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Abstract 
 
The canonical genetic code is degenerate, with most amino acids encoded by 
multiple synonymous codons whose choice can influence translation, RNA stability, 
and protein expression. Despite this complexity, the underlying rules linking codon 
usage to molecular phenotypes remain poorly captured by existing models. Here, 
we introduce the EnCodon model series within CodonFM, a family of large 
foundation models trained on more than 130 million coding sequences spanning 
over 22,000 species, designed to learn the contextual grammar of codon usage 
directly from sequence. EnCodon models exhibit clear scaling behavior, with larger 
models showing lower normalized confusion scores across synonymous codons, 
revealing an emergent understanding of synonymous codon grammar. In zero-shot 
settings, EnCodon achieves state-of-the-art performance across diverse 
benchmarks, including prediction of de novo missense mutation pathogenicity, 
clinical missense mutation classification, and ClinVar synonymous variant 
discrimination. EnCodon generalizes to downstream mRNA design tasks, accurately 
predicting translation efficiency and protein expression from sequence context. 
Together, these results demonstrate that learning the intrinsic grammar of codon 
usage is sufficient to infer a broad spectrum of biological and clinical effects, 
establishing EnCodon as a scalable foundation for modeling translation and 
RNA-driven gene regulation.  



Introduction 
The canonical genetic code—the blueprint that links nucleic acid instructions to 
proteins—is highly degenerate, with 18 of the 20 amino acids encoded by more 
than one codon. These synonymous codons were once thought to be 
interchangeable, since they specify the same amino acid 1. However, codon usage 
bias—the unequal use of synonymous codons—has long been recognized and 
extensively studied 1–7. Increasing evidence shows that codon usage patterns are 
not random but exhibit organism-specific 4–6 and even tissue-specific 8,9 signatures 
across species. Numerous studies have demonstrated that codon usage can 
regulate gene expression and protein folding through multiple mechanisms 10–14. For 
instance, synonymous codons are influenced by cognate tRNA abundance and 
tRNA gene copy numbers, affecting translation elongation rates 1,4,6. Furthermore, 
there are known synonymous variants associated with diseases and tumors 15–17. 
This underscores the fact that nucleotide sequences encode rich layers of 
information beyond their amino acid content. 

This complexity has profound implications for applications such as mRNA 
therapeutics and vaccines, where the expression level of the encoded protein 
directly influences potency, immunogenicity, and efficacy 18. Higher antigen 
expression enables lower vaccine doses, improving safety, reducing reactogenicity 
19, and extending immune durability 20. However, achieving such high expression 
levels depends on the choice of codons within the mRNA sequence. Despite each 
protein being encodable by thousands of possible synonymous sequences, the one 
found in nature or in viral genomes is not always optimal for expression in a given 
host cell. Classical codon optimization methods attempt to improve expression by 
aligning codon usage with host bias 21–24. Yet, such approaches often overlook key 
biophysical factors—particularly RNA structural features such as stem-loops and 
pseudoknots—that play critical roles in RNA stability and translation efficiency 25–31. 
Even a single synonymous substitution can alter local base-pairing patterns and 
disrupt or stabilize nearby structural motifs 32, highlighting that true optimization 
must account for the interplay between codon choice, RNA structure, and 
expression outcomes. 

Over evolutionary timescales, the choice of synonymous codons has been finely 
tuned to optimize translation efficiency, accuracy, and resource allocation within 
each organism 7. The specific pattern of codon usage for a given gene reflects a 



balance among multiple selective pressures—including tRNA availability, GC 
content, RNA structure, and expression requirements—resulting in a 
context-dependent “grammar” of synonymous usage. This grammar encodes 
evolutionary solutions for maintaining translational fidelity and regulating 
expression in response to cellular environment. Learning these patterns directly 
from natural coding sequences offers a unique opportunity to model how evolution 
has encoded context-specific optimization into the structure of the genetic code 
itself. 

To address the challenge of learning codon usage and its contextual grammar, we 
train a family of large foundation models collectively termed CodonFM. These 
transformer-based models are pre-trained on more than 130 million coding 
sequences spanning over 22,000 species from the NCBI Genomes database 33, 
encompassing the full phylogenetic diversity of the genetic code. We envision 
CodonFM as a growing family of codon foundation models designed to learn the 
contextual grammar of codon usage. For the first of these models, EnCodon, we 
develop three parametric variants of the model at increasing scales to 
systematically study how model capacity influences biological representation 
learning 34,35. The models are then evaluated across a suite of downstream tasks 
probing both protein-related variant effects and synonymous codon changes 
relevant to disease genetics and mRNA design 16,36–38. Across these diverse 
benchmarks, EnCodon demonstrates robust and generalizable performance, 
capturing latent features that link sequence composition to translation and 
expression outcomes 11–13. Moreover, we observe a clear scaling effect with larger 
parameter models consistently outperforming their smaller 
counterparts—highlighting that model capacity enhances the ability to capture the 
nuanced, context-dependent rules governing synonymous codon usage and its 
biological impact 39. 

Results 

Overview of EnCodon Data, Architecture, and Pretraining 

 
To train our models, we assemble a large-scale dataset of >130 million coding 
sequences (CDS) spanning >22,000 species from the NCBI RefSeq/Genomes 
database 33 (Figure 1A). Each sequence is tokenized at the codon level, allowing the 



model to directly capture codon-context relationships within open reading frames 
(ORFs). The training corpus spans all major phylogenetic groups—including 
bacteria, archaea, fungi, plants, protozoa, and metazoans—representing the full 
evolutionary spectrum of the genetic code (Figure 1B). We exclude the 
human-affecting pathogen sequences for biosafety purposes. This diverse 
distribution ensures that the CodonFM models learn generalizable representations 
of codon redundancy, GC bias, and translation-associated sequence features 
across kingdoms 1,2,6. Most CDS entries are under 1,000 codons, with a 
right-skewed length distribution characteristic of natural genes; hence, nearly all 
sequences are completely represented within the 2,046-codon context of the 
model (Figure 1C).  
 
EnCodon employs a transformer-based encoder architecture that operates directly 
on codon tokens, beginning with a <CLS> and ending with a <SEP> token (Figure 
1D). The model is trained using a masked-codon prediction objective, analogous to 
masked language modeling 40. To examine how scaling and masking influence 
biological representations, we train three variants—EnCodon 80M, EnCodon 600M, 
and EnCodon 1B—alongside a fourth variant, EnCodon 1B-CDWT, which leverages a 
Codon-frequency Weighted Masking Strategy (Figure 1E). This frequency-weighted 
approach is inspired by distributional token weighting in natural-language models 
41,42, emphasizing underrepresented synonymous codons, encouraging the model to 
capture the interplay among codon bias, translation efficiency, and tRNA 
adaptation 6,10,13. All variants show smooth convergence with larger models 
achieving lower validation loss and improved generalization, reflecting a clear 
scaling relationship between model capacity and its ability to encode codon-level 
structure and redundancy across diverse genetic contexts (Figure 1E) 35. 
 



 
Figure 1: Dataset composition, model architecture, and training of EnCodon. 
(A) EnCodon models were trained on >130 M coding sequences from >22,000 species in the NCBI 
RefSeq database, tokenized at the codon level within ORFs. (B) Sequence-grouped composition of the 
dataset. (C) CDS length distribution of ORF sequences. (D) Schematic of the EnCodon model’s 
transformer encoder trained with a masked language modeling objective. (E) Validation loss across 
EnCodon models—80M, 600M, 1B, and 1B-CDWT—showing improved convergence with larger models.  

Interpreting the EnCodon models 

To better understand the representations learned by EnCodon across scales, we 
analyze both codon confusion patterns and embedding structures (Figure 2A–C). 
The synonymous codon confusion matrices (Figure 2A) reveal a progressive 
decrease in normalized confusion scores from the 80M to the 1B model—indicating 
that larger and frequency-aware models more accurately distinguish synonymous 
codons and capture their regulatory specificity.  

To visualize the models’ embedding space, we use UMAP projections (Figure 2B) on 
the PCA-reduced embeddings. Quantitatively, larger EnCodon models achieve 
significantly lower (better) masked language modeling (MLM) losses across 
phylogenetic groupings (Figure 2C, left), indicating improved predictive accuracy 
and contextual understanding of codon relationships. Consistent with this, larger 
models also show higher K-nearest neighbour (KNN) purity across taxonomic 
divisions (Figure 2C, middle), demonstrating that their embeddings organize 
sequences more coherently with respect to biological groupings. The 1B-CDWT 



model achieves the highest purity, indicating that the codon-weighted masking 
strategy enables the model to focus more effectively on domain-specific codon 
usage patterns compared to random masking models. The correlation between the 
principal components (PCs) and amino acid hydrophobicity (Figure 2C, right) also 
show that the smallest model tend to have higher correlation with basic properties 
like hydrophobicity than the larger ones across top 10 PCs, indicating that 
higher-capacity models balance biochemical features with additional contextual 
signals related to codon usage. Together, these results indicate that larger 
EnCodon variants encode richer, context-dependent representations that extend 
beyond simple physico-chemical or genetic mappings, enabling more nuanced 
modeling of synonymous codon usage. 

 

 



Figure 2: Emergent codon structure and phylogenetic organization across model scales. (A) 
Normalized codon confusion matrices of synonymous codons across EnCodon model variants. (B) UMAP 
projections of sequence embedding space learned by EnCodon models, colored by sequence grouping. 
(C) (left) Representation of MLM loss distribution for pre-trained EnCodon models across taxonomy 
divisions, (middle) KNN purity scores across nearest neighbors in the embedding space. (right) 
Correlation between the top 10 PCs of the pre-trained EnCodon models and the hydrophobicity index 
of the codon’s amino acids. 

Interpreting missense variants with EnCodon 
We benchmark the EnCodon models’ performance on multiple missense mutation 
prediction tasks to evaluate whether these models capture biologically meaningful 
information about coding variation (Figure 3A–D). In the zero-shot setting, each 
variant is scored using the log-likelihood difference between the reference and 
mutated codons, without any task-specific training. On two large de novo mutation 
datasets—the Deciphering Developmental Disorders (DDD) and Autism Spectrum 
Disorder (ASD) cohorts 37— EnCodon demonstrates the strongest separation 
between case and control variants, compared to other unsupervised protein43 and 
RNA sequence models 44–51. We also observe robust improvement in model 
performance across different scales. The superior zero-shot performance suggests 
that EnCodon, despite being trained purely on codon sequences, implicitly learns 
representations that encode protein sequence constraint and functional relevance, 
capturing context beyond synonymous codon structure. 
 
We next assess EnCodon on classifying ClinVar missense variants 36 and somatic 
missense variants in cancer hotspots 52,53 (Figure 3C–D). We observe that the 
EnCodon models are highly performant and are second best to the ESM2 models 
trained on amino acid sequences 43 while outperforming all other RNA-based 
baselines 44–51. Finally, to examine how pre-training transfers to fine-tuned models, 
we fine-tune EnCodon 1B on gnomAD 54 missense variants and evaluate its 
(EnCodon 1B-FT) performance on the DDD and ASD cohorts 37 (Figure 3F–G). The 
fine-tuned EnCodon is similarly performant or better than AlphaMissense 52, a 
supervised protein pathogenicity model, even in the absence of explicit structural 
priors. 



 
Figure 3: Benchmarking EnCodon on missense mutation prediction tasks. 
(A-D) Zero-shot performance comparison of classifiers across multiple missense mutation tasks. (A-B) 
Mann-Whitney U Test (two-sided) p-values (−log10 p-value) are shown for DDD and ASD case vs control 
variants, and (C–D) AUROC on ClinVar and Cancer Hotspot mutation datasets. (E–G) EnCodon 
fine-tuning procedure with common and unseen missense variants from gnomAD (E), Fine-tuned 
performance comparison of EnCodon 1B to other supervised and zero-shot models on ASD (F) and DDD 

(G).  
 



Interpreting synonymous variants with CodonFM 

 
To assess whether EnCodon generalizes beyond missense mutations to 
synonymous changes, we evaluate its ability to distinguish pathogenic versus 
benign synonymous variants from the ClinVar database 36 (Figure 4A). Given that 
the two lists of variants are confounded by codon composition, gene context, and 
mutation-rate biases, we perform 50 stratified subsampling iterations in which 
each pathogenic variant is compared against benign variants matched for 
reference and alternate codon, position in gene, gene-level probability of 
loss-of-function intolerance (pLI) 54, and local mutation rate. Model performance is 
measured by the Mann–Whitney U test across iterations (Figure 4B). EnCodon 
models consistently outperform all RNA- and mRNA-based baselines 44–51, with the 
1B-CDWT variant achieving the highest median significance across replicates, 
demonstrating robustness to covariate control. Because the biological effects of 
synonymous substitutions have historically been the most difficult to resolve, this 
task highlights a distinct strength of EnCodon: its ability to infer functional and 
clinical consequences from the subtle grammar of codon choice. Importantly, 
EnCodon attains state-of-the-art performance relying solely on its learned 
understanding of the underlying grammar of codon usage to infer the clinical 
effects of synonymous variants. 

 

Figure 4: Evaluation of EnCodon on ClinVar synonymous variants. 
(A) Schematic of the zero-shot evaluation of synonymous variants with EnCodon models. (B) Zero-shot 
performance (Mann-Whitney U Test, uncorrected) of models comparing pathogenic and benign 
synonymous variants from ClinVar using 50 matched subsampling iterations, controlling for codon, 
position in gene, gene-level pLI, and local mutation rate. 

 



Evaluating EnCodon on mRNA Expression and Translation Efficiency 

 
Finally, we assess whether EnCodon embeddings capture quantitative features 
relevant to mRNA design and functional features (Figure 5A–B). Using zero-shot 
embeddings from each model, we train a random forest regressor to predict 
experimental readouts from two independent datasets on mRNA translation 
efficiency 38 and mRFP protein expression 48,55. These tasks reflect key determinants 
of mRNA design, such as codon composition, local structure, and translational 
control. Across both benchmarks, EnCodon models achieve the highest predictive 
performance among all nucleotide-level baselines, with the 1B parameter model 
showing the strongest correlation and explained variance. The EnCodon-1B-CDWT 
embeddings are less influenced by simple sequence features such as GC content 
and therefore perform slightly worse than the random masking models on tasks 
where these features have a stronger effect. By learning the contextual grammar of 
codon usage, EnCodon captures position-dependent effects on expression and 
stability, providing biophysically meaningful embeddings useful for zero-shot mRNA 
sequence optimization. 
 
 
 

 

Figure 5: Evaluation of EnCodon on mRNA design features. Comparison of random forest performance 
on pretrained model embeddings, (A) on the translation efficiency task, showing the mean 10-fold 
cross-validation R² scores (± standard deviation). (B) on the mRFP protein expression task, showing 
Spearman correlation between predicted and observed expression levels. 



Discussion 
EnCodon demonstrates that large-scale, codon-level language modeling can learn 
the underlying grammar of the genetic code, linking sequence composition to 
translation efficiency, pathogenicity, and mRNA expression. Trained on over 130 
million coding sequences from 22,000 species, the model captures evolutionary 
and functional constraints, with larger variants revealing organized structure 
among synonymous codons. The EnCodon 1B-CDWT model performs best overall, 
as codon-weighted masking encourages attention to rare and functionally 
constrained codons, enabling finer contextual understanding. In the use case of 
pathogenicity prediction for missense variants (ClinVar missense mutation 
prediction, cancer hotspot variant prediction), we observe that EnCodon models are 
marginally outperformed by the ESM family of protein language models. The 
marginal performance gap suggests that refinement in training strategies for 
codon-level models could help bridge this gap, which is likely due to explicit 
encoding of protein structure information and amino-acid substitution patterns in 
protein language models compared to nuanced codon grammar influencing said 
patterns in codon language models.  
 
Beyond its predictive power, EnCodon highlights that the same protein can be 
encoded by an immense number of synonymous coding sequences, each capable 
of producing distinct translational and regulatory outcomes. This redundancy 
transforms the genetic code into a programmable substrate—one that can be 
tuned for context-dependent activity, expression, and stability. The hidden layer of 
functional variability in synonymous mutations has likely been shaped by evolution 
to fine-tune gene regulation, yet remains difficult to quantify or predict. EnCodon 
provides a computational framework to expose this latent space of synonymous 
effects—revealing that what was once considered silent variation can, in fact, 
encode nuanced regulatory information. As the CodonFM framework evolves, new 
architectures and objectives can be added as modular components within the same 
foundational ecosystem, supporting increasingly rich representations of 
codon-level biology. 

Despite these advances, several limitations remain. EnCodon’s results are based on 
computational inference and require experimental validation to confirm their 
biological relevance. The number of synonymous variants with experimentally 
verified functional effects is still small, constraining validation datasets and 



necessitating cautious interpretation of statistical significance. Moreover, EnCodon 
currently models sequence features without explicitly incorporating 
cell-type-specific tRNA abundance, RNA modifications, or secondary structure 
dynamics, factors known to modulate translation in vivo. Integrating such 
context-dependent data and validating predictions through perturbation assays, 
ribosome profiling, and synthetic mRNA design experiments will be essential for 
translating EnCodon’s insights into mechanistic and therapeutic applications. 
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Code Availability 

All code for model training, evaluation, and analysis is available at the 
https://github.com/NVIDIA-Digital-Bio/CodonFM GitHub repository. Pretrained 
CodonFM model checkpoints can be accessed on Hugging Face 
(https://huggingface.co/collections/nvidia/clara-biology) and NVIDIA NGC 
(https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/nv_codonfm_encod
on). 
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