A3B and Qwen3-235B-A22B (Yang et al., 2025), both
with thinking mode enabled, Deepseek-R1 (DeepSeek-AI, 2025a), and Deepseek V3 (DeepSeek-AI,
2025b)) and three prompts:

1. Similar question: Create a new question that explores similar concepts but offers a fresh
challenge.

2. Harder question: Create a new question that requires more logical steps or involves more
advanced concepts.

3. Varied question: Create a new question that differs in type from the original question. We
instructed the model to avoid superficial or trivial modifications and think through the solution
when creating a new question.

We filtered out duplicates and highly-similar questions using fuzzy de-duplication and generated
solutions to the remaining questions with the models used in the question generation step. We
converted a subset of examples to multiple-choice questions in MMLU or MMLU-Pro style. We
constructed a few thousand few-shot examples by concatenating random synthetic samples.

Math data. We also revisited and regenerated the Nemotron-MIND dataset (Akter et al., 2024),
a math-informed synthetic pretraining corpus originally built on OpenWebMath. In our updated

2https://www.stemez.com/
3https://openstax.org
4https://open.umn.edu/opentextbooks/
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version, we regenerated the MIND dataset using Nemotron-CC-Math-4+, our highest-quality math
subset comprising 52B tokens—as the source corpus. Following the original methodology, we applied
seven prompt templates (e.g., Teacher–Student, Debate, Interview, etc) to generate structured
mathematical dialogues using the Phi-4 model. Unlike the original MIND, which relied on 14.7B
tokens of lower-fidelity data, our version leverages significantly higher-quality input and processes
it with a chunk size of 5K tokens. This regeneration produced a 73B-token synthetic dataset and
led to consistent improvements across math reasoning and general knowledge (MMLU, MMLU-Pro.
MMLU-Stem) benchmarks compared to the original MIND version, highlighting the critical role of
input data quality. Full details and results are available in Karimi Mahabadi et al. (2025b).

Multilingual data. We generated multilingual diverse question and answer data (Diverse QA) (Su
et al., 2025) from two sources:

1. We translated the English Diverse QA data to fifteen languages (see Multilingual data) using
Qwen3-30B-A3B (Yang et al., 2025).

2. We generated synthetic data from Wikipedia articles in these languages using the Diverse QA
prompt and instructed the model to write all questions and answers in the target language.

In addition, we translated a subset of our GSM8K augmentation data (see STEM data) into
these languages using Qwen3-30B-A3B. We post-processed each translated solution by appending
a concluding sentence meaning “The answer is ...” (e.g., “La respuesta es ...” in Spanish, “Die
Antwort lautet ...” in German), where the final numerical answer is extracted from the original
English solution.

Code data. We generated question-answer (QA) data at scale for 11 different programming
languages by prompting an LLM to generate questions based on short snippets from our curated
source code, asking the model to solve the generated question, and then performing post hoc filtering
of the generated QA pairs based on heuristics as appropriate (e.g., Python AST parsing). This
technique results in diverse synthetic data targeted at problem solving containing both natural
language and source code. Further details are covered in the Nemotron-H technical report (NVIDIA,
2025), where we first leveraged this type of synthetic code data in pretraining.

Academic data. In the pretraining set for the Nemotron-H (NVIDIA, 2025) series of models, we
assigned attribute labels for educational quality, educational difficulty, and educational subject to
all documents coming from academic data, which encompasses textbooks and academic papers. As
content of higher educational difficulty in technical domains still proves challenging for models, we
prioritized increasing model comprehension of such information in our current pretraining set via
the generation of question-answer (QA) pairs as such data has been shown to enhance knowledge
storage and extraction within language models (Allen-Zhu & Li, 2024).

To do so, we first gathered all documents with educational difficulty at the undergraduate and
graduate levels in the following technical subject areas: math, chemistry, biology, physics, and
medicine. Using this subset of documents, we aim to find the most relevant pieces of texts that could
be utilized as seed contexts for our generation of QA pairs. We chunk each document into snippets
of 512 token lengths, embed them with the e5-large model (Wang et al., 2024), and store them
within a Milvus vector database that enables approximate nearest neighbor search. We then curate
documents from a set of complex subject areas (e.g. Mathematics: Real Analysis, Biology: Genetics,
Statistics: Information Theory), and query the Milvus database for the 250 nearest neighbor text
snippets to each query document. The returned snippets function as our seed contexts that we then
pass into a Qwen-2.5 72B instruct model (Qwen, 2025) to generate multiple choice and free response
style QA pairs based on the information contained in the snippet. With each QA pair, a justification
for the answer is additionally generated.
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SFT-style data. Using SFT-style data in the later stages of pretraining has shown to be helpful
to foster more comprehensive model learning (Hu et al., 2024).

Therefore, we synthesized and included different SFT-style data covering several domains: 1) code
SFT data which is mainly focused on solving code problems; 2) math SFT data that is mostly focused
on reasoning; 3) MMLU-style SFT data which contains different question and answer examples
covering different knowledge topics; and 4) general instruction following SFT data.

We ensure that the SFT-style data covers diverse topics with different difficulty levels for each of
the above mentioned domains. Detailed synthesis methods and pipelines for the above mentioned
SFT data can be found in prior work (Toshniwal et al., 2024; Moshkov et al., 2025; Bercovich et al.,
2025a,b; Ahmad et al., 2025).

Fundamental reasoning SFT-style data. While the above mentioned SFT-style data help
enhance an LLM’s ability to answer questions in code, math and general language understanding
benchmarks, they do not help improve the model’s ability in deeper reasoning tasks to discern
the correct answer among a larger pool of potential distractors. We propose to mitigate that
by synthesizing SFT-style data focused on analytical reasoning, logical reasoning, and reading
comprehension.

Specifically, we collected existing datasets including 1) the Law School Admission Test (LSAT)
dataset from Wang et al. (2022); Zhong et al. (2022) which encompasses three tasks: logical
reasoning, reading comprehension, and analytical reasoning, 2) the repurposed LogiQA dataset
by Liu et al. (2020) which contains various types of logical reasoning questions collected from the
National Civil Servants Examination of China, and 3) the AQuA-RAT dataset which emphasizes
algebraic word problems by Ling et al. (2017). We then prompted DeepSeek-V3 (DeepSeek-AI,
2025b) and Qwen3-30B-A3B (Yang et al., 2025) respectively to synthesize more similar questions
with corresponding options. For each question we generated, we prompted DeepSeek-V3 again to
generate the chain-of-thought (CoT) process with the final solution. At the post-processing stage,
we apply majority voting to keep only the samples that have the most voted solutions. Overall, we
generated 4B tokens from DeepSeek-V3 and 4.2B tokens from Qwen3-30B models.

2.3. Data Mixture and Ordering

Our data mixture consists of thirteen data categories. The largest is web crawl data, which we
subdivided into four categories based on the Nemotron-CC quality classification (Su et al., 2025):
crawl-medium, crawl-medium-high, crawl-high, syn-crawl-high denoting medium, medium-high, high
and synthetic quality crawl data, respectively. Apart from these, our data mixture has additional
categories such as math, wikipedia, code, academic data, crawl++, multilingual, and synthetic
SFT-style data which is further categorized as general-sft, stem-sft and code-sft. Crawl++ consists
of web-crawl derivatives like OpenWebText, BigScience and Reddit. Our multilingual data has fifteen
languages: Arabic, Danish, German, Spanish, French, Italian, Portuguese, Dutch, Polish, Swedish,
Thai, Chinese, Japanese, Korean, and Russian. We design the data mixtures to give similar weight
to data sources that have similar quality. Data sources of higher quality are weighed higher than
data sources of lower quality. We provide detailed explanation on quality estimation of datasets and
the blend creation process in Feng et al. (2024) and NVIDIA (2025).

We used a curriculum based on three phases of data-blending approach to pre-train Nemotron-Nano-
12B-v2-Base. In the first phase, we used a data mixture that promotes diversity in data; in the
second and third phases, we primarily used high-quality datasets (e.g., Wikipedia). We switched to
the second phase at the 60% point of training, and to the third phase at the 90% point of training.
The data mixtures used in each phase are shown in Figure 3.
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Figure 3 | Data mixtures for each phase of pre-training.
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Multilingual Data Avg Sp Ge Fr Ma It Ja Po Ko

Common Crawl 37.0 37.8 36.5 39.8 34.3 36.3 35.3 37.5 38.8
FineWeb-2 35.1 38.8 35.0 34.3 31.5 37.0 33.0 36.0 35.3

DiverseQA-wiki 42.1 44.8 41.3 41.8 41.5 44.0 41.0 42.3 40.3
DiverseQA-crawl 47.0 49.8 50.8 48.3 46.0 45.8 44.5 49.0 42.0

Table 2 | Comparison of multilingual datasets on the Global-MMLU Benchmark.

2.3.1. Multilingual Data Ablation Study

In Section 2.2, we mentioned several large categories of multilingual data, both curated and synthetic:

1. Common Crawl: Extracted from recent Common Crawl snapshots using our own pipeline.
2. FineWeb-2 (Penedo et al., 2025).
3. DiverseQA-wiki: Generated from multilingual Wikipedia articles using a translated Diverse

QA prompt.
4. DiverseQA-crawl: Translated from English Diverse QA data.

In order to decide the proper data mixture among these different multilingual data sources, we
first conducted ablation experiments to compare the four multilingual data’s downstream tasks’
performance.

Specifically, we took a 1B model checkpoint that had been trained for 350B tokens, and continuous
pretrained it for another 100B tokens. We assigned 50% of the continuous pretraining data to
multilingual data, and the remaining 50% use our default pretraining data mixture. We evaluated
each model’s performance using the Global-MMLU benchmark (Singh et al., 2024a); the results are
shown in Table 2. Our curated Common Crawl-based multilingual data performed slightly better
than the Fineweb2-based multilingual data, while the synthesized multilingual QA pairs performed
much better than the curated multilingual web crawl data. The diverse pairs translated from English
Common Crawl achieved the highest average score over the 8 languages we evaluated on. Therefore,
we assigned a much higher weight to the DiverseQA-crawl data than the other categories when
deciding our multilingual data mixture.

2.3.2. Fundamental Reasoning SFT-Style Data Ablation Study

To show the effectiveness of the fundamental reasoning (FR) focused SFT-style data we introduced
in Section 2.2, we took the Nemotron-H-8B (NVIDIA, 2025) intermediate checkpoint trained over
14.5T tokens, and continuous pretrained it with another 100B tokens. We assigned 5% of the 100B
tokens to the newly synthesized FR-SFT data (as a replacement for Common Crawl data), and kept
all other data categories the same as in the Nemotron-H-8B’s phase 3 blend. We compared this
model with Nemotron-H-8B, which had also been trained with 14.6T tokens. The detailed evaluation
benchmarks are introduced in Section 2.7. The comparison results are shown in Table 3. The
SFT-style data helped improve the Nemotron-H 8B model’s performance on MMLU-Pro from 44.24
to 56.36, and also helped increase the average MATH score by around 2 points. While MMLU-Pro
is a more challenging benchmark that evaluates a model’s language understanding capability, it
also requires the model to have excellent reasoning capability to select the correct answer out of
ten choices. Our SFT data helps equip the model to select the correct answers from the other nine
distractors through fundamental reasoning. We noticed no decrease in the average commonsense
reasoning and average code benchmarks.
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Model Avg Math Avg Code Avg Reasoning MMLU MMLU-Pro

Nemotron-H 8B 37.92 59.49 71.79 72.67 44.24
Nemotron-H 8B
(w/ FR-SFT data) 39.70 59.61 71.43 72.98 56.36

Table 3 | Ablation study of the Fundamental Reasoning (FR) focused SFT-style data.

2.4. FP8 Recipe

We used DeepSeek’s FP8 training recipe for the entirety of the pretraining run (DeepSeek-AI, 2025b).
Specifically, we used E4M3 for all tensors, 128x128 quantization blocks for weights, and 1x128 tiles
for the activations. Unlike Nemotron-H, we natively kept the model weights in E4M3 so that we
could do the distributed optimizer’s parameter all-gather operations (across data-parallel replicas) in
FP8. One exception to DeepSeek’s formula was that we left the first and last four matrix multiples
in BF16, as done with Nemotron-H. Also unlike the DeepSeek-V3 run, we left all optimizer state in
FP32. We observed no training instabilities from this choice of numerics.

2.5. Hyperparameters

We trained Nemotron-Nano-12B-v2-Base on a token horizon of 20 trillion tokens. We used a sequence
length of 8192 and global batch size of 768 (6,029,312 tokens per batch). We did not use any batch
size ramp-up. We used a WSD (Warmup-Stable-Decay) (Hu et al., 2024) learning rate schedule
with a “stable” learning rate of 4.5 · 10−4 and a minimum value of 4.5 · 10−6; the learning rate was
decayed over the final 3.6 trillion tokens. Weight decay was set to 0.1, and Adam 𝛽1 and 𝛽2 were set
to 0.9 and 0.95 respectively

2.6. Long-Context Extension

To ensure Nemotron-Nano-12B-v2-Base can infer over long context windows, we added a long-context
phase (Phase LC) after Phase 3 of pre-training. In Phase LC, we did continuous pretraining (CPT)
with a context length of 524,288 (512k) tokens using a constant learning rate of 4.5 · 10−6. Although
the target context length of Nemotron Nano 2 is 128k, in preliminary studies on the Nemotron-H
8B model, we found it better to do CPT with 512k sequence length, instead of 256k or 128k. Our
intuition is that longer training sequence can effectively lower the chance of long coherent documents
being cut and separated by the Concat & Chunk algorithm for pretraining data loading. We used
8-way tensor model parallelism and 16-way context parallelism to ensure training with sequence
lengths of 512k tokens still fits in GPU memory. We used a global batch size of 12 to ensure the
total number of tokens per global batch during long-context CPT is the same as during pretraining:
around 6M tokens. Phase LC consisted of 18.9 billion tokens.

Additionally, we did long-context synthetic data generation to create more high-quality data for Phase
LC. Since the academic pretraining dataset is a good source of coherent long-context documents,
we used such documents that are longer than 32k tokens as seed data. We followed the methods
mentioned in the Llama-3 (Meta, 2024) and Qwen-2.5 (Qwen, 2025) tech reports to generate long-
context document QA data. We split each document into chunks of 1,024 tokens and then randomly
selected 10% of the chunks to be fed into Qwen-2.5-72B-Instruct for data synthesis. We asked the
generator to generate a QA pair based on the information in the text chunk. We concatenated the
QA pairs and appended them to the end of the original document as a sample of the long-context
document QA data. Such long-document QA provided good material for the model to learn long-
context dependencies. See Table 4 for ablation results on Nemotron-H 8B regarding train sequence
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lengths and the effects of synthetic data.

The data blend used in Phase LC was built based on that of Phase 3. We proportionally downscaled
the weights of all Phase 3 data to 80% of their original values, allocating the remaining 20% to the
newly added long-context document-QA data. We found such a blend could effectively extend the
context length of Nemotron-Nano-12B-v2-Base without degrading regular benchmark scores.

Train length 128k 256k 256k 512k
Synthetic data yes no yes yes

RULER-128k 73.68 70.19 79.04 81.04

Table 4 | Comparisons of different train sequence lengths and synthetic data usages. Ablations were
conducted on Nemotron-H 8B.

Task N-Nano-V2 N-Nano-V2 Qwen3 Gemma3
12B Base 9B Base 8B Base 12B Base

General
MMLU 78.24 74.53 76.44 73.61
MMLU-Pro 5-shot 63.98 59.43 56.27 45.12
AGIEval English CoT 68.03 65.28 59.54 51.69

Math
GSM8K CoT 91.66 91.36 84.00 74.45
MATH 83.54 80.50 55.40 42.40
MATH Level 5 67.61 63.64 29.91 17.71
AIME 2024 pass@32 56.67 30.00 20.00 16.67

Code
HumanEval+ avg@32 61.03 58.50 57.55 36.68
MBPP+ avg@32 61.55 58.95 58.56 51.73

Commonsense Understanding
ARC Challenge 93.26 90.70 93.09 90.44
HellaSwag 84.00 79.90 79.75 84.15
OpenBookQA 46.00 44.80 42.00 46.00
PIQA 82.54 81.83 79.43 82.10
WinoGrande 79.24 75.30 75.93 79.95

Long Context
RULER-128K 84.74 82.22 - 80.70

Table 5 | Accuracy of Nemotron-Nano-V2-Base models versus existing SoTA models. N-Nano-V2 is
short for Nemotron-Nano-V2. The distilled N-Nano-V2-9B-Base is compared against Qwen3-8B-Base
and Gemma3-12B-Base, and the best score is highlighted in each row.
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2.7. Base Model Evaluations

We run evaluations of all models ourselves unless otherwise stated. Our evaluation setup is built on
top of lm-evaluation-harness5 for fair comparisons, with the following changes:

1. For mathematical reasoning, we evaluate GSM8K and MATH (Cobbe et al., 2021; Hendrycks
et al., 2021b) benchmarks using greedy-decoding. We also highlight the competition-level
slice of the MATH benchmark as “MATH Level 5”. Additionally, we report the pass@32
performance on AIME-2024. We use Math-Verify6 to grade all generations.

2. For code tasks (HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021)) we evaluate
the EvalPlus variants along with the sanitization of generations (Liu et al., 2023), in a 0-shot
setup. We estimate avg@32, pass@1 from 32 generations per prompt.

3. General reasoning benchmarks (OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2019), Hellaswag (Zellers et al., 2019), Winogrande Sakaguchi et al. (2019)) are unchanged
except for ARC-Challenge (Clark et al., 2018), where we present all options at the same time,
similar to MMLU (Hendrycks et al., 2021a).

4. For multilingual capability, we evaluate MGSM Shi et al. (2022) (8-shot, native CoT) and
Global MMLU-Lite Singh et al. (2024b).

5. We use RULER (Hsieh et al., 2024) as the long context benchmark. We report the average
scores over all the 13 tasks included in RULER.

Accuracy results for Nemotron-Nano-12B-v2-Base with comparsions to Qwen3-8B Base and Gemma3-
12B Base are shown in Tables 5 and 6. We also include the accuracy of our 9B pruned variant of
Nemotron-Nano-12B-v2-Base which is discussed in Section 4.

3. Alignment

In this section we will present the alignment process we followed to convert the base checkpoint into
an aligned 12B checkpoint. Our process is outlined in Figure 4.

Base SFT 1 SFT 2 SFT 3

Merged

GRPORLHF

DPO

Figure 4 | Flow of alignment procedures followed to arrive at the final "Merged" Nemotron Nano 2
12B checkpoint.

5https://github.com/EleutherAI/lm-evaluation-harness.
6https://github.com/huggingface/math-verify.
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Task N-Nano-V2 N-Nano-V2 Qwen3 Gemma3
12B Base 9B Base 8B Base 12B Base

Global-MMLU-Lite
German 74.50 68.25 75.50 69.75
Spanish 76.50 72.75 75.00 74.00
French 78.25 69.75 74.25 72.50
Italian 76.50 73.25 72.75 74.00
Japanese 71.00 67.00 70.00 71.50
Korean 72.50 67.25 67.25 70.25
Portuguese 76.25 71.25 72.50 75.75
Chinese 75.50 69.25 75.25 67.25
Average 75.13 69.94 72.81 71.88

Multilingual Math (MGSM)
Spanish 93.20 91.60 86.40 74.00
German 89.60 89.60 78.80 68.80
French 86.40 86.00 78.80 70.80
Chinese 44.40 75.20 28.80 26.80
Japanese 76.00 74.80 30.80 26.40
Russian 90.40 91.60 83.60 76.00
Average 80.00 84.80 64.53 57.13

Table 6 | Accuracy of Nemotron-Nano-V2-Base models versus existing SoTA models on multilingual
benchmarks. N-Nano-V2 is short for Nemotron-Nano-V2. The distilled N-Nano-V2-9B-Base is
compared against Qwen3-8B-Base and Gemma3-12B-Base, and the best score is highlighted in each
row.

3.1. Post-Training Data

Our alignment begins with a large-scale SFT stage which trains the base model on approximately 80
billion tokens of prompt-response pairs. The distribution of domains is shown in Table 7.

Math, science and coding. For Math, Science and Coding data, we generate responses using
the open-weights DeepSeek-R1-0528 model (DeepSeek-AI, 2025b) using the same prompts used for
training Nemotron-H-8B and 47B Reasoning models (NVIDIA, 2025). The training data has been
released as part of Nemotron-Post-Training-Dataset-v17.

Tool calling. The tool-calling dataset consists of single-turn, multi-turn, and multi-step conversa-
tions. For single-turn cases, we sample prompts from xlam-function-calling-60k8, glaive-
function-calling-v29, NVIDIA-When2Call (Ross et al., 2025), and generate responses using
Qwen3-235B-A22B10. Inspired by ToolACE (Liu et al., 2024) and APIGen-MT (Prabhakar et al.,
2025), we extend this to multi-turn and multi-step settings by simulating conversations where
Qwen3-235B-A22B plays the roles of User-Agent, Assistant-Agent, and API-Server-Agent. The

7https://huggingface.co/datasets/nvidia/Nemotron-Post-Training-Dataset-v1
8https://huggingface.co/datasets/xlam-function-calling-60k
9https://huggingface.co/datasets/glaive-function-calling-v2

10https://huggingface.co/Qwen/Qwen3-235B-A22B
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Domain Number of Samples
Math 1.5M
Coding 1.1M
Science 2.0M
Tool-calling 400K
Conversational 1.5M
Safety 2K
Multilingual (all domains) 5.0M

Table 7 | Post-training data distribution across domains used for our SFT stages.

User-Agent reviews available tools, poses challenging queries, interacts when addressed by the
Assistant, and judges task success at the end. Each instance is paired with a random persona from
Nemotron-Personas11 to enrich diversity of queries.

The Assistant-Agent receives the initial query and available tools, executes tasks by invoking tools,
interpreting their responses, and interacting with the User-Agent across single-turn, multi-turn,
or multi-step scenarios. Meanwhile, the API-Server-Agent acts as a mock API server, checking
parameters and returning either valid outputs or error messages depending on correctness. A
lightweight rule-based tool-call verification layer further strengthens reliability by ensuring outputs
are consistent and verifiable, and only successful trajectories are retained.

Multilingual data. Our multilingual synthetic post-training data are constructed by translating
existing English post-training data. To address the challenges of Large Language Model (LLM)
hallucinations and quality degradation on long inputs when generating synthetic translation data, we
implement a robust quality assurance pipeline. Our method involves translating inputs line-by-line
to manage complexity and skip non-translatable content like code. We also enforce a strict bracket
format for reliable extraction and use language identification to filter out off-target translations,
thereby ensuring high-quality final outputs.

Conversational data. For conversational data, we use prompts from the LMSYS dataset (Zheng
et al., 2023) and generate responses using the Qwen3-235B-A22B reasoning model (Yang et al., 2025).
We also incorporate prompts from HelpSteer2 and HelpSteer3, paired with responses generated by
the same model. In addition, we draw on a subset of approximately 550k prompts from WildChat-
1M (Li et al., 2024b), again generating reasoning responses with Qwen3-235B-A22B. We also include
multi-turn conversations with Deepseek R1 responses using the multi-turn conversational prompts
used in NVIDIA (2025).

Safety. We leveraged a mix of harmful and benign prompts drawn from the Nemotron Content
Safety Dataset V2 (Ghosh et al., 2025)12, HarmfulTasks (Hasan et al., 2024), RedTeam2K (Luo
et al., 2024), and gretel-v1 (gre, 2024). Responses were generated using DeepSeek-R1-052813. To
ensure safety, we applied a two-step approach: initial prompting followed by filtering with guard
models to verify that outputs remained safe.

11https://huggingface.co/datasets/NVIDIA/Nemotron-Personas
12https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0
13https://huggingface.co/deepseek-ai/DeepSeek-R1
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3.2. Post Training

Stage 1 SFT. As Figure 4 illustrates, we employ three distinct stages of supervised fine-tuning.
Stage 1 uses the full dataset described in Section 3.1, augmented with a subsample of roughly 10% of
prompts paired with outputs stripped of reasoning traces. This exposes the model to “empty” traces,
enabling it to produce direct answers in a reasoning-off mode. To improve efficiency and preserve
long-context ability from pretraining, we concatenate samples into sequences of approximately 128k
tokens, reducing padding overhead and encouraging long-range learning.

Stage 2 SFT. Stage 2 targets tool-calling. Although Stage 1 improved performance on most
benchmarks, tool-calling accuracy degraded. We attribute this to sample concatenation at 128k, which
likely disrupted learning of tool-calling patterns. Thus, Stage 2 was trained without concatenation,
using the full tool-calling dataset and a representative subsample of other domains.

Stage 3 SFT. Stage 3 reinforces long-context capability. It incorporates long-context data following
the recipe used in Nemotron-H preparation (NVIDIA, 2025), along with augmented examples across
domains where reasoning traces were abruptly truncated to 1–2k tokens while preserving the final
answer. This truncation strategy improved robustness under varying inference-time thinking budgets.

IFeval RL. To improve instruction adherence, we sampled 16,000 prompts from the LMSYS Chat
dataset and augmented them with IFEval-style instructions. A rule-based verifier scored outputs
based on how well they satisfied each instruction, creating a reward signal that prioritized following
directions with precision. IFEval RL experiments provided significant boost to IFEval capabilities
while the rest of the benchmarks fluctuated slightly requiring careful checkpoint selection.

DPO. In another branch of training, we apply the DPO algorithm to improve tool-calling. We
evaluate performance using the BFCL v3 benchmark, which extends BFCL v2 with greater emphasis
on multi-step (multiple tool calls to achieve a goal) and multi-turn (multiple user–agent interactions).
To strengthen these capabilities in the Nano V2 aligned model, we use the WorkBench environment,
a multi-step verifiable tool-calling setup adapted from Styles (Styles et al., 2024). In each WorkBench
task, the model must issue a sequence of tool calls across multiple steps, with correctness verified
through database state comparisons.

Nano V2 undergoes reinforcement learning in this environment through iterative stages of Direct
Preference Optimization. For each candidate checkpoint from the long-context stage, we generate
on-policy data consisting of positive examples (successful tool calls) and negative examples (failed
generations) for every WorkBench prompt. This process ensures that iterative DPO remains
on-policy.

RLHF. We evaluate the model’s overall helpfulness and chat capabilities using the Arena-Hard
benchmark. To improve performance on this benchmark, we use GRPO to train candidate checkpoints
from the SFT stage using English-only contexts from HelpSteer3 (Wang et al., 2025). During training,
we generate responses both with and without thinking traces and use a Qwen-based reward model
to judge the rollouts.

Model Merging. During training, we observed a trade-off between reasoning capabilities and
chat capabilities. To address this, we opted for checkpoint interpolation Wortsman et al. (2022),
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Evaluation Nemotron-Nano-v2-12B Qwen3-8B Qwen3-14B

AIME-2024 85.42 75.83 81.53
AIME-2025 76.25 69.31 66.6
MATH-500 97.75 96.3 96.85
GPQA-Diamond 64.48 59.61 64.53
LiveCodeBench (07/24–12/24) 70.79 59.5 63.08
SciCode Sub-Task 18.75 24.65 26.04
Humanity’s Last Exam 6.30 4.40 5.38
IFEval (Inst. Strict) 89.81 89.39 91.32
BFCL v3 66.98 66.34 68.01
RULER @ 128k 83.36 74.13 73.55
ArenaHard 74 78.4 87.7

Table 8 | Evaluation results with reasoning "ON" (for Nemotron-Nano-v2-12B, Qwen3-8B, and
Qwen3-14B across reasoning and general capability benchmarks.

blending in an RL checkpoint with strong reasoning capabilities with an RL checkpoint with strong
chat capabilities. Checkpoint interpolation is performed by linearly interpolating model weights:
(1 − 𝛼) · 𝑤𝑚𝑜𝑑𝑒𝑙1 + 𝛼 · 𝑤𝑚𝑜𝑑𝑒𝑙2. We experimented with a parameter sweep over 𝛼 values from 0.1 to
0.9 in increments of 0.1, and found that values around 0.5 offered a good trade-off.

3.3. Evaluation

Our 12B model’s performance is summarized in Table 8. To test reasoning capabilities across domains,
we evaluate the models on MATH-500 (Lightman et al., 2023), AIME-2024, AIME-2025,
GPQA-Diamond (Rein et al., 2023), LiveCodeBench (07/24 - 12/24) (Jain et al.,
2024), SciCode (Tian et al., 2024), and Humanity’s Last Exam (Phan et al., 2025). For
broader evaluation on diverse capabilities, we use IFEval (Zhou et al., 2023) for instruction
following capabilities, BFCL v3 (Yan et al., 2024) for tool-calling, RULER for long-context,
and ArenaHard (Li et al., 2024a) for chat capability.

We conduct evaluations using NeMo-Skills14. We report Pass@1 average of 16 runs for AIME-
2024, AIME-2025; average of 4 runs for MATH-500, GPQA-Diamond, LiveCodeBench,
IFEval; and score of 1 run for BFCL v3, SciCode, Humanity’s Last Exam, RULER,
and ArenaHard.

3.4. Budget Control Evaluation

Nemotron Nano V2 allows users to specify how many thinking tokens the model may generate before
producing the final answer. The final answer is the portion of text typically shown to end users.
This feature is implemented by counting tokens after the model begins generating the <think>
token. Once the budget is reached, the inference setup attempts to insert a closing </think> tag.
Rather than inserting it immediately, we let the model finish its current sentence and place the
tag at the next newline. In extreme cases where no newline appears, the system enforces closure
within 500 tokens past the budget: if no newline occurs by the (budget + 500)th token, the </think>
tag is forcibly inserted. Figure 5b shows our models budget control behavior. Apart from just
presenting the accuracy of the model at various budgets, we also inspect if the model generations
are well-formatted at various budgets. We inspect for two kinds of failure modes:

14
https://github.com/NVIDIA/NeMo-Skills
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(a)

(b)

Figure 5 | Comparison of budget control before truncation training (a) and after truncation training
was included (b). For all plots above the x-axis indicates the budget assigned for thinking tokens.

• In one failure mode, the model uses more tokens in the final answer to “compensate” for
restrictions in the thinking traces. Without truncated training examples in the SFT stage,
this compensation effect is prevalent (Figure 5a, center). With truncated training, however,
the effect is absent (Figure 5b, center).

• Another issue is that the model can remain in “thinking mode” even after the closing tag
</think> is inserted. This is evident when the model generates the closing tag again after the
forced insertion, suggesting it does not fully “register” the artificial closure. We evaluate this
using “Well-Formedness,” where a well-formed response should contain only a single closing
tag (either forced by the budget or produced naturally). Figure 5a (right) shows that for short
budgets, the percentage of well-formed responses drops sharply. With truncation training,
however, the model consistently produces well-formed responses (Figure 5b, right).

4. Pruning and Distillation

In this section, we describe the pruning and distillation process to compress the aligned 12B model
to the Nano 2 model with the goal of running longer context (128k sequence length) inference on
the NVIDIA A10G GPU. Note that storing just the weights of a 12B parameter model in bfloat16
precision requires 22.9 GiB, which is more than the 22 GiB memory capacity of an A10G GPU; this
clearly indicates the need for compression.

Our compression strategy builds on Minitron (Muralidharan et al., 2024; Sreenivas et al., 2024;
Taghibakhshi et al., 2025), which is a lightweight model pruning framework for LLMs. While
Minitron was originally designed for compressing pretrained base models targeting user-defined
parameter budgets, in this work, we extend it to compress reasoning models while also incorporating
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the memory constraints and throughput-based objectives stated above.

4.1. Importance Estimation

We collect importance or sensitivity scores for each model component (e.g., layers, FFN neurons)
to help decide which components to remove; this is the importance estimation phase. The scores
computed in this phase are used to decide which model components can be pruned. We note
that sensitivity analysis based on gradient information is typically impractical at modern LLM
scale (Muralidharan et al., 2024); instead, we rely on a lightweight strategy that uses only forward
passes. In this work, we use a simplified approach that works well in our ablation studies: a) prune
layers, and b) prune FFN hidden dimensions (effectively neurons) and embedding channels. We
also experimented with pruning Mamba heads; unfortunately, this axis caused severe accuracy
degradation. We now describe how we compute the importance of each layer, embedding channel,
FFN neuron and Mamba head.

Layer importance. We compute layer importance in an iterative fashion: for each candidate layer,
we temporarily remove it from the model and compute the mean squared error (MSE) between the
original model’s logits and those produced by the pruned model. This MSE reflects the contribution
of that layer to the model’s predictions: lower values indicate smaller impact. At each pruning step,
we remove the layer with the lowest MSE, as it has the least influence on the final output. We repeat
this process until the desired depth is reached. This strategy ensures that pruning preferentially
removes layers whose absence minimally affects the model’s behavior. For more details on iterative
MSE-based layer importance, please refer to NVIDIA (2025).

FFN and embedding channel importance. FFN layers internally are composed of two linear
operators with a non-linear activation in between:

FFN(X) = 𝛿

(︂
X · 𝑊 𝑇

1

)︂
· 𝑊 2.

Here, X denotes the input, and 𝑊 1 and 𝑊 2 are the two associated weight matrices in the FFN
layer. 𝑊 1, 𝑊 2 ∈ R𝑑𝑓𝑓𝑛×𝑑𝑚𝑜𝑑𝑒𝑙 , where 𝑑𝑚𝑜𝑑𝑒𝑙 and 𝑑𝑓𝑓𝑛 are the model hidden dimension and FFN
hidden dimension respectively. 𝛿(·) refers to the non-linear activation function (squared ReLU in
this work).

Following the same procedure as Minitron (Muralidharan et al., 2024), we compute the importance
of each neuron in the first linear operator of each FFN layer by examining the set of outputs it
produces. We use a small calibration dataset of 1024 samples for this purpose. Formally, we compute
each neuron’s importance score by aggregating its outputs given an input batch 𝑋:

𝐹 (𝑖)
neuron =

∑︁
B,S

𝛿

(︂
X

(︀
𝑊 𝑖

1
)︀𝑇

)︂
.

Here, 𝑊 𝑖
1 refers to the 𝑖th row of the weight matrix 𝑊1. ∑︀

B,S refers to aggregation along the
batch and sequence dimensions. We use the mean and l2-norm aggregation functions along the
batch and sequence dimensions, following the observations in the Minitron paper. For a sequence of
scores S, mean aggregation is defined as 1

𝑛

∑︀𝑛
𝑖=1 |S𝑖|, and l2-norm is

√︁∑︀𝑛
𝑖=1 S2

𝑖 . Embedding channel
importance is computed similarly, by examining the outputs of LayerNorm layers instead; we refer
the reader to Muralidharan et al. (2024) for more details.
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Mamba importance. Mamba layers process inputs through multiple projection matrices (𝑊𝑥,
𝑊𝑧, 𝑊𝐵, 𝑊𝐶 , 𝑊𝑑𝑡) that produce intermediate representations before causal convolution and selective
state space model (SSM) updates, followed by gated normalization and an output projection (𝑊𝑂).
We follow the methodology described in Taghibakhshi et al. (2025) for importance estimation:
specifically, we adopt a nested activation-based scoring strategy over a small calibration dataset of
1024 samples, similar to FFN importance but adapted to Mamba’s group-aware structure. First,
we obtain activation scores from the 𝑊𝑥 projection, denoted 𝑠 ∈ R𝑚ℎ×𝑚𝑑 , where 𝑚ℎ is the number
of Mamba heads and 𝑚𝑑 is the Mamba head channel dimension. For each channel 𝑑, the score is
computed as

𝑠𝑑 =

⃦⃦⃦⃦
⃦⃦∑︁

B,S
𝑠:,𝑑

⃦⃦⃦⃦
⃦⃦

2

,

where the aggregation is over the batch (B) and sequence (S) dimensions, using both mean and
l2-norm metrics. Next, head scores are computed by using the l2-norm over the Mamba head
channel set:

𝑓ℎ = ‖𝑠ℎ,𝑚𝑑
‖2 , ∀ℎ ∈ {1, . . . , 𝑚ℎ},

and heads are ranked within each Mamba group 𝒢𝑔 to preserve group-aware computation semantics:

ℛ𝑔 = argsortℎ∈𝒢𝑔
(𝑓ℎ).

which ensures that pruning decisions respect the model’s structural constraints and SSM’s sequence
modeling. The lowest-scoring heads are pruned by trimming the corresponding rows from all affected
projection, convolution, and SSM parameter matrices. This strategy preserves the integrity of the
SSM block while removing less important Mamba heads. As shown in Taghibakhshi et al. (2025),
pruning Mamba heads yields a better accuracy–throughput trade-off than pruning head channels;
we consequently focus on head pruning in this work.

4.2. Lightweight Neural Architecture Search

We first define the constraints and objectives for the Nano 2 model, and then describe our lightweight
Neural Architecture Search (NAS) framework that finds the most promising architectural candidates
that meet our objectives and constraints.

Memory constraints. Memory requirements during inference consist of two distinct components
with different scaling behaviors. The parameter memory, while substantial, remains constant
regardless of the input size. In contrast, the key-value cache memory scales linearly with both batch
size and sequence length, often becoming the dominant factor in long-sequence scenarios. For the
Nano 2 model, our goal was to be able to perform inference at a sequence length of 128k and a batch
size of at least 1 within a memory budget of 19.66 GiB. We obtained the budget as follows: from the
22.06 GiB available memory on an NVIDIA A10G GPU, we subtract a 5% buffer for frameworks
such as vLLM and TensorRT-LLM and another 1.3 GiB to allow sufficient space for a vision encoder.

Measuring throughput. For the experiments below, unless otherwise specified, we measure
throughput on an input and output sequence length of 8k and 16k tokens respectively, which we
believe represents a typical reasoning scenario. For this combination of input and output sequence
length, we report vLLM output token generation throughput at the maximum batch size that fits on
the A10G GPU.
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4.2.1. Candidate enumeration.

Our compression strategy explores multiple axes within the 19.66 GiB memory budget through
combinatorial pruning. Our search space includes depth reduction (removing 6-10 layers from the
original 62-layer architecture) combined with width pruning of embedding channels (4480-5120),
FFN dimension (13440-20480), and Mamba heads (112-128). This multi-axis search space results in
hundreds of candidate architectures meeting the memory constraint.

4.2.2. Finding the Best Architecture

Since performing knowledge distillation and throughput benchmarking on the full set of candidates
would be prohibitively expensive, we break down the problem into two parts: (1) find the optimal
depth for the compressed model, and (2) find the optimal width-pruned architecture given the depth.

Effect of depth. We compare the accuracy of three depth-pruned candidates obtained from the
12B model with 52, 54 and 56 layers. Here, we keep the number of attention layers fixed at 4 for all
three variants so as to achieve a good balance between KV cache size and long-context performance;
prior work has indicated that an attention-to-total-layers ratio between 7-8% is reasonable (NVIDIA,
2025). We leave the width dimensions untouched for this experiment. Table 9 lists average reasoning
accuracy at different depths after 6B tokens of distillation; in line with our previous observations on
the strong correlation between depth and task performance (Muralidharan et al., 2024; Sreenivas et al.,
2024), we notice that reducing depth beyond 56 layers results in significant accuracy degradation; as
a result, we fix the depth at 56 for further width pruning.

Accuracy (Avg)

52 Layers 44.92
54 Layers 47.35
56 Layers 51.48

Table 9 | Effect of depth on reasoning accuracy. Results are after distilling with 6B tokens.

Combining depth and width pruning. As described above, we fix the depth of our target
model to 56 layers with 4 attention layers. We perform 60B tokens of distillation on this checkpoint
(see Section 4.3 for additional details) and perform further width pruning along the embedding, FFN,
and Mamba axes. We enumerate all candidate pruned architectures that meet our memory budget,
and sort them in decreasing order of estimated memory consumption at 128k context length and
batch size 1. The top 3 candidates from this list are picked for further evaluation: in particular, we
perform short Knowledge Distillation (KD) on these candidates for 19B tokens after depth+width
pruning; we also benchmark throughput to pick the final architectural candidate. Table 10 lists the
architectural details of the top 3 candidates, along with the achieved task performance (post KD)
and throughput. As shown in the Table, Candidate 2 achieves the best accuracy while still having
reasonable runtime performance; consequently, we use this architecture for Nano 2.

FFN vs. Mamba pruning. We ablate the number of Mamba heads following the recipe
in Taghibakhshi et al. (2025), considering configurations with 87.5% and 93.75% of the original
heads. However, due to the relatively smaller compression ratios explored in this work (less than 15%
after depth pruning) compared to those in Taghibakhshi et al. (2025) (around 50%), we find that
applying Mamba head pruning yields limited benefit, and in these cases, pruning only the FFN and
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#Layers Hidden FFN Mamba #Heads Params. (B) Accuracy Throughput

Candidate 1 56 4480 17920 112 8.92 59.07 161.02
Candidate 2 56 4480 15680 128 8.89 63.02 156.42
Candidate 3 56 4800 14400 120 8.97 62.94 155.86

Table 10 | Top 3 candidates for architecture selection. Accuracy is the average across reasoning
benchmarks after distillation with 19B tokens. The last column shows vLLM output generation
throughput (ISL/OSL=8k/16k and batch size=8).

embedding dimensions—after depth pruning—proves sufficient to achieve the desired compression
while preserving accuracy. Candidates 1 and 2 in Table 10 highlight this difference.

4.3. Retraining with Distillation

To recover the accuracy lost due to pruning, the model undergoes continued training. Recent work
has demonstrated that distilling knowledge from the original model to the pruned model outperforms
conventional fine-tuning (Muralidharan et al., 2024; Sreenivas et al., 2024; Bercovich et al., 2024);
we thus adopt logit-based distillation for continued training, employing forward KL divergence loss
exclusively during the accuracy recovery phase (see §3 of the Minitron paper (Muralidharan et al.,
2024) for more details on the distillation loss formulation). Building on the candidate selection
process described in §4.2, we continue training Candidate 2 in an extended phase, as detailed below,
to yield the final Nano 2 reasoning and base models.

% Reasoning-SFT data % Pretraining data Accuracy (Avg)

50 50 57.5
70 30 58.5
90 10 57.2

Table 11 | Effect of varying reasoning data proportion on math accuracy after ∼ 6B tokens of KD.

Reasoning model. The reasoning model is distilled in stages with increasing sequence lengths to
strengthen extended reasoning and long-context capabilities; this is followed by targeted reinforcement
learning (RL), preference optimization and model merging to retain desired behaviors and ensure
robustness across diverse tasks. We now describe these various stages:

1. Depth pruning to 56 layers; Knowledge Distillation (KD) with ∼60B tokens at 8,192 sequence
length.

2. Width pruning and KD with:
• ∼50B tokens at 8,192 sequence length.
• ∼25B tokens at 49,152 sequence length.
• ∼1B tokens at 262,144 sequence length.

3. Direct Preference Optimization (DPO).
4. Group Relative Policy Optimization (GRPO).
5. KD with ∼0.4B tokens at 262,144 sequence length to recover post-RL drops.
6. RLHF for alignment with human preferences.
7. Model merging between steps 5 and 6 via 0.5 linear interpolation.
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More details on DPO, GRPO and RLHF can be found in Section 3. Figure 6 shows the effects of
staged training on model accuracy across different reasoning benchmarks. Here, the 𝑥-axis represents
the various stages (starting from Step 2 above), and the 𝑦-axis shows the scores obtained for the
various benchmarks as training progresses. As shown in the Figure, DPO and GRPO are critical for
enhancing function-calling (BFCL v3) and instruction-following (IFEval) capabilities, though the
latter temporarily degrades multi-task understanding (MMLU-Pro), which is recovered in the next
step (post-GRPO KD). Finally, RLHF enhances alignment with human preferences (Arena-Hard)
but causes additional benchmark drops, which are then recovered through model merging.

KD+LCExt DPO GRPO KD RLHF Merge
Pipeline Stage

50

55

60

65

70

75

80

85

90

S
co

re
 (%

)

Distillation Pipeline
AIME-25 GPQA-D BFCLv3 IFEval (Pr.) MMLU-Pro ArenaHard LiveCodeBench

Figure 6 | Task accuracy at different stages of the distillation pipeline for Nemotron Nano 2.

Dataset: We observe that a mix of 70% post-training stage 2 data (Section 3.2) and 30% pretraining
(Section 2.2) data yields the highest accuracy (Table 11). For KD at sequence length 262,144, we
use 100% stage 3 post-training data (Section 3.2).

Base model. Distillation proceeds in stages: depth-only pruning and KD on ∼120B tokens,
followed by width pruning and KD on ∼360B tokens (both at sequence length 8,192), and finally
KD on ∼2.5B tokens at sequence length 524,288 to instill long-context capabilities.

Dataset: Following Sreenivas et al. (2024), we use 100% pretraining data described in sections 2.2
and 2.6 for distillation of the base model at sequence lengths 8,192 and 524,288, respectively.

4.4. Results

We efficiently compress the 12B model to 9B parameters by pruning full layers (depth), FFN hidden
size, and embedding channels, improving inference throughput and enabling long-context inference on
an NVIDIA A10G GPU. Nemotron-Nano-9B-v2 retains 56 layers of the original model. Additionally,
the number of embedding channels were pruned from 5120 to 4480, and FFN intermediate size was
pruned from 20480 to 15680. As shown in Figure 1 and Tables 5 and 6, Nemotron-Nano-9B-v2
achieves 3×-6× higher throughput than Qwen3-8B for generation-heavy scenarios, while surpassing
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it in accuracy and remaining comparable to the 12B teacher on most benchmarks.

5. Conclusion

In this report, we introduced Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer reasoning model
that achieves comparable or better accuracies at up to 6× higher throughput than existing state-
of-the-art models such as Qwen3-8B. To create Nemotron-Nano-9B-v2, we started by pre-training
Nemotron-Nano-12B-v2-Base on 20T tokens, using a carefully constructed mix of curated and
synthetically generated data. We aligned Nemotron-Nano-12B-v2-Base using several stages of SFT,
GRPO, DPO, and RLHF before using the Minitron compression via pruning and distillation strategy
to produce the final model. As a result of this compression, Nemotron-Nano-9B-v2 can run inference
on context lengths of up to 128k tokens in bfloat16 precision on a single NVIDIA A10G GPU with
22 GiB of memory. We have open-sourced Nemotron-Nano-9B-v2 along with its corresponding sibling
Nemotron-Nano-9B-v2-Base and parent Nemotron-Nano-12B-v2-Base models, plus the majority of
its pre- and post-training data on HuggingFace (links at the bottom of Section 1).
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simplified-source], BSD-Top [bsd-top], BSLA [bsla], BSLA no advertizing [bsla-no-advert], Business
Source License 1.0 [bsl-1.0], BYTEmark License [bytemark], bzip2 License 2010 [bzip2-libbzip-2010],
Caldera License [caldera], Careware [careware], Carnegie Mellon Contributors [carnegie-mellon-
contributors], Carnegie Mellon License [carnegie-mellon], Cavium malloc License [cavium-malloc],
CC-BY-1.0 [cc-by-1.0], CC-BY-2.0 [cc-by-2.0], CC-BY-2.0-UK [cc-by-2.0-uk], CC-BY-2.5 [cc-by-
2.5], CC-BY-3.0 [cc-by-3.0], CC-BY-3.0-AT [cc-by-3.0-at], CC-BY-3.0-US [cc-by-3.0-us], CC-BY-4.0
[cc-by-4.0], CC-PD [cc-pd], CC-PD Mark 1.0 [cc-pdm-1.0], CC0-1.0 [cc0-1.0], CDLA Permissive
1.0 [cdla-permissive-1.0], CDLA Permissive 2.0 [cdla-permissive-2.0], CeCILL-B License [cecill-b],
CeCILL-B License English [cecill-b-en], CERN Attribution 1995 [cern-attribution-1995], CERN
Open Hardware Licence v1.2 [cern-ohl-1.2], CERN Open Hardware License v1.1 [cern-ohl-1.1],
CERN-OHL-P-2.0 [cern-ohl-p-2.0], CFITSIO License [cfitsio], Checkmk License [checkmk], Chicken
Dance License v0.2 [chicken-dl-0.2], Chris Maunder License [chris-maunder], Chris Stoy Attribution
License [chris-stoy], Clarified Artistic License [artistic-clarified], Classic VB License [classic-vb], Clear
BSD 1-Clause License [clear-bsd-1-clause], Clear BSD License [clear-bsd], Click License [click-license],
CLIPS License 2017 [clips-2017], CMU Computing Services License [cmu-computing-services], CMU
License [cmu-template], CMU MIT-style [cmu-mit], CMU Simple License [cmu-simple], CMU Style
[cmu-uc], CNRI Jython License [cnri-jython], CNRI Python 1.6 [cnri-python-1.6], CNRI Python
1.6.1 [cnri-python-1.6.1], Code Credit License v1.0.1 [code-credit-license-1.0.1], Code Credit License
v1.1.0 [code-credit-license-1.1.0], CodeGuru Permissions [codeguru-permissions], CodeSourcery 2004
[codesourcery-2004], COIL-1.0 [coil-1.0], Common Lisp LOOP License [loop], CommonJ Timer
License [commonj-timer], Compass License [compass], ComponentAce JCraft License [componentace-
jcraft], compuphase Linking Exception to Apache 2.0 [compuphase-linking-exception], Condor Public
License 1.1 [condor-1.1], Copyheart [copyheart], Cornell Lossless JPEG License [cornell-lossless-jpeg],
Cougaar Open Source License [cosl], CP/M License 2022 [cpm-2022], CppCoreGuidelines License
[cpp-core-guidelines], CRCalc license [crcalc], Creative Commons Attribution 2.5 Australia [cc-by-
2.5-au], Creative Commons Attribution 3.0 Germany [cc-by-3.0-de], Creative Commons Attribution
3.0 Netherlands [cc-by-3.0-nl], Crossword License [crossword], Crypto++ License [cryptopp], Crystal
Stacker License [crystal-stacker], CSL-1.0 [csl-1.0], CSPRNG [csprng], Cube License [cube], cURL
License [curl], CVE ToU [cve-tou], CWE ToU [cwe-tou], CxImage License [cximage], D Zlib [d-zlib],
DAMAIL [damail], Dante Treglia License [dante-treglia], DBAD License 1.1 [dbad-1.1], Debian
reportbug License [reportbug], Delorie Historical License [delorie-historical], dhtmlab Public License
[dhtmlab-public], diffmark License [diffmark], dl-de/by-1-0-de [dl-de-by-1-0-de], dl-de/by-1-0-en
[dl-de-by-1-0-en], dl-de/by-2-0-de [dl-de-by-2-0-de], dl-de/by-2-0-en [dl-de-by-2-0-en], dmalloc License
[dmalloc], DMTF License 2017 [dmtf-2017], Docbook License [docbook], Dom4j License [dom4j],
Dotseqn License [dotseqn], Douglas Young License [douglas-young], DRL-1.0 [drl-1.0], DRL-1.1
[drl-1.1], Dropbear License [dropbear], Dropbear-2016 [dropbear-2016], DSDP License [dsdp], Dtree
License [dtree], dvipdfm License [dvipdfm], DWTFNMFPL-3.0 [dwtfnmfpl-3.0], Dynamic Drive TOU
[dynamic-drive-tou], ECL 1.0 [ecl-1.0], ECL 2.0 [ecl-2.0], EFL 1.0 [efl-1.0], EFL 2.0 [efl-2.0], EFL
MIT-Style License [enlightenment], eGenix Public License 1.0.0 [egenix-1.0.0], eGenix Public License
1.1.0 [egenix-1.1.0], EllisLab License [ellis-lab], EMX Library License [emx-library], EnergyPlus
BSD-Style License [energyplus-bsd], Enhanced MIT License [emit], enna License [enna], Entessa 1.0
[entessa-1.0], ePaperPress License [epaperpress], EPICS Open License [epics], Eric Glass License
[eric-glass], Errbot exception [errbot-exception], Etalab Open License 2.0 [etalab-2.0], Etalab Open
License 2.0 English [etalab-2.0-en], EU DataGrid Software License [eu-datagrid], Fabien Tassin
License [fabien-tassin], Fair License [fair], FAL 1.3 [free-art-1.3], Far Manager exception to BSD-
3-Clause [far-manager-exception], FASTBuild License 2012-2020 [fastbuild-2012-2020], FastCGI
DevKit [fastcgi-devkit], FastCGI License for Spec Implementation [openmarket-fastcgi], FatFs
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License [fatfs], FFTPACK License 2004 [fftpack-2004], Filament Group MIT License [filament-
group-mit], Flex 2.5 [flex-2.5], Flora License v1.1 [flora-1.1], font-alias License [font-alias], FPLOT
LIcense [fplot], Fraunhofer ISO 14496-10 License [fraunhofer-iso-14496-10], FreeBSD Boot [freebsd-
boot], FreeBSD Doc License [freebsd-doc], FreeBSD unmodified first lines License [freebsd-first],
FreeMarker License [freemarker], FreeTTS License [freetts], FreeType Project License [freetype],
Freeware Public License (FPL) [fpl], FSF All Permissive License [fsf-ap], FSF Free Software License
[fsf-free], FSF Notice [fsf-notice], FSF Unlimited License No Warranty [fsf-unlimited-no-warranty],
FSF-Unlimited [fsf-unlimited], Fujion Clinical Exception to Apache 2.0 [fujion-exception-to-apache-
2.0], Gareth McCaughan License [gareth-mccaughan], Gary S. Brown License [gary-s-brown], GDCL
License [gdcl], Generic patent disclaimer [patent-disclaimer], Geoff Kuenning License 1993 [geoff-
kuenning-1993], Ghostpdl Permissive [ghostpdl-permissive], Glulxe License [glulxe], GLUT License
[glut], GLWTPL [glwtpl], Good Boy License [good-boy], Graphics Gems License [graphics-gems],
Greg Roelofs License [greg-roelofs], Gregory Pietsch Liberal License [gregory-pietsch], GStreamer
Exception (2005) [gstreamer-exception-2005], GTPL-v1 [gtpl-v1], GTPL-v2 [gtpl-v2], GTPL-v3 [gtpl-
v3], Haskell Report License [haskell-report], HDF4 License [hdf4], HDF5License [hdf5], HDPARM
License [hdparm], Henry Spencer License 1999 [henry-spencer-1999], Henry Spencer Regexp License
[hs-regexp], HIDAPI License [hidapi], Historical Notice - NTP [historical-ntp], Historical Permission
Notice and Disclaimer [historical], Homebrewed License [homebrewed], HP 1986 License [hp-1986],
HPND sell variant with MIT disclaimer [hpnd-sell-variant-mit-disclaimer], HTML 5 spec License
[html5], httpget notice and disclaimer [httpget], Ian Kaplan License [ian-kaplan], Ian Piumarta
License [ian-piumarta], IBM AS-IS License [ibm-as-is], IBM DHCP License [ibm-dhcp], IBM Non-
Warranted Sample Code License [ibm-nwsc], IBM PowerPC Software [ibm-pibs], IBM Sample License
[ibm-sample], IBPP License [ibpp], ICANN-Public [icann-public], ICOT Free Software [icot-free],
ICU Composite License [ibm-icu], ICU License 58 and later [unicode-icu-58], IDT License Notice
[idt-notice], IETF License [ietf], IETF Trust License [ietf-trust], ilmid License [ilmid], ImageMagick
License [imagemagick], Independent JPEG Group License - short [ijg-short], Indiana Extreme
License 1.1.1 [indiana-extreme], Indiana Extreme License 1.2 [indiana-extreme-1.2], Infineon Free
Software License [infineon-free], Info-Zip License 1997-10 [info-zip-1997-10], Info-Zip License 2001-01
[info-zip-2001-01], Info-Zip License 2002-02 [info-zip-2002-02], Info-Zip License 2003-05 [info-zip-
2003-05], Info-Zip License 2004-05 [info-zip-2004-05], Info-Zip License 2005-02 [info-zip-2005-02],
Info-Zip License 2007-03 [info-zip-2007-03], Info-Zip License 2009-01 [info-zip-2009-01], Info-Zip
License [info-zip], Inno Setup License [inno-setup], Intel ACPI SLA [intel-acpi], Intel BSD - Export
Control [intel-bsd-export-control], Intel BSD 2 Clause License [intel-bsd-2-clause], Intel BSD License
[intel-bsd], Intel Limited Patent License [intel], Intel OSL 1989 [intel-osl-1989], Intel OSL 1993
[intel-osl-1993], Intel Royalty Free License [intel-royalty-free], ISC License [isc], ISO 14496-10 [iso-
14496-10], ISO 8879 [iso-8879], ITU License [itu], JA-SiG License [ja-sig], Jam License [jam], Jason
Mayes License [jason-mayes], Jasper 1.0 [jasper-1.0], JasPer 2.0 [jasper-2.0], Java App Stub License
[java-app-stub], JDBM License v1.00 [jdbm-1.00], JDOM License [jdom], Jetty License [jetty], JGraph
License [jgraph], JPEG License [ijg], JPNIC idnkit License [jpnic-idnkit], JPNIC mdnkit License
[jpnic-mdnkit], JPython 1.1 [jpython-1.1], jQuery-Tools-PD [jquery-pd], Jscheme License [jscheme],
JSFromHell License [jsfromhell], JSON License [json], JSON-js-PD [json-js-pd], JSON-PD [json-pd],
Jython License [jython], Kalle Kaukonen License [kalle-kaukonen], Kazlib [kazlib], Keith Rule
License [keith-rule], Kerberos License [kerberos], Kevan Stannard License [kevan-stannard], Kevlin
Henney License [kevlin-henney], Khronos License [khronos], Knuth CTAN License [knuth-ctan],
Kumar Robotics License [kumar-robotics], latex-ec-fonts [ecfonts-1.0], Latex2e License [latex2e],
Latex2e with translated notice permission [latex2e-translated-notice], LBNL BSD Variant [lbnl-
bsd], LCS-Telegraphics License [lcs-telegraphics], Leptonica License [leptonica], libgd License 2018
[libgd-2018], libgeoTiff License [libgeotiff], LibMib License [libmib], libmng License 2007 [libmng-
2007], Libpng License [libpng], LIbpng License v2 [libpng-v2], libselinux License [libselinux-pd],

39



NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model

libsrv License v1.0.2 [libsrv-1.0.2], Lil License v1 [lil-1], LILO License [lilo], Linux Device Drivers
[linux-device-drivers], Linux-OpenIB [linux-openib], LinuxBIOS License [linuxbios], linuxhowtos
License [linuxhowtos], LLNL [llnl], LLVM Exception to Apache 2.0 [llvm-exception], Logica OSL 1.0
[logica-1.0], LPPL 1.3c [lppl-1.3c], Lucent Public License 1.0 [lucent-pl-1.0], Lucent Public License
1.02 [lucent-pl-1.02], Lucre License [lucre], LZMA SDK License (versions 9.22 and beyond) [lzma-sdk-
9.22], LZMA SDK Public Domain [lzma-sdk-pd], M+ Fonts license [m-plus], MakeHuman License
[make-human-exception], Markus Kuhn License [markus-kuhn-license], Martin Bergmeier License
[martin-birgmeier], Matrix Template Library License [mtll], Matt Gallagher Attribution License
[matt-gallagher-attribution], Matt Kruse License [mattkruse], Matthew Kwan License [matthew-
kwan], MediaInfo(Lib) License [mediainfo-lib], metamail License [metamail], MgOpen Font License
[mgopen-font-license], Michael Barr License [michael-barr], Minpack Copyright Notice [minpack],
MirOS License [mir-os], MIT (SEI) [vince], MIT 1995 [mit-1995], MIT Acknowledgment License
[mit-ack], MIT Addition License [mit-addition], MIT License 1998 [mit-license-1998], MIT License
[mit], MIT Modern Variant [mit-modern], MIT Nagy Variant [mit-nagy], MIT no advertising with
Export Control [mit-no-advert-export-control], MIT No Commercial Use of Trademarks [mit-no-
trademarks], MIT no false attribution License [mit-no-false-attribs], MIT Old Style [mit-old-style],
MIT Old Style no advertising [mit-old-style-no-advert], MIT Old Style Spare [mit-old-style-sparse],
MIT README License [mit-readme], MIT Synopsys License [mit-synopsys], MIT Taylor Variant
[mit-taylor-variant], MIT Veillard Variant [mit-veillard-variant], MIT with Export Control [mit-
export-control], MIT with Specification Disclaimer [mit-specification-disclaimer], MIT Xfig Variant
[mit-xfig], MIT-0-Clause [mit-0], mod_dav License 1.0 [mod-dav-1.0], Modified MIT License for
Public Domain software [pd-mit], Motorola Microprocessor License [motorola], Mozilla GC License
[mozilla-gc], MPEG SSG License [mpeg-ssg], MPEG-2 NBC MPEG-4 Audio ISO [mpeg-iso], MPICH
License [mpich], MS Systems Journal Sample Code License [msj-sample-code], MS WS Routing
Specifications License [ms-ws-routing-spec], MS-LPL [ms-lpl], MS-PL [ms-pl], MS-SS-PL [ms-sspl],
Mulan PSL v1 [mulanpsl-1.0], Mulan PSL v1.0 (En) [mulanpsl-1.0-en], Mulan PSL v2 [mulanpsl-2.0],
Mulan PSL v2.0 (En) [mulanpsl-2.0-en], Mulle Kybernetik License [mulle-kybernetik], Multics
License [multics], Mup License [mup], musl attribution exception [musl-exception], MX4J License
1.0 [mx4j], Nara Institute License 2003 [naist-2003], NASA 1.3 [nasa-1.3], NAUMEN Public License
[naumen], NBPL-1.0 [nbpl-1.0], NCBI Public Domain Notice [ncbi], NCSA Open Source License
[uoi-ncsa], Net SNMP License [net-snmp], Netcat License [netcat], NetCDF License [netcdf], Netron
Project License [netron], Newlib Historical License [newlib-historical], Newran License [newran],
Newsletr License [newsletr], Nice License [nice], NICTA Public Software Licence 1.0 [nicta-psl],
Niels Ferguson License [niels-ferguson], Nilsson Historical License [nilsson-historical], NIST Public
Domain Notice [nist-pd], NIST Public Domain Notice with fallback [nist-pd-fallback], NIST Software
License [nist-software], NIST SRD License [nist-srd], NLOD-1.0 [nlod-1.0], NLOD-2.0 [nlod-2.0],
NLPL [nlpl], Node License [node-js], Non White Heterosexual Male [nwhm], Nonexclusive License
[nonexclusive], Nortel DASA License [nortel-dasa], Notre Dame License [notre-dame], NRL License
[nrl], NRL permission [nrl-permission], NTLM License [ntlm], NTP Origin License [ntpl-origin],
NTP-0 [ntp-0], NVIDIA 2002 License [nvidia-2002], NVIDIA License [nvidia], NVIDIA License
with Government Qualifications [nvidia-gov], NYSL 0.9982 [nysl-0.9982], NYSL 0.9982 JP [nysl-
0.9982-jp], O Young Jong License [o-young-jong], O’Reilly Code Sample Notice [oreilly-notice],
O-UDA-1.0 [o-uda-1.0], Oasis WS Security Specification License [oasis-ws-security-spec], Object
Form Exception to MIT [object-form-exception-to-mit], ODC-By-1.0 [odc-by-1.0], ODMG License
[odmg], OFFIS License [offis], OFL 1.0 [ofl-1.0], OFL 1.0 no Reserved Font Name [ofl-1.0-no-
rfn], OFL 1.0 Reserved Font Name [ofl-1.0-rfn], OFL 1.1 no Reserved Font Name [ofl-1.1-no-rfn],
OGC 1.0 [ogc-1.0], OGC Software Notice [ogc], OGL 1.0a [ogl-1.0a], OGL Alberta 2.1 [can-ogl-
alberta-2.1], OGL British Columbia 2.0 [can-ogl-british-columbia-2.0], OGL Canada 2.0 [can-ogl-2.0-
en], OGL Canada 2.0 Francais [ogl-canada-2.0-fr], OGL Nova Scotia 1.0 [can-ogl-nova-scotia-1.0],
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OGL Ontario 1.0 [can-ogl-ontario-1.0], OGL Toronto 1.0 [can-ogl-toronto-1.0], OGL-UK-1.0 [ogl-
uk-1.0], OGL-UK-2.0 [ogl-uk-2.0], OGL-UK-3.0 [ogl-uk-3.0], OGL-WPD-3.0 [ogl-wpd-3.0], Open
Directory License [odl], Open Group Test Suite License [opengroup], Open Publication License 1.0
[openpub], OpenLDAP Public License 1.1 [openldap-1.1], OpenLDAP Public License 1.2 [openldap-
1.2], OpenLDAP Public License 1.3 [openldap-1.3], OpenLDAP Public License 1.4 [openldap-
1.4], OpenLDAP Public License 2.0 [openldap-2.0], OpenLDAP Public License 2.0.1 [openldap-
2.0.1], OpenLDAP Public License 2.1 [openldap-2.1], OpenLDAP Public License 2.2 [openldap-2.2],
OpenLDAP Public License 2.2.1 [openldap-2.2.1], OpenLDAP Public License 2.2.2 [openldap-
2.2.2], OpenLDAP Public License 2.3 [openldap-2.3], OpenLDAP Public License 2.4 [openldap-
2.4], OpenLDAP Public License 2.5 [openldap-2.5], OpenLDAP Public License 2.6 [openldap-
2.6], OpenLDAP Public License 2.7 [openldap-2.7], OpenLDAP Public License 2.8 [openldap-2.8],
OpenORB Community License 1.0 [openorb-1.0], OpenSAML License v1 [opensaml-1.0], OpenSSH
License [openssh], OpenSSL License [openssl], OpenSSL/SSLeay License [openssl-ssleay], OPML 1.0
[opml-1.0], OPNL-1.0 [opnl-1.0], OPNL-2.0 [opnl-2.0], Oracle BSD-Style with Nuclear Restrictions
[oracle-bsd-no-nuclear], Original SSLeay License [ssleay], Original SSLeay License with Windows
Clause [ssleay-windows], Oswego Concurrent License [oswego-concurrent], Other Permissive Licenses
[other-permissive], OWTChart License [owtchart], OZPLB 1.0 [ozplb-1.0], OZPLB 1.1 [ozplb-1.1],
Paolo Messina 2000 [paolo-messina-2000], ParaView License 1.2 [paraview-1.2], Paul Mackerras
Binary License [paul-mackerras-binary], Paul Mackerras License [paul-mackerras], Paul Mackerras
New License [paul-mackerras-new], Paul Mackerras Simplified License [paul-mackerras-simplified],
Paulo Soares License [paulo-soares], PayPal SDK License 2013-2016 [paypal-sdk-2013-2016], PBM
Library License [libpbm], PCRE License [pcre], PD’Programming License [pd-programming], PDDL
1.0 [pddl-1.0], Perl 1.0 [perl-1.0], Peter Deutsch Document License [peter-deutsch-document], Phil
Bunce License [phil-bunce], Philippe De Muyter License [philippe-de-muyter], Phorum License 2.0
[phorum-2.0], PHP License 2.0.2 [php-2.0.2], PHP License 3.0 [php-3.0], PHP License 3.01 [php-3.01],
Pine License [pine], PngSuite License [pngsuite], Politepix Public License 1.0 [politepix-pl-1.0],
PostgreSQL License [postgresql], ppp License [ppp], Protobuf License [protobuf], PS Utilities License
[psutils], PSF Python License 3.7.2 [psf-3.7.2], PSF-2.0 [psf-2.0], psfrag License [psfrag], Psytec
Free Software License [psytec-freesoft], Public Domain [public-domain], Public Domain Disclaimer
[public-domain-disclaimer], Purdue BSD-Style License [purdue-bsd], pybench License [pybench],
PyCrypto License [pycrypto], PyGres License 2.2 [pygres-2.2], Python CWI License [python-cwi],
Python License 2.0 [python], Python License 2.0.1 [python-2.0.1], Qhull License [qhull], QLogic
Microcode [qlogic-microcode], Qpopper License [qpopper], Qualcomm Turing License [qualcomm-
turing], Quirksmode Copyright Notice [quirksmode], radvd License [radvd], Rdisc License [rdisc],
Red Hat Attribution License [red-hat-attribution], Red Hat BSD-Simplified [red-hat-bsd-simplified],
Regexp License [regexp], Repoze License [repoze], RiceBSD [ricebsd], Richard Black License [richard-
black], Robert Hubley License [robert-hubley], RSA 1990 [rsa-1990], RSA Cryptoki License [rsa-
cryptoki], RSA Demo License [rsa-demo], RSA-MD4 License [rsa-md4], RSA-MD5 License [rsa-md5],
RTools.Util License [rtools-util], Ruby License [ruby], Runtime Library Exception to Apache 2.0
[apple-runtime-library-exception], Rute Users Tutorial and Exposition License 0.8.0 [rute], Ryszard
Szopa License [ryszard-szopa], SaaS MIT License [saas-mit], Sash Notice [sash], SATA License [sata],
SAX-PD [sax-pd], Saxpath License [saxpath], SBIA Part B [sbia-b], ScanCode acknowledgment
[scancode-acknowledgment], scanlogd License [scanlogd-license], ScanSoft Public License 1.2 [scansoft-
1.2], SCEA Shared Source License 1.0 [scea-1.0], Scheme Language Report License [schemereport],
Scheme Widget Library (SWL) Software License [swl], Scintilla License [scintilla], Scribbles Demos
Recognizer Notice [scribbles], Script Asylum License [script-asylum], Secret Labs License 2011 [secret-
labs-2011], selinux-nsa-declaration-1.0 [selinux-nsa-declaration-1.0], Sendmail License [sendmail],
Service Availability Forum License [saf], Service Component Architecture License [service-comp-arch],
SFL License Agreement [sfl-license], SGI CID Font Code Public License 1.0 [sgi-cid-1.0], SGI Free
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Software License B 1.1 [sgi-freeb-1.1], SGI Free Software License B 2.0 [sgi-freeb-2.0], SGI GLX Public
License 1.0 [sgi-glx-1.0], Sglib License [sglib], SGP4 Permission Notice [sgp4], Shital Shah License
[shital-shah], SIL Open Font License 1.1 with Reserved Font Name [ofl-1.1-rfn], SimPL 1.1 [simpl-1.1],
SNMP++ License [hp-snmp-pp], snprintf License [snprintf], SoftFloat [softfloat], SoftFloat Legal
Notice 2.0 [softfloat-2.0], softSurfer License [softsurfer], SolderPad Hardware License v0.5 [shl-0.5],
Solderpad Hardware License v2.0 [shl-2.0], Solderpad Hardware License v2.1 [shl-2.1], SolderPad
Hardware License, Version 0.51 [shl-0.51], Sparky License [sparky], SpeechWorks Public License
1.1 [speechworks-1.1], SQLite Blessing [blessing], Standard ML of New Jersey [standard-ml-nj],
Stanford PVRG License [stanford-pvrg], STLport License 2000 [stlport-2000], STLport License 4.5
[stlport-4.5], STREAM Benchmark License [stream-benchmark], Stu Nicholls License [stu-nicholls],
Sun RPC License [sun-rpc], Sun source code License [sun-source], SunPro Attribution License
[sunpro], Sunsoft License [sunsoft], Supervisor License [supervisor], svndiff License [svndiff], SWIG
Library License [swig], Symlinks License [symlinks], Symphonysoft [symphonysoft], Synopsys MIT
License [synopsys-mit], Synthesis Toolkit License [synthesis-toolkit], SystemC Open Source License
Agreement [accellera-systemc], Taiwan Open Government Data License, version 1.0 [ogdl-taiwan-1.0],
Takao Abe License [takao-abe], Takuya OOURA License [takuya-ooura], Talis Community License
[ttcl], Tatu Ylonen License [tatu-ylonen], TCG Spec License v1 [tcg-spec-license-v1], TCL/TK
License [tcl], TCP Wrappers License [tcp-wrappers], TekHVC License [tekhvc], Term Readkey
License [term-readkey], Tested Software License [tested-software], TeX Live License [tex-live], Text-
Tabs+Wrap License [ttwl], TFL [tfl], The Happy Bunny License [happy-bunny], Theodore Ts’o license
[tso-license], Things I Made (TIM) Public License [things-i-made-public-license], Tidy License [tidy],
Tiger Cryptography License [tiger-crypto], Tigra Calendar 3.2 License [tigra-calendar-3.2], Tigra
Calendar 4.0 License [tigra-calendar-4.0], Tim Janik License 2003 [tim-janik-2003], Time::ParseDate
License [tpdl], Timestamp Picker License [timestamp-picker], TTYP0 License [ttyp0], TU Berlin
License 1.0 [tu-berlin], TU Berlin License 2.0 [tu-berlin-2.0], Tumbolia Public License [tumbolia],
TwistedSNMP License [twisted-snmp], UCAR License [ucar], UnboundID LDAP SDK Free Use
License [ldap-sdk-free-use], Unicode DFS 2015 [unicode-dfs-2015], Unicode DFS 2016 [unicode-dfs-
2016], Unicode Inc License Agreement [unicode], Unicode Mappings License [unicode-mappings],
University of British Columbia License [ubc], University of Michigan OSL [michigan-disclaimer],
UNIX Network Programming Book License [unpbook], UnixCrypt License [unixcrypt], Unlicense
[unlicense], Unlimited Binary Use Exception [unlimited-binary-use-exception], UPL 1.0 [upl-1.0], US
Government Public Domain [us-govt-public-domain], US Government Unlimited Rights [us-govt-
unlimited-rights], USRobotics Permissive License [usrobotics-permissive], Utopia Typeface License
[utopia], VCalendar License [vcalendar], Vic Metcalfe Public Domain [vic-metcalfe-pd], VIM License
[vim], Visual Idiot [visual-idiot], Visual Numerics License [visual-numerics], Vixie Cron License [vixie-
cron], Vovida Software License 1.0 [vsl-1.0], W3C 3-Clause BSD License [w3c-03-bsd-license], W3C
Software Notice and License [w3c], W3C-SOFTWARE-19980720 [w3c-software-19980720], W3C-
SOFTWARE-DOC-20150513 [w3c-software-doc-20150513], w3m License [w3m], Westhawk License
[westhawk], Whistle Communications License [whistle], Whitecat License [whitecat], WIDE License
[wide-license], Wide Open License [wol], Widget Workshop License [widget-workshop], William
Alexander License [william-alexander], wingo License [wingo], Wordnet License [wordnet], Wrox Press
License [wrox], WS-Addressing Specification License [ws-addressing-spec], WS-Policy Specification
[ws-policy-specification], WS-Trust Specification [ws-trust-specification], Wsuipa License [wsuipa],
WTFNMFPL-1.0 [wtfnmfpl-1.0], WTFPL 1.0 [wtfpl-1.0], WTFPL 2.0 [wtfpl-2.0], WTHPL 1.0
[wthpl-1.0], wxWidgets Licence [wxwidgets], wxWindows Unrestricted Licence 3.0 [wxwindows-u-3.0],
X11 Documentation License [x11-doc], X11 License [x11], X11-R5 [x11-x11r5], X11-Style (Acer)
[x11-acer], X11-Style (Adobe) [x11-adobe], X11-Style (Adobe-DEC) [x11-adobe-dec], X11-Style
(Bitstream Charter) [x11-bitstream], X11-Style (David R. Hanson) [x11-hanson], X11-Style (DEC
1) [x11-dec1], X11-Style (DEC 2) [x11-dec2], X11-Style (DSC Technologies) [x11-dsc], X11-Style
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(FSF) [x11-fsf], X11-Style (Keith Packard) [x11-keith-packard], X11-Style (Lucent) [x11-lucent],
X11-Style (Lucent-variant) [x11-lucent-variant], X11-Style (OAR) [x11-oar], X11-Style (Open Group)
[x11-opengroup], X11-Style (OpenGL) [x11-opengl], X11-Style (Quarterdeck) [x11-quarterdeck],
X11-Style (Realmode) [x11-realmode], X11-Style (Silicon Graphics) [x11-sg], X11-Style (Stanford
University) [x11-stanford], X11-Style (Tektronix) [x11-tektronix], X11-Style (Tiff) [x11-tiff], X11-Style
(X Consortium Veillard) [x11-xconsortium-veillard], X11-Style (X Consortium) [x11-xconsortium],
Xdebug License v 1.03 [xdebug-1.03], XFree86 License 1.0 [xfree86-1.0], XFree86 License 1.1 [xfree86-
1.1], xinetd License [xinetd], XML:DB Initiative Software License 1.0 [xmldb-1.0], XSkat License
[xskat], xxd License [xxd], Yale CAS License [yale-cas], Yensdesign License [yensdesign], Zed License
[zed], Zend Engine License 2.0 [zend-2.0], ZeusBench notice [zeusbench], ZLIB License [zlib], ZLIB
License with Acknowledgment [zlib-acknowledgement], ZPL 1.0 [zpl-1.0], ZPL 1.1 [zpl-1.1], ZPL
2.0 [zpl-2.0], ZPL 2.1 [zpl-2.1], zsh License [zsh], Zuora Software License [zuora-software], Zveno
Research License [zveno-research]

The list above gives the short name (or name, if no short name exists) along with the key, in square
brackets, from the ScanCode license dataset available at https://github.com/aboutcode-org/
scancode-toolkit/tree/develop/src/licensedcode/data/licenses.
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