Skip to content

Large-Language Models

A Chat about Boring Problems: Studying GPT-Based Text Normalization

Text normalization - the conversion of text from written to spoken form - is traditionally assumed to be an ill-formed task for language modeling. In this work, we argue otherwise. We empirically show the capacity of Large-Language Models (LLM) for text normalization in few-shot scenarios. Combining self-consistency reasoning with linguistic-informed prompt engineering, we find LLM-based text normalization to achieve error rates approximately 40% lower than production-level normalization systems. Further, upon error analysis, we note key limitations in the conventional design of text normalization tasks. We create a new taxonomy of text normalization errors and apply it to results from GPT-3.5-Turbo and GPT-4.0. Through this new framework, we identify strengths and weaknesses of LLM-based TN, opening opportunities for future work.


Evaluating Parameter Efficient Learning for Generation

Parameter efficient learning methods (PERMs) have recently gained significant attention as they provide an efficient way for pre-trained language models (PLMs) to adapt to a downstream task. However, these conclusions are mostly drawn from in-domain evaluations over the full training set. In this paper, we present comparisons between PERMs and finetuning from three new perspectives: (1) the effect of sample and model size to in-domain evaluations, (2) generalization to unseen domains and new datasets, and (3) the faithfulness of generations. Our results show that for in-domain settings (a) there is a cross point of sample size for which PERMs will perform better than finetuning when training with fewer samples, and (b) larger PLMs have larger cross points. For cross-domain and cross-dataset cases, we show that (a) Adapter (Houlsby et al., 2019) performs the best amongst all the PERMs studied here, and (b) it outperforms finetuning if the task dataset is below a certain size. We also compare the faithfulness of generations and show that PERMs can achieve better faithfulness score than finetuning, especially for small training set, by as much as 6%. Finally, we apply Adapter to MT-NLG 530b (Smith et al., 2022) and achieve new state-of-the-art results on Xsum (Narayan et al., 2018) for all ROUGE scores (ROUGE-1 49.17, ROUGE-2 27.20, ROUGE-L 40.98).