Skip to content

Speech Classification

Accidental Learners: Spoken Language Identification in Multilingual Self-Supervised Models

In this paper, we extend previous self-supervised approaches for language identification by experimenting with Conformer based architecture in a multilingual pre-training paradigm. We find that pre-trained speech models optimally encode language discriminatory information in lower layers. Further, we demonstrate that the embeddings obtained from these layers are significantly robust to classify unseen languages and different acoustic environments without additional training. After fine-tuning a pre-trained Conformer model on the VoxLingua107 dataset, we achieve results similar to current state-of-the-art systems for language identification. More, our model accomplishes this with 5x less parameters. We open-source the model through the NVIDIA NeMo toolkit.


A Compact End-to-End Model with Local and Global Context for Spoken Language Identification

We introduce TitaNet-LID, a compact end-to-end neural network for Spoken Language Identification (LID) that is based on the ContextNet architecture. TitaNet-LID employs 1D depth-wise separable convolutions and Squeeze-and-Excitation layers to effectively capture local and global context within an utterance. Despite its small size, TitaNet-LID achieves performance similar to state-of-the-art models on the VoxLingua107 dataset while being 10 times smaller. Furthermore, it can be easily adapted to new acoustic conditions and unseen languages through simple fine-tuning, achieving a state-of-the-art accuracy of 88.2% on the FLEURS benchmark. Our model is scalable and can achieve a better trade-off between accuracy and speed. TitaNet-LID performs well even on short utterances less than 5s in length, indicating its robustness to input length.


MatchboxNet - 1D Time-Channel Separable Convolutional Neural Network Architecture for Speech Commands Recognition

Abstract: We present MatchboxNet - an end-to-end neural network for speech command recognition. MatchboxNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. MatchboxNet reaches state-of-the art accuracy on the Google Speech Commands dataset while having significantly fewer parameters than similar models. The small footprint of MatchboxNet makes it an attractive candidate for devices with limited computational resources. The model is highly scalable, so model accuracy can be improved with modest additional memory and compute. Finally, we show how intensive data augmentation using an auxiliary noise dataset improves robustness in the presence of background noise.


MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection

We present MarbleNet, an end-to-end neural network for Voice Activity Detection (VAD). MarbleNet is a deep residual network composed from blocks of 1D time-channel separable convolution, batch-normalization, ReLU and dropout layers. When compared to a state-of-the-art VAD model, MarbleNet is able to achieve similar performance with roughly 1/10-th the parameter cost. We further conduct extensive ablation studies on different training methods and choices of parameters in order to study the robustness of MarbleNet in real-world VAD tasks.