Skip to content

Text to Speech

Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers

Fine-tuning is a popular method for adapting text-to-speech (TTS) models to new speakers. However this approach has some challenges. Usually fine-tuning requires several hours of high quality speech per speaker. There is also that fine-tuning will negatively affect the quality of speech synthesis for previously learnt speakers. In this paper we propose an alternative approach for TTS adaptation based on using parameter-efficient adapter modules. In the proposed approach, a few small adapter modules are added to the original network. The original weights are frozen, and only the adapters are fine-tuned on speech for new speaker. The parameter-efficient fine-tuning approach will produce a new model with high level of parameter sharing with original model. Our experiments on LibriTTS, HiFi-TTS and VCTK datasets validate the effectiveness of adapter-based method through objective and subjective metrics.


Mixer-TTS: non-autoregressive, fast and compact text-to-speech model conditioned on language model embeddings

This paper describes Mixer-TTS, a non-autoregressive model for mel-spectrogram generation. The model is based on the MLP-Mixer architecture adapted for speech synthesis. The basic Mixer-TTS contains pitch and duration predictors, with the latter being trained with an unsupervised TTS alignment framework. Alongside the basic model, we propose the extended version which additionally uses token embeddings from a pre-trained language model. Basic Mixer-TTS and its extended version achieve a mean opinion score (MOS) of 4.05 and 4.11, respectively, compared to a MOS of 4.27 of original LJSpeech samples. Both versions have a small number of parameters and enable much faster speech synthesis compared to the models with similar quality.


Hi-Fi Multi-Speaker English TTS Dataset

This paper introduces a new multi-speaker English dataset for training text-to-speech models. The dataset is based on LibriVox audiobooks and Project Gutenberg texts, both in the public domain. The new dataset contains about 292 hours of speech from 10 speakers with at least 17 hours per speaker sampled at 44.1 kHz. To select speech samples with high quality, we considered audio recordings with a signal bandwidth of at least 13 kHz and a signal-to-noise ratio (SNR) of at least 32 dB. The dataset is publicly released at “http://www.openslr.org/109/”.


TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction

We propose TalkNet, a non-autoregressive convolutional neural model for speech synthesis with explicit pitch and duration prediction. The model consists of three feed-forward convolutional networks. The first network predicts grapheme durations. An input text is expanded by repeating each symbol according to the predicted duration. The second network predicts pitch value for every mel frame. The third network generates a mel-spectrogram from the expanded text conditioned on predicted pitch. All networks are based on 1D depth-wise separable convolutional architecture. The explicit duration prediction eliminates word skipping and repeating. The quality of the generated speech nearly matches the best auto-regressive models - TalkNet trained on the LJSpeech dataset got MOS 4.08. The model has only 13.2M parameters, almost 2x less than the present state-of-the-art text-to-speech models. The non-autoregressive architecture allows for fast training and inference. The small model size and fast inference make the TalkNet an attractive candidate for embedded speech synthesis.


TalkNet: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis

We propose TalkNet, a non-autoregressive convolutional neural model for speech synthesis with explicit pitch and duration prediction. The model consists of three feed-forward convolutional networks. The first network predicts grapheme durations. An input text is then expanded by repeating each symbol according to the predicted duration. The second network predicts pitch value for every mel frame. The third network generates a mel-spectrogram from the expanded text conditioned on predicted pitch. All networks are based on 1D depth-wise separable convolutional architecture. The explicit duration prediction eliminates word skipping and repeating. The quality of the generated speech nearly matches the best auto-regressive models — TalkNet trained on the LJSpeech dataset got a MOS of 4.08. The model has only 13.2M parameters, almost 2× less than the present state-of-the-art text-to-speech models. The non-autoregressive architecture allows for fast training and inference. The small model size and fast inference make TalkNet an attractive candidate for embedded speech synthesis.