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The canonical genetic code is degenerate, with most amino acids encoded by
multiple synonymous codons whose choice can influence translation, RNA stability,
and protein expression. Despite this complexity, the underlying rules linking codon
usage to molecular phenotypes remain poorly captured by existing models. Here,
we introduce the EnCodon model series within CodonFM, a family of large
foundation models trained on more than 130 million coding sequences spanning
over 22,000 species, designed to learn the contextual grammar of codon usage
directly from sequence. EnCodon models exhibit clear scaling behavior, with larger
models showing lower normalized confusion scores across synonymous codons,
revealing an emergent understanding of synonymous codon grammar. In zero-shot
settings, EnCodon achieves state-of-the-art performance across diverse
benchmarks, including prediction of de novo missense mutation pathogenicity,
clinical missense mutation classification, and ClinVar synonymous variant
discrimination. EnCodon generalizes to downstream mRNA design tasks, accurately
predicting translation efficiency and protein expression from sequence context.
Together, these results demonstrate that learning the intrinsic grammar of codon
usage is sufficient to infer a broad spectrum of biological and clinical effects,
establishing EnCodon as a scalable foundation for modeling translation and
RNA-driven gene regulation.



Introduction

The canonical genetic code—the blueprint that links nucleic acid instructions to
proteins—is highly degenerate, with 18 of the 20 amino acids encoded by more
than one codon. These synonymous codons were once thought to be
interchangeable, since they specify the same amino acid '. However, codon usage
bias—the unequal use of synonymous codons—has long been recognized and
extensively studied . Increasing evidence shows that codon usage patterns are
not random but exhibit organism-specific “° and even tissue-specific ®° signatures
across species. Numerous studies have demonstrated that codon usage can
regulate gene expression and protein folding through multiple mechanisms %', For
instance, synonymous codons are influenced by cognate tRNA abundance and
tRNA gene copy numbers, affecting translation elongation rates "¢, Furthermore,
there are known synonymous variants associated with diseases and tumors "7,
This underscores the fact that nucleotide sequences encode rich layers of
information beyond their amino acid content.

This complexity has profound implications for applications such as mMRNA
therapeutics and vaccines, where the expression level of the encoded protein
directly influences potency, immunogenicity, and efficacy '. Higher antigen
expression enables lower vaccine doses, improving safety, reducing reactogenicity
¥ and extending immune durability . However, achieving such high expression
levels depends on the choice of codons within the mRNA sequence. Despite each
protein being encodable by thousands of possible synonymous sequences, the one
found in nature or in viral genomes is not always optimal for expression in a given
host cell. Classical codon optimization methods attempt to improve expression by
aligning codon usage with host bias 2'?*. Yet, such approaches often overlook key
biophysical factors—particularly RNA structural features such as stem-loops and
pseudoknots—that play critical roles in RNA stability and translation efficiency 2>,
Even a single synonymous substitution can alter local base-pairing patterns and
disrupt or stabilize nearby structural motifs *, highlighting that true optimization
must account for the interplay between codon choice, RNA structure, and
expression outcomes.

Over evolutionary timescales, the choice of synonymous codons has been finely
tuned to optimize translation efficiency, accuracy, and resource allocation within
each organism ’. The specific pattern of codon usage for a given gene reflects a



balance among multiple selective pressures—including tRNA availability, GC
content, RNA structure, and expression requirements—resulting in a
context-dependent “grammar” of synonymous usage. This grammar encodes
evolutionary solutions for maintaining translational fidelity and regulating
expression in response to cellular environment. Learning these patterns directly
from natural coding sequences offers a unique opportunity to model how evolution
has encoded context-specific optimization into the structure of the genetic code
itself.

To address the challenge of learning codon usage and its contextual grammar, we
train a family of large foundation models collectively termed CodonFM. These
transformer-based models are pre-trained on more than 130 million coding
sequences spanning over 22,000 species from the NCBI Genomes database 3,
encompassing the full phylogenetic diversity of the genetic code. We envision
CodonFM as a growing family of codon foundation models designed to learn the
contextual grammar of codon usage. For the first of these models, EnCodon, we
develop three parametric variants of the model at increasing scales to
systematically study how model capacity influences biological representation
learning 3**°. The models are then evaluated across a suite of downstream tasks
probing both protein-related variant effects and synonymous codon changes
relevant to disease genetics and mRNA design 0328 Across these diverse
benchmarks, EnCodon demonstrates robust and generalizable performance,
capturing latent features that link sequence composition to translation and
expression outcomes "3, Moreover, we observe a clear scaling effect with larger
parameter models consistently outperforming their smaller
counterparts—highlighting that model capacity enhances the ability to capture the
nuanced, context-dependent rules governing synonymous codon usage and its
biological impact %,

Results
Overview of EnCodon Data, Architecture, and Pretraining

To train our models, we assemble a large-scale dataset of >130 million coding
sequences (CDS) spanning >22,000 species from the NCBI RefSeq/Genomes
database * (Figure 1A). Each sequence is tokenized at the codon level, allowing the



model to directly capture codon-context relationships within open reading frames
(ORFs). The training corpus spans all major phylogenetic groups—including
bacteria, archaea, fungi, plants, protozoa, and metazoans—representing the full
evolutionary spectrum of the genetic code (Figure 1B). We exclude the
human-affecting pathogen sequences for biosafety purposes. This diverse
distribution ensures that the CodonFM models learn generalizable representations
of codon redundancy, GC bias, and translation-associated sequence features
across kingdoms '?®. Most CDS entries are under 1,000 codons, with a
right-skewed length distribution characteristic of natural genes; hence, nearly all
sequences are completely represented within the 2,046-codon context of the
model (Figure 1C).

EnCodon employs a transformer-based encoder architecture that operates directly
on codon tokens, beginning with a <CLS> and ending with a <SEP> token (Figure
1D). The model is trained using a masked-codon prediction objective, analogous to
masked language modeling “°. To examine how scaling and masking influence
biological representations, we train three variants—EnCodon 80M, EnCodon 600M,
and EnCodon 1B—alongside a fourth variant, EnCodon 1B-CDWT, which leverages a
Codon-frequency Weighted Masking Strategy (Figure 1E). This frequency-weighted
approach is inspired by distributional token weighting in natural-language models
4142 emphasizing underrepresented synonymous codons, encouraging the model to
capture the interplay among codon bias, translation efficiency, and tRNA
adaptation ©'%™3 All variants show smooth convergence with larger models
achieving lower validation loss and improved generalization, reflecting a clear
scaling relationship between model capacity and its ability to encode codon-level
structure and redundancy across diverse genetic contexts (Figure 1E) *°.
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Figure 1: Dataset composition, model architecture, and training of EnCodon.

(A) EnCodon models were trained on >130 M coding sequences from >22,000 species in the NCBI
RefSeq database, tokenized at the codon level within ORFs. (B) Sequence-grouped composition of the
dataset. (C) CDS length distribution of ORF sequences. (D) Schematic of the EnCodon model’s
transformer encoder trained with a masked language modeling objective. (E) Validation loss across
EnCodon models—80M, 600M, 1B, and 1B-CDWT—showing improved convergence with larger models.

Interpreting the EnCodon models

To better understand the representations learned by EnCodon across scales, we
analyze both codon confusion patterns and embedding structures (Figure 2A-C).
The synonymous codon confusion matrices (Figure 2A) reveal a progressive
decrease in normalized confusion scores from the 80M to the 1B model—indicating
that larger and frequency-aware models more accurately distinguish synonymous
codons and capture their regulatory specificity.

To visualize the models’ embedding space, we use UMAP projections (Figure 2B) on
the PCA-reduced embeddings. Quantitatively, larger EnCodon models achieve
significantly lower (better) masked language modeling (MLM) losses across
phylogenetic groupings (Figure 2C, left), indicating improved predictive accuracy
and contextual understanding of codon relationships. Consistent with this, larger
models also show higher K-nearest neighbour (KNN) purity across taxonomic
divisions (Figure 2C, middle), demonstrating that their embeddings organize
sequences more coherently with respect to biological groupings. The 1B-CDWT



model achieves the highest purity, indicating that the codon-weighted masking
strategy enables the model to focus more effectively on domain-specific codon
usage patterns compared to random masking models. The correlation between the
principal components (PCs) and amino acid hydrophobicity (Figure 2C, right) also
show that the smallest model tend to have higher correlation with basic properties
like hydrophobicity than the larger ones across top 10 PCs, indicating that
higher-capacity models balance biochemical features with additional contextual
signals related to codon usage. Together, these results indicate that larger
EnCodon variants encode richer, context-dependent representations that extend
beyond simple physico-chemical or genetic mappings, enabling more nuanced
modeling of synonymous codon usage.
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Figure 2: Emergent codon structure and phylogenetic organization across model scales. (A)
Normalized codon confusion matrices of synonymous codons across EnCodon model variants. (B) UMAP
projections of sequence embedding space learned by EnCodon models, colored by sequence grouping.
(C) (left) Representation of MLM loss distribution for pre-trained EnCodon models across taxonomy
divisions, (middle) KNN purity scores across nearest neighbors in the embedding space. (right)
Correlation between the top 10 PCs of the pre-trained EnCodon models and the hydrophobicity index
of the codon’s amino acids.

Interpreting missense variants with EnCodon

We benchmark the EnCodon models’ performance on multiple missense mutation
prediction tasks to evaluate whether these models capture biologically meaningful
information about coding variation (Figure 3A-D). In the zero-shot setting, each
variant is scored using the log-likelihood difference between the reference and
mutated codons, without any task-specific training. On two large de novo mutation
datasets—the Deciphering Developmental Disorders (DDD) and Autism Spectrum
Disorder (ASD) cohorts *— EnCodon demonstrates the strongest separation
between case and control variants, compared to other unsupervised protein*® and
RNA sequence models *“%' We also observe robust improvement in model
performance across different scales. The superior zero-shot performance suggests
that EnCodon, despite being trained purely on codon sequences, implicitly learns
representations that encode protein sequence constraint and functional relevance,
capturing context beyond synonymous codon structure.

We next assess EnCodon on classifying ClinVar missense variants * and somatic
missense variants in cancer hotspots °2% (Figure 3C-D). We observe that the
EnCodon models are highly performant and are second best to the ESM2 models
trained on amino acid sequences ** while outperforming all other RNA-based
baselines *“~*'. Finally, to examine how pre-training transfers to fine-tuned models,
we fine-tune EnCodon 1B on gnomAD * missense variants and evaluate its
(EnCodon 1B-FT) performance on the DDD and ASD cohorts *" (Figure 3F-G). The
fine-tuned EnCodon is similarly performant or better than AlphaMissense 2, a
supervised protein pathogenicity model, even in the absence of explicit structural
priors.
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Figure 3: Benchmarking EnCodon on missense mutation prediction tasks.

(A-D) Zero-shot performance comparison of classifiers across multiple missense mutation tasks. (A-B)
Mann-Whitney U Test (two-sided) p-values (-log,, p-value) are shown for DDD and ASD case vs control
variants, and (C-D) AUROC on ClinVar and Cancer Hotspot mutation datasets. (E-G) EnCodon
fine-tuning procedure with common and unseen missense variants from gnomAD (E), Fine-tuned
performance comparison of EnCodon 1B to other supervised and zero-shot models on ASD (F) and DDD

(G).



Interpreting synonymous variants with CodonFM

To assess whether EnCodon generalizes beyond missense mutations to
synonymous changes, we evaluate its ability to distinguish pathogenic versus
benign synonymous variants from the ClinVar database ¢ (Figure 4A). Given that
the two lists of variants are confounded by codon composition, gene context, and
mutation-rate biases, we perform 50 stratified subsampling iterations in which
each pathogenic variant is compared against benign variants matched for
reference and alternate codon, position in gene, gene-level probability of
loss-of-function intolerance (pLl) ®, and local mutation rate. Model performance is
measured by the Mann-Whitney U test across iterations (Figure 4B). EnCodon
models consistently outperform all RNA- and mRNA-based baselines *-°', with the
1B-CDWT variant achieving the highest median significance across replicates,
demonstrating robustness to covariate control. Because the biological effects of
synonymous substitutions have historically been the most difficult to resolve, this
task highlights a distinct strength of EnCodon: its ability to infer functional and
clinical consequences from the subtle grammar of codon choice. Importantly,
EnCodon attains state-of-the-art performance relying solely on its learned
understanding of the underlying grammar of codon usage to infer the clinical
effects of synonymous variants.

A B ClinVar Synonymous Variants
Masked DNA log | p O Pathogenicity
coding sequence score fncodon 16 COWT L
02 encodon o ’ T
EnCodon 80M }-D:'—' oo
0.3 _—
3 Nucleotide Transformer. I |
= wf —TF— o
0.9 ncommasy] T J——o o
CodonBERT }—ED—| o o
0.85 RINALMo H }—| °
et { HT o
HIH -
3

RNAErie
Masked Reference Mutation T
Mann-Whitney U Test (-log,,p)

Figure 4: Evaluation of EnCodon on ClinVar synonymous variants.

(A) Schematic of the zero-shot evaluation of synonymous variants with EnCodon models. (B) Zero-shot
performance (Mann-Whitney U Test, uncorrected) of models comparing pathogenic and benign
synonymous variants from ClinVar using 50 matched subsampling iterations, controlling for codon,
position in gene, gene-level pLl, and local mutation rate.



Evaluating EnCodon on mRNA Expression and Translation Efficiency

Finally, we assess whether EnCodon embeddings capture quantitative features
relevant to mRNA design and functional features (Figure 5A-B). Using zero-shot
embeddings from each model, we train a random forest regressor to predict
experimental readouts from two independent datasets on mMmRNA translation
efficiency *® and mRFP protein expression *¢%°. These tasks reflect key determinants
of mRNA design, such as codon composition, local structure, and translational
control. Across both benchmarks, EnCodon models achieve the highest predictive
performance among all nucleotide-level baselines, with the 1B parameter model
showing the strongest correlation and explained variance. The EnCodon-1B-CDWT
embeddings are less influenced by simple sequence features such as GC content
and therefore perform slightly worse than the random masking models on tasks
where these features have a stronger effect. By learning the contextual grammar of
codon usage, EnCodon captures position-dependent effects on expression and
stability, providing biophysically meaningful embeddings useful for zero-shot mRNA
sequence optimization.
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Figure 5: Evaluation of EnCodon on mRNA design features. Comparison of random forest performance
on pretrained model embeddings, (A) on the translation efficiency task, showing the mean 10-fold
cross-validation R? scores (*+ standard deviation). (B) on the mRFP protein expression task, showing
Spearman correlation between predicted and observed expression levels.



Discussion

EnCodon demonstrates that large-scale, codon-level language modeling can learn
the underlying grammar of the genetic code, linking sequence composition to
translation efficiency, pathogenicity, and mRNA expression. Trained on over 130
million coding sequences from 22,000 species, the model captures evolutionary
and functional constraints, with larger variants revealing organized structure
among synonymous codons. The EnCodon 1B-CDWT model performs best overall,
as codon-weighted masking encourages attention to rare and functionally
constrained codons, enabling finer contextual understanding. In the use case of
pathogenicity prediction for missense variants (ClinVar missense mutation
prediction, cancer hotspot variant prediction), we observe that EnCodon models are
marginally outperformed by the ESM family of protein language models. The
marginal performance gap suggests that refinement in training strategies for
codon-level models could help bridge this gap, which is likely due to explicit
encoding of protein structure information and amino-acid substitution patterns in
protein language models compared to nuanced codon grammar influencing said
patterns in codon language models.

Beyond its predictive power, EnCodon highlights that the same protein can be
encoded by an immense number of synonymous coding sequences, each capable
of producing distinct translational and regulatory outcomes. This redundancy
transforms the genetic code into a programmable substrate—one that can be
tuned for context-dependent activity, expression, and stability. The hidden layer of
functional variability in synonymous mutations has likely been shaped by evolution
to fine-tune gene regulation, yet remains difficult to quantify or predict. EnCodon
provides a computational framework to expose this latent space of synonymous
effects—revealing that what was once considered silent variation can, in fact,
encode nuanced regulatory information. As the CodonFM framework evolves, new
architectures and objectives can be added as modular components within the same
foundational ecosystem, supporting increasingly rich representations of
codon-level biology.

Despite these advances, several limitations remain. EnCodon’s results are based on
computational inference and require experimental validation to confirm their
biological relevance. The number of synonymous variants with experimentally
verified functional effects is still small, constraining validation datasets and



necessitating cautious interpretation of statistical significance. Moreover, EnCodon
currently models sequence features without explicitly incorporating
cell-type-specific tRNA abundance, RNA modifications, or secondary structure
dynamics, factors known to modulate translation in vivo. Integrating such
context-dependent data and validating predictions through perturbation assays,
ribosome profiling, and synthetic mMRNA design experiments will be essential for
translating EnCodon’s insights into mechanistic and therapeutic applications.
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