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Highly efficient protein structure prediction on

NVIDIA RTX Blackwell and Grace-Hopper

Kieran Didi1,2,∗, Prashant Sohani1,∗, Fabian Berressem1, Alexander Nesterovskiy1,
Boris Fomitchev1, Robert Ohannessian1, Mohamed Elbalkini1, Jonathan Cogan1,
Anthony Costa1, Arash Vahdat1, Felix Kallenborn3, Bertil Schmidt3, Milot Mirdita4,

Martin Steinegger4,5,6,7, Christian Dallago1,8,9,10#, Alejandro Chacon1,#,∗

We introduce accelerations for deep learning infer-

ence with OpenFold and TensorRT that, combined

with MMseqs2-GPU on an x86 system with one

NVIDIA RTX PRO 6000 Blackwell Server Edition

GPU, reach up to 131× faster inference compared

to AlphaFold2. Additional ARM-optimizations en-

able homology search beyond available GPU RAM

on NVIDIA Grace Hopper Superchip at comparable

overall folding speed. These accelerations enable

high-throughput protein structure inference at no

accuracy cost.

Introduction

In 1972, Anfinsen proposed that protein structure

is encoded in sequence [1]. Two decades later, Rost

et al. achieved >70% secondary structure prediction

using homology retrieval through multiple sequence

alignment (MSA) generation and neural networks

[2]. Morcos et al. later showed that statistical mod-

els leveraging MSAs could predict full 3D structures,

including non-globular proteins [3], [4]. In 2021,

Jumper et al. integrated massive data, compute,

and deep learning (DL) to reach near-experimental

accuracy with AlphaFold2 [5].

AlphaFold2’s success followed decades of expand-

ing databases [6], faster MSA generation [7], and

scalable DL [8], all powered by Moore’s law [9].

However, while databases grow exponentially [10]

and new MSA and DL methods emerge [11], [12],

Moore’s law may not hold forever [13].

Meeting future demand in protein structure pre-

diction will require tighter hardware–software co-

design to optimize throughput at inference. Cur-

rent pipelines rely on two stages, i.e. MSA gener-

ation and transformer-based structure prediction,

for instance in their baseline AlphaFold2 incarnation

using MSA tools like JackHMMer [14] and HHblits

[15], and DL inference through JAX.

Here, we focus on accelerations for deep learning-

based inference using OpenFold [16] and Ten-

sorRT delivering 2.54×speedup compared to vanilla

OpenFold, or 20.69× and 6.13× speedup compared

to JAX-based AlphaFold2 and ColabFold-batch, re-

spectively.
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We further optimize MMseqs2-GPU [11] for execu-

tion on Blackwell and ARM, and interrogate end-to-

end structure prediction on different hardware plat-

forms. We find that end-to-end, OpenFold with TRT

and MMseqs2-GPU on an x86-based server with

one NVIDIA RTX PRO 6000 Blackwell Server Edi-

tion delivers the speediest protein folding pipeline

achieving up to 131.4× speedup over the baseline

AlphaFold2 pipeline, and 5.94× over the ColabFold

[17] pipeline using MMseqs2-CPU. ARM-specific

kernels further enable larger-scale MSA genera-

tion on cohesive memory systems like the NVIDIA

Grace-Hopper Superchip compared to x86+GPU-

based systems.

Results

Following recent work [11] we focused on interro-

gating inference speed for protein structure predic-

tion on 20 hard targets from CASP14 [18]. Protein

structure prediction can be roughly broken up into

two workloads: homology retrieval via the genera-

tion of Multiple Sequence Alignments (MSAs), rep-

resenting the data pre-processing step, and Deep

Learning (DL) inference, predicting structures from

generated MSAs.
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Fig. 1. RTX PRO 6000 delivers fast MSA generation. An
x86 server equipped with one RTX PRO 6000 delivers 1.4×
faster metagenomic homology search with MMseqs2-GPU [11]
compared to the previous best L40S. Grace-Hopper (GH200)
reaches comparable speed with MMseqs2-GPU thanks to ARM-
compilation improvements and high-bandwidth chip-to-chip
(C2C) CPU-GPU interconnect.

Metagenomic-scale GPU-based homology retrieval

was enabled in ColabFold-search through MMseqs2-
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GPU via the introduction of GPU kernels for un-

gapped and gapped alignment [11]. These kernels

were shown to reach lowest MSA generation time on

an x86-based system equipped with an NVIDIA L40S

GPU. We introduce NVIDIA Blackwell optimizations

in MMseqs2-GPU enabling 1.4× faster MSA gener-

ation on an x86 system with one RTX PRO 6000

compared to x86+L40S. Compared to prior meth-

ods, this implementation is 191.4× faster than x86-

based JackHMMER+HHblits used in the baseline

AlphaFold2 pipeline, and 5.8×faster than ColabFold-

search leveraging MMseqs2-CPU (Fig. 1).
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Fig. 2. Grace-Hopper resilient to database scaling beyond
GPU memory. Homology retrieval with MMseqs2-GPU on x86
systems is limited by available GPU memory, e.g. on an x86
system with a single L40S performance measured in Tera Cell
Updates Per Second (TCUPS) drops 1.68x when exceeding avail-
able GPU memory (48GBs). This can be alleviated in multi-GPU
systems by aggregating memory for all GPUs, and on ARM-based
Grace-Hopper (GH200) through CPU-GPU shared memory and
fast chip-to-chip (C2C) interconnect. GH200 maintains execution
speed beyond available GPU memory (96GBs) using the host
memory as extension.

Furthermore, we improved CPU cycle efficiency of

MMseqs2-GPU on ARM by enabling 256-bit SIMD

vector compilation. This allowed Grace-Hopper

(GH200) to reach a 1.29×speedup compared to

x86+L40S (Fig. 1). MMseqs2-GPU on GH200 takes

advantage of unified memory and fast chip-to-chip

interconnect alleviating GPU memory constraints.

Using a representative benchmark set of 6370

queries against a reference set of 30M sequences,

an x86 system with one NVIDIA L40S will degrade

in throughput once the addressable space exceeds

GPU memory of 48GB. Conversely, GH200 shows

consistent throughput beyond GH200 GPU capacity

of 96GBs (Fig. 2).

Our primary contributions focus on protein folding

DL inference. We optimised OpenFold [16], an open

source re-implementation of AlphaFold2, offering a

PyTorch-based backend with the ability to load pre-

trained AlphaFold2 weights. Starting from baseline

OpenFold-PyTorch, we applied increasing levels of

optimizations and evaluated inference speed using

MSAs generated by the ColabFold-search pipeline

leveraging MMseqs2-GPU for the 20 CASP14 tar-

gets. We monitored consistency in prediction accu-

racy from optimizations via TM-scores of the pre-

dicted structures against the ground truth CASP14

PDBs [19]. OpenFold compiled with TensorRT at

BF16 precision (OpenFold-TRT) resulted the fastest

AlphaFold2-style inference software, overall fastest

on GH200 requiring on average 5.4s to fold proteins

from their MSAs (Tab. I). NVIDIA RTX Pro 6000

closely followed requiring on average 5.6s (Fig. 3

& Tab. I). On these two systems, DL inference

with OpenFold-TRT was 2.51× faster than vanilla

OpenFold-PyTorch (Tab. I). Compared to baselines,

on an RTX PRO 6000, OpenFold-TRT was 6.13× and

20.69×faster than ColabFold-batch and AlphaFold2,

respectively (Fig. 3).
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Fig. 3. OpenFold-TRT reaches fastest DL inference. Consistently,
OpenFold-TRT reaches the lowest inference speed across 20
CASP14 targets dependent on sequence length (targets ordered
by sequence length shortest on top to longest at the bottom).
On average, OpenFold-TRT DL inference is 20.69× faster than
Alphafold2, and 2.54× faster than OpenFold-PyTorch.

One constraint when using TensorRT is its require-

ment to pre-allocate GPU memory; this allows for

efficient inference, but conversely limits the maxi-

mum sequence length that can be inferred on. For

instance, OpenFold-TRT on an L40S with 48GBs of

GPU memory ran out of memory when inferring the

second longest target (496 residues), while H100

with 80GBs ran out of memory when inferring the

longest target (949 residues; Supplementary Data).

This issue can be alleviated through larger GPU

memory, e.g. RTX PRO 6000 with 96GB was able to

infer all 20 targets.

End-to-end, i.e. combining MSA generation and DL

inference, an x86 system equipped with an RTX PRO

6000 using ColabFold-search with the MMseqs2-
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Name Hardware MSA pipeline DL pipeline MSA DL Total TM-Score

AlphaFold2 L40S
JackHMMER+HHBlits AlphaFold2 1977.36

447.50 2424.86 0.69±0.05

AlphaFold2-6000

RTX Pro 6000

115.93 2093.28 0.67±0.05

ColabFold-CPU
ColabFold-search
(MMseqs2-CPU) ColabFold-batch

60.22
34.33

94.56 0.71±0.05

ColabFold

ColabFold-search
(MMseqs2-GPU)

10.33

44.66 0.71±0.05

OpenFold OpenFold-PyTorch 14.25 24.57 0.68±0.05

OpenFold-TRT OpenFold-TRT 5.60 15.93 0.67±0.05

Boltz2-6000
Boltz2 NIM

6.83 17.16 0.68±0.05

Boltz2-H100 H100 12.12 4.81 16.92 0.67±0.05

OpenFold-TRT-GH GH200 OpenFold (TRT BF16) 11.22 5.40 16.62 0.67±0.05

TABLE I
*

OpenFold-TRT improves DL inference across hardware configurations and delivers speediest end-to-end protein structure
prediction. Average execution speed (s) for protein folding through MSA generation tool, DL inference pipeline and hardware
configurations. Among AlphaFold2-like DL inference solutions, OpenFold-TRT reachest the best performance (column ”Total”, bold).
Boltz2 NIM reaches the overall fastest DL inference using H100 (column “DL”, bold), but loses end-to-end due to slower MSA
generation time compared to RTX PRO 6000. All methods perform equally accurate.

GPU backend for MSA generation and OpenFold-

TRT for DL inference resulted fastest, on average

taking 15.93s per inference for the 20 CASP14 tar-

gets (Tab. I; identifier OpenFold-TRT). Using the same

software stack (ColabFold-search & OpenFold-TRT),

GH200 is faster for DL inference, but slower for

MSA generation, closely following at 0.96× the

speed of RTX PRO 6000 (Tab. I; OpenFold-TRT-GH).

Faster DL inference is expected on GH200 with

1979 TFLOPS [20] BF16 performance compared to

RTX PRO 6000’s peak 503 TFLOPS [21]. OpenFold-

TRT results 131.4×, 5.9×and 2.8× faster than base-

lines AlphaFold2-6000, ColabFold-CPU, and Colab-

Fold on the same x86 system with one RTX 6000 Pro

Server, respectively (Tab. I). While TM-score is con-

sistent between OpenFold experiments across plat-

forms, we measured lower TM-score for one target

(T1064) in OpenFold compared to ColabFold-batch

and AlphaFold2 (Supplementary Data). This may be

attributable to random initialization or weight choice

as we compared running the first weight set for

each DL inference solution rather than selecting the

best result from the five available weight sets for

each method.

Recently, AlphaFold3 [22] was introduced promis-

ing faster DL inference through major architectural

changes like dropping column-attention in the MSA

representation, the use of PairFormer instead of

Evoformer, and the removal of SE(3) equivariance

from the structure module. Due to licensing consid-

erations, we opted to evaluate Boltz-2 [12], an open

source re-implementation of AlphaFold3, as addi-

tional baseline. We utilized the Boltz-2 NIM (v1.1.0),

which on top of AlphaFold3’s architectural effi-

ciency integrates accelerated triangular attention

and multiplication kernels from cuEquivariance, and

is compiled for inference on TensorRT. DL inference

through Boltz-2 on H100 resulted 1.17× faster than
OpenFold-TRT on an RTX PRO 6000, and similarly to

previous results, 1.42× faster on an H100 compared

to on an RTX PRO 6000 (Tab. I). Including MSA gen-

eration through ColabFold-search using MMseqs2-

GPU, Boltz-2 is 1.01× faster on H100 compared to

RTX PRO 6000, but given slower MSA generation on

H100, OpenFold-TRT is 1.06× faster overall.
We demonstrated that on average an x86 sys-

tem with one RTX PRO 6000 using ColabFold-

search leveraging the MMseqs2-GPU backend for

MSA generation and OpenFold-TRT for DL infer-

ence results the fastest hardware and software

combination to infer structures for 20 CASP14

targets (Tab. I). For AlphaFold2-like predictions, it

is 2.8×faster than the previous fastest ColabFold-

search with MMseqs2-GPU and ColabFold-batch on

the same GPU. Considering the AlphaFold protein

structure database [23] attempted to predict 350M

sequences, at 44.66 seconds per inference using

the previous fastest solution, this would require

approximately 500 years to complete on one server

with one GPU. Using multiple servers totaling 500

GPUs, it may take one year. Using the same infras-

tructure and OpenFold-TRT would require four and

a half months, enabling faster large-scale in-silico

data generation crucial to new generative methods

for protein design [24], [25].

Availability and Implementation

MMseqs2 and OpenFold are open source

available software available at https://github.

com/soedinglab/MMseqs2 and https://github.com/

aqlaboratory/openfold, respectively. TensorRT is

available at https://github.com/NVIDIA/TensorRT.

Accelerations introduced in this work were

upstreamed to MMseqs2, OpenFold and TensorRT,

enabling public reproduction of these results

provided system requirements are satisfied (CUDA

13.0 and TRT 10.13).
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Supporting Methods

A. Deep Learning inference baselines

Protein structure prediction workflows can be di-

vided into two principal stages: Multiple Sequence

Alignment (MSA) generation and Deep Learning

(DL) inference. To benchmark inference acceleration

strategies independently of data preprocessing, we

selected three established DL tools capable of load-

ing the same set of AlphaFold2 weights. Notably,

AlphaFold2 provides five distinct weight sets and

produces five structures per input sequence; each

structure can optionally be relaxed via short molec-

ular dynamics (MD) simulations, with the relaxation

step omitted in our study unless specified other-

wise, since it is disabled by default in ColabFold-

batch [17].

For comparability and reproducibility, we evaluated

inference time and accuracy by running one pro-

tein sequence at a time using the first AlphaFold2

weight set in each tool, generating a single unre-

laxed structure per query. This design ensures that

reported performance metrics are independent of

weight set sampling and relaxation overhead.

We benchmarked the following tools and configu-

rations:

• AlphaFold2 (JAX TF32): The canonical Al-

phaFold2 implementation in JAX, executed at

TF32 precision using only the first weight set

for each sequence.

• ColabFold-batch (JAX BF16): ColabFold’s JAX

variant with BF16 precision, leveraging the first

AlphaFold2 weight set per sequence.

• OpenFold (PyTorch TF32): The PyTorch-based

OpenFold implementation, using the first Al-

phaFold2 weight set, with TF32 precision en-

forced.

• OpenFold (TensorRT BF16): Our accelerated

OpenFold compilation to TensorRT, inputting

the first AlphaFold2 weight set, with the Evo-

former core module executed at BF16 precision.

This framework allows systematic comparison of

baseline AlphaFold2 and ColabFold-batch against

PyTorch OpenFold and our TensorRT-optimized

OpenFold pipeline, isolating the contribution of

hardware and software accelerations to overall in-

ference throughput and accuracy.

B. OpenFold Inference Acceleration

The Evoformer block underpins the computational

core of protein structure inference tools such as

AlphaFold2 and OpenFold by applying advanced

attention mechanisms to residue-residue interac-

tions [16], [5]. To accelerate inference, we leveraged

TensorRT optimizations focused on both precision

management and dynamic handling of model inputs

using OpenFold.

By default, OpenFold leverages PyTorch FP32

precision, with selective promotion to TF32 via

torch.set_float32_matmul_precision("high") for

improved computational throughput. Our TensorRT-

compiled pipeline operates at mixed precision: TF32

for ExtraMSA and BF16 for the Evoformer module,

which empirically achieves faster inference while

maintaining prediction accuracy. To isolate the ef-

fect of hardware versus numeric casting, we ab-

lated PyTorch’s explicit BF16 mode; although this

provided some acceleration, the TensorRT pipeline

yielded superior performance (see Supplementary

Data).

To compile OpenFold with TensorRT, we utilize

PyTorch’s TorchDynamo engine for ONNX export,

which captures the model’s computational graph

through bytecode analysis rather than traditional

tracing. This approach preserves the dynamic na-

ture of the Evoformer’s attention mechanisms while

enabling subsequent TensorRT optimization. The

ONNX export process leverages TorchDynamo with

custom dynamic shape specifications for the Evo-

former inputs:

evoformer_dynamic_shapes = {
"m": {1: seq_dim},
% MSA representation
"z": {0: seq_dim, 1: seq_dim},
% Pairwise representation
"msa_mask": {1: seq_dim},
% MSA attention mask
"pair_mask": {0: seq_dim, 1: seq_dim}
% Pair attention mask

}

For flexible execution, sequence length bounds are

specified from S_MIN = 16 up to S_MAX (typi-

cally set as config.trt.max_sequence_len), and op-

timization profiles are generated to efficiently cover

single (i.e., [S_MIN, S_MAX]), dual (i.e., [S_MIN,

S_MAX/2] and [S_MAX/2+1, S_MAX]), or four-range

(i.e., four distinct ranges optimizing for different

sequence length distributions) dynamic shapes. At

inference time, model input tensors are matched

to the appropriate profile automatically; out-of-

profile queries either trigger a strict error (i.e.,

ShapeError), or fallback to PyTorch execution if en-

abled, ensuring robustness across diverse sequence

lengths. Feature channels and MSA depths remain

fixed (256 for MSA, 128 for pairs, 516 Evoformer

stack, 5120 extra MSA stack). Further acceleration

is achieved through TensorRT’s kernel fusion, which

consolidates multi-step attention operations into

optimized GPU kernels for reduced memory traffic

and improved arithmetic intensity [26]. Persistent

engine caching ensures rapid and reproducible de-

ployment.

In essence, our proposed accelerations resolve to:

• Precision setting: using mixed-precision infer-

ence, i.e. TF32 for ExtraMSA, and BF16 for

Evoformer

• Dynamic Shape Support: using dynamic pro-

files for efficient handling of variable-length

protein sequences without requiring recompi-

lation

• Kernel Fusion: multi-op attention blocks are

fused into single GPU kernels to reduce bottle-

necks and maximize performance
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C. MMseqs2-GPU improvements

GPU-accelerated homology search through MM-

seqs2 was recently introduced via gapped and un-

gapped Gotoh-Smith-Waterman alignment kernels

[11]. Here, we focused on improving these kernels

for execution on Blackwell GPUs leveraging the

introduced a new class of dynamic programming

instructions (DPX) instruction set, and improving

the CPU code generation of MMseqs2 on ARM-

based systems:

• Gapless alignment on Blackwell:

MMseqs2-GPU [11] used a novel implementa-

tion of a gapless pre-filter on GPUs to ac-

celerate the protein database search simplify-

ing the dynamic programming (DP) dependency

scheme to only the diagonal neighbor. This al-

lowed row-by-row processing of the DP matrix

with each row partitioned among CUDA threads

that are responsible for up to 128 cells each.

Blackwell-based RTX PRO 6000 Server intro-

duced a new class of dynamic programming

instructions (DPX) instructions [27] and in-

creased ALU pipes doubling the integer opera-

tion throughput compared to Ada-based L40S.

To achieve peak performance, optimal distribu-

tion of the number of DP cells per CUDA thread

is crucial. We analyzed the distribution of DP

tile sizes and register usage per thread specifi-

cally for the Blackwell architecture and select

the optimal to maximize alignment through-

put. We thus employed 16-bit integers, where

each DP-value is packed into a 32-bit word

using s16x2 data types. The wider represen-

tation range of the DP-values allows to search

longer sequences than previous Ada generation,

reaching higher peak performance.

• MMseqs2 ARM optimizations: To optimize MM-

seqs2 execution on ARM-based architectures

such as NVIDIA Grace-Hopper Superchip, we

adapted core sequence alignment kernels and

improved vectorization in expensive computa-

tional loops. To minimize execution overhead,

rather than directly mapping x86 SSE to ARM

NEON instructions, we re-implemented SIMD

operations of compare+all, any and horizontal
max using native NEON instructions (e.g., lever-

aging UMINV and UMAXV, which do not have di-

rect SSE equivalents). These modifications re-

duced instruction latency and shortened de-

pendency chains, enabling faster loop execu-

tion and improved single-thread throughput for

both gapped and ungapped alignment routines.

Performance was further enhanced by intro-

ducing support for 256-bit vector operations

throughout the alignment workflow, imple-

mented with pairs of 128-bit ARM NEON in-

structions enabled by SIMDe macros and mod-

ern compilers (Clang ≥20.1.5). This approach

allows better CPU utilization, nearly doubling

vector compute throughput in expensive com-

putational loops on modern ARM CPUs with 4x-

6x FP/ASIMD pipelines. Profiling on represen-

tative protein datasets confirmed that these

changes brought ARM execution efficiency to

parity with the best x86 SSE implementations,

with application-wide improvements exceeding

65% over the baseline code.

D. Homology search pipelines

For the purpose of generating MSAs at metage-

nomic database scale as input to deep learning

inference, we compared three pipelines:

• JackHMMER+HHBlits: uses HHblits [15] and

JackHMMER [14] to generate three MSAs by

searching the following databases: UniRef90

2020_01 (JackHMMer; w/ 139M sequences),

MGnify 2018_12 (JackHMMer; w/ 287M se-

quences), Uniclust30 2018_08 (HHblits; w/ 15M

profiles and 124M sequences total), BFD first

release (HHblits; w/ 66M profiles and 2.1B se-

quences total). This search approach, databases

and tools are represent the baseline in Al-

phafold2, where the three MSAs are combined

into one to infer structures.

• ColabFold-search (MMseqs2-CPU): uses MM-

seqs2 with default k-mer filtering on CPU to

generate MSAs by first searching UniRef30

2023_02 (29M representatives and 277M se-

quences total) and then expanding from seed

sequences identified in UniRef30 to Colab-

FoldDB 2021_08 (209M representatives and

739M sequences total).

• ColabFold-search (MMseqs2-GPU): uses MM-

seqs2-GPU with gapless filtering on the GPU

to generate MSAs by searching the same

databases as ColabFold-search (MMseqs2-

CPU), using the same cascaded approach.

E. Target sequences

To assess speed of MSA generation, MSA consis-

tency, speed of deep learning inference, Template

Modelling (TM) score consistency, and overall TM-

score against ground truth we used a commonly

used dataset of 20 ”hard” targets from the CASP14

[18] competition. These targets ranged from 95 to

949 residues.

F. Database scaling

As protein sequence database growth outpaces

Moore’s law, efficient software solutions like MM-

seqs2-GPU [11], searching protein databases very

quickly on GPUs, are needed. In MMseqs2-GPU,

when databases and clustering tricks, e.g. as

employed by ColabFold-search through cascaded

searching, outgrow available GPU memory, users

can resort to either multi-GPU inference to main-

tain speed, pooling all available GPU memory on a

node to grow the effective available total space,

or resort to swapping between GPU and CPU in

x86-based systems at a computational efficiency

cost. In particular, MMSeqs2-GPU provides a mech-

anism to pre-load databases on GPU memory

to prevent overhead for CPU-GPU data transfers
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across queries. In the scenario where the reference

database is larger than device memory, the CPU-

GPU bandwidth becomes the rate limiter for end-to-

end performance, due to the requirement to stream

the complete reference set in blocks from host to

device memory to complete each query analysis.

Through the MMseqs2-GPU ARM optimizations in-

troduced earlier we enabled ARM-based systems

like the Grace Hopper Superchip, which fuses CPU

and GPU with high bandwidth chip-to-chip (C2C)

interconnect at 450 GB/s. This effectively alleviates

this rate limiter otherwise observed on x86-based

systems.

To analyze this behavior, we conducted a evaluation

of the performance impact on database scaling for

two different hardware platforms:

• AMD 2x64 cores and a L40S with a PCIe gen5

interconnection at 32GB/s

• NVIDIA Grace-Hopper (GH200) with 72 ARM v9

cores and a NVIDIA Hopper H200 with high

bandwidth chipt-to-chip (C2C) CPU-GPU direct

interconnection at 450 GB/s

We leveraged a commonly used dataset of 6370

full-length queries from UniProt against a reference

set of 30M sequences. We increased the size of the

reference set by replicating the set from one up

to 16 times, which resulted in disk utilization from

11GB to 176GB.

G. Hardware configurations

We evaluated different hardware platforms for both

the MSA generation and DL inference pipelines. We

restricted our analyses to systems with a single

GPU. We focused our discussion on the best per-

forming platforms, and relegated further results in

Supplementary Data. We leveraged the following

hardware platforms:

• x86+L40S: 1xNVIDIA L40S + AMD EPYC 7742

64-Core Processor (2 sockets total 128 cores)

+ 1TB RAM

• x86+RTX PRO 1xNVIDIA RTX PRO 6000 Black-

well Server Edition + AMD EPYC 9554 64-Core

Processor (2 sockets total 128 cores) + 2TB

RAM

• x86+H100 1xNVIDIA H100 PCIe + AMD EPYC

7742 64-Core Processor (2 sockets total 128

cores) + 1TB RAM

• DGX GH200: NVIDIA Grace Hopper Superchip

(GH200) with 72 ARM v9 cores with 480GB of

LPDDR5X RAM and one NVIDIA Hopper H200

with 96GBs of HBM3
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