Skip to content

Publications

SelfVC: Voice Conversion With Iterative Refinement using Self Transformations

We propose SelfVC, a training strategy to iteratively improve a voice conversion model with self-synthesized examples. Previous efforts on voice conversion focus on explicitly disentangling speech representations to separately encode speaker characteristics and linguistic content. However, disentangling speech representations to capture such attributes using task-specific loss terms can lead to information loss by discarding finer nuances of the original signal. In this work, instead of explicitly disentangling attributes with loss terms, we present a framework to train a controllable voice conversion model on entangled speech representations derived from self-supervised learning and speaker verification models. First, we develop techniques to derive prosodic information from the audio signal and SSL representations to train predictive submodules in the synthesis model. Next, we propose a training strategy to iteratively improve the synthesis model for voice conversion, by creating a challenging training objective using self-synthesized examples. In this training approach, the current state of the synthesis model is used to generate voice-converted variations of an utterance, which serve as inputs for the reconstruction task, ensuring a continuous and purposeful refinement of the model. We demonstrate that incorporating such self-synthesized examples during training improves the speaker similarity of generated speech as compared to a baseline voice conversion model trained solely on heuristically perturbed inputs. SelfVC is trained without any text and is applicable to a range of tasks such as zero-shot voice conversion, cross-lingual voice conversion, and controllable speech synthesis with pitch and pace modifications. SelfVC achieves state-of-the-art results in zero-shot voice conversion on metrics evaluating naturalness, speaker similarity, and intelligibility of synthesized audio.


A Chat about Boring Problems: Studying GPT-Based Text Normalization

Text normalization - the conversion of text from written to spoken form - is traditionally assumed to be an ill-formed task for language modeling. In this work, we argue otherwise. We empirically show the capacity of Large-Language Models (LLM) for text normalization in few-shot scenarios. Combining self-consistency reasoning with linguistic-informed prompt engineering, we find LLM-based text normalization to achieve error rates approximately 40% lower than production-level normalization systems. Further, upon error analysis, we note key limitations in the conventional design of text normalization tasks. We create a new taxonomy of text normalization errors and apply it to results from GPT-3.5-Turbo and GPT-4.0. Through this new framework, we identify strengths and weaknesses of LLM-based TN, opening opportunities for future work.


Stateful Conformer with Cache-based Inference for Streaming Automatic Speech Recognition

In this paper, we propose an efficient and accurate streaming speech recognition model based on the FastConformer architecture. We adapted the FastConformer architecture for streaming applications through: (1) constraining both the look-ahead and past contexts in the encoder, and (2) introducing an activation caching mechanism to enable the non-autoregressive encoder to operate autoregressively during inference. The proposed model is thoughtfully designed in a way to eliminate the accuracy disparity between the train and inference time which is common for many streaming models. Furthermore, our proposed encoder works with various decoder configurations including Connectionist Temporal Classification (CTC) and RNN-Transducer (RNNT) decoders. Additionally, we introduced a hybrid CTC/RNNT architecture which utilizes a shared encoder with both a CTC and RNNT decoder to boost the accuracy and save computation. We evaluate the proposed model on LibriSpeech dataset and a multi-domain large scale dataset and demonstrate that it can achieve better accuracy with lower latency and inference time compared to a conventional buffered streaming model baseline. We also showed that training a model with multiple latencies can achieve better accuracy than single latency models while it enables us to support multiple latencies with a single model. Our experiments also showed the hybrid architecture would not only speedup the convergence of the CTC decoder but also improves the accuracy of streaming models compared to single decoder models.


NeMo Guardrails: A Toolkit for Controllable and Safe LLM Applications with Programmable Rails

NeMo Guardrails is an open-source toolkit for easily adding programmable guardrails to LLM-based conversational systems. Guardrails (or rails for short) are a specific way of controlling the output of an LLM, such as not talking about topics considered harmful, following a predefined dialogue path, using a particular language style, and more. There are several mechanisms that allow LLM providers and developers to add guardrails that are embedded into a specific model at training, e.g. using model alignment. Differently, using a runtime inspired from dialogue management, NeMo Guardrails allows developers to add programmable rails to LLM applications - these are user-defined, independent of the underlying LLM, and interpretable. Our initial results show that the proposed approach can be used with several LLM providers to develop controllable and safe LLM applications using programmable rails.


SteerLM: Attribute Conditioned SFT as an (User-Steerable) Alternative to RLHF

Model alignment with human preferences is an essential step in making Large Language Models (LLMs) helpful and consistent with human values. It typically consists of supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) stages. However, RLHF faces inherent limitations stemming from a complex training setup and its tendency to align the model with implicit values that end users cannot control at run-time. Moreover, reward models in RLHF stage commonly rely on single-dimensional feedback as opposed to explicit, multifaceted signals that indicate attributes such as helpfulness, humor, and toxicity. To address these limitations, we propose SteerLM, a supervised fine-tuning method that empowers end-users to control responses during inference. SteerLM conditions responses to conform to an explicitly defined multi-dimensional set of attributes, thereby empowering a steerable AI capable of generating helpful and high-quality responses while maintaining customizability. Experiments show that SteerLM trained on open source datasets generates responses that are preferred by human and automatic evaluators to many state-of-the-art baselines trained with RLHF while being much easier to train. Try SteerLM at https://huggingface.co/nvidia/SteerLM-llama2-13B


Investigating End-to-End ASR Architectures for Long Form Audio Transcription

This paper presents an overview and evaluation of some of the end-to-end ASR models on long-form audios. We study three categories of Automatic Speech Recognition(ASR) models based on their core architecture: (1) convolutional, (2) convolutional with squeeze-and-excitation and (3) convolutional models with attention. We selected one ASR model from each category and evaluated Word Error Rate, maximum audio length and real-time factor for each model on a variety of long audio benchmarks: Earnings-21 and 22, CORAAL, and TED-LIUM3. The model from the category of self-attention with local attention and global token has the best accuracy comparing to other architectures. We also compared models with CTC and RNNT decoders and showed that CTC-based models are more robust and efficient than RNNT on long form audio.


Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition

Conformer-based models have become the dominant end-to-end architecture for speech processing tasks. With the objective of enhancing the conformer architecture for efficient training and inference, we carefully redesigned Conformer with a novel downsampling schema. The proposed model, named Fast Conformer(FC), is 2.8x faster than the original Conformer, supports scaling to Billion parameters without any changes to the core architecture and also achieves state-of-the-art accuracy on Automatic Speech Recognition benchmarks. To enable transcription of long-form speech up to 11 hours, we replaced global attention with limited context attention post-training, while also improving accuracy through fine-tuning with the addition of a global token. Fast Conformer, when combined with a Transformer decoder also outperforms the original Conformer in accuracy and in speed for Speech Translation and Spoken Language Understanding.


NeMo Forced Aligner and its application to word alignment for subtitle generation

We present NeMo Forced Aligner (NFA): an efficient and accurate forced aligner which is part of the NeMo conversational AI open-source toolkit. NFA can produce token, word, and segment-level alignments, and can generate subtitle files for highlighting words or tokens as they are spoken. We present a demo which shows this functionality, and demonstrate that NFA has the best word alignment accuracy and speed of alignment generation compared with other aligners.


Confidence-based Ensembles of End-to-End Speech Recognition Models

The number of end-to-end speech recognition models grows every year. These models are often adapted to new domains or languages resulting in a proliferation of expert systems that achieve great results on target data, while generally showing inferior performance outside of their domain of expertise. We explore combination of such experts via confidence-based ensembles: ensembles of models where only the output of the most-confident model is used. We assume that models' target data is not available except for a small validation set. We demonstrate effectiveness of our approach with two applications. First, we show that a confidence-based ensemble of 5 monolingual models outperforms a system where model selection is performed via a dedicated language identification block. Second, we demonstrate that it is possible to combine base and adapted models to achieve strong results on both original and target data. We validate all our results on multiple datasets and model architectures.


ACE-VC: Adaptive and Controllable Voice Conversion using Explicitly Disentangled Self-supervised Speech Representations

In this work, we propose a zero-shot voice conversion method using speech representations trained with self-supervised learning. First, we develop a multi-task model to decompose a speech utterance into features such as linguistic content, speaker characteristics, and speaking style. To disentangle content and speaker representations, we propose a training strategy based on Siamese networks that encourages similarity between the content representations of the original and pitch-shifted audio. Next, we develop a synthesis model with pitch and duration predictors that can effectively reconstruct the speech signal from its decomposed representation. Our framework allows controllable and speaker-adaptive synthesis to perform zero-shot any-to-any voice conversion achieving state-of-the-art results on metrics evaluating speaker similarity, intelligibility, and naturalness. Using just 10 seconds of data for a target speaker, our framework can perform voice swapping and achieves a speaker verification EER of 5.5% for seen speakers and 8.4% for unseen speakers.