Skip to content

2020

BioMegatron: Larger Biomedical Domain Language Model

There has been an influx of biomedical domain-specific language models, showing language models pre-trained on biomedical text perform better on biomedical domain benchmarks than those trained on general domain text corpora such as Wikipedia and Books. Yet, most works do not study the factors affecting each domain language application deeply. Additionally, the study of model size on domain-specific models has been mostly missing. We empirically study and evaluate several factors that can affect performance on domain language applications, such as the sub-word vocabulary set, model size, pre-training corpus, and domain transfer. We show consistent improvements on benchmarks with our larger BioMegatron model trained on a larger domain corpus, contributing to our understanding of domain language model applications. We demonstrate noticeable improvements over the previous state-of-the-art (SOTA) on standard biomedical NLP benchmarks of question answering, named entity recognition, and relation extraction. Code and checkpoints to reproduce our experiments are available at [github.com/NVIDIA/NeMo].


MatchboxNet - 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition

Abstract: We present MatchboxNet - an end-to-end neural network for speech command recognition. MatchboxNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. MatchboxNet reaches state-of-the art accuracy on the Google Speech Commands dataset while having significantly fewer parameters than similar models. The small footprint of MatchboxNet makes it an attractive candidate for devices with limited computational resources. The model is highly scalable, so model accuracy can be improved with modest additional memory and compute. Finally, we show how intensive data augmentation using an auxiliary noise dataset improves robustness in the presence of background noise.


Improving Noise Robustness of an End-to-End Neural Model for Automatic Speech Recognition

We present our experiments in training robust to noise an end-to-end automatic speech recognition (ASR) model using intensive data augmentation. We explore the efficacy of fine-tuning a pre-trained model to improve noise robustness, and we find it to be a very efficient way to train for various noisy conditions, especially when the conditions in which the model will be used, are unknown. Starting with a model trained on clean data helps establish baseline performance on clean speech. We carefully fine-tune this model to both maintain the performance on clean speech, and improve the model accuracy in noisy conditions. With this schema, we trained robust to noise English and Mandarin ASR models on large public corpora. All described models and training recipes are open sourced in NeMo, a toolkit for conversational AI.


SpeakerNet: 1D Depth-wise Separable Convolutional Network for Text-Independent Speaker Recognition and Verification

We propose SpeakerNet - a new neural architecture for speaker recognition and speaker verification tasks. It is composed of residual blocks with 1D depth-wise separable convolutions, batch-normalization, and ReLU layers. This architecture uses x-vector based statistics pooling layer to map variable-length utterances to a fixed-length embedding (q-vector). SpeakerNet-M is a simple lightweight model with just 5M parameters. It doesn't use voice activity detection (VAD) and achieves close to state-of-the-art performance scoring an Equal Error Rate (EER) of 2.10% on the VoxCeleb1 cleaned and 2.29% on the VoxCeleb1 trial files.


A Fast and Robust BERT-based Dialogue State Tracker for Schema-Guided Dialogue Dataset

Dialog State Tracking (DST) is one of the most crucial modules for goal-oriented dialogue systems. In this paper, we introduce FastSGT (Fast Schema Guided Tracker), a fast and robust BERT-based model for state tracking in goal-oriented dialogue systems. The proposed model is designed for the Schema-Guided Dialogue (SGD) dataset which contains natural language descriptions for all the entities including user intents, services, and slots. The model incorporates two carry-over procedures for handling the extraction of the values not explicitly mentioned in the current user utterance. It also uses multi-head attention projections in some of the decoders to have a better modelling of the encoder outputs. In the conducted experiments we compared FastSGT to the baseline model for the SGD dataset. Our model keeps the efficiency in terms of computational and memory consumption while improving the accuracy significantly. Additionally, we present ablation studies measuring the impact of different parts of the model on its performance. We also show the effectiveness of data augmentation for improving the accuracy without increasing the amount of computational resources.


MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection

We present MarbleNet, an end-to-end neural network for Voice Activity Detection (VAD). MarbleNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. When compared to a state-of-the-art VAD model, MarbleNet is able to achieve similar performance with roughly 1/10-th the parameter cost. We further conduct extensive ablation studies on different training methods and choices of parameters in order to study the robustness of MarbleNet in real-world VAD tasks.


Correction of Automatic Speech Recognition with Transformer Sequence-To-Sequence Model

In this work, we introduce a simple yet efficient post-processing model for automatic speech recognition. Our model has Transformer-based encoder-decoder architecture which "translates" acoustic model output into grammatically and semantically correct text. We investigate different strategies for regularizing and optimizing the model and show that extensive data augmentation and the initialization with pretrained weights are required to achieve good performance. On the LibriSpeech benchmark, our method demonstrates significant improvement in word error rate over the baseline acoustic model with greedy decoding, especially on much noisier dev-other and test-other portions of the evaluation dataset. Our model also outperforms baseline with 6-gram language model re-scoring and approaches the performance of re-scoring with Transformer-XL neural language model.