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Abstract

We present DiffCollage, a compositional diffusion
model that can generate large content by leveraging diffu-
sion models trained on generating pieces of the large con-
tent. Our approach is based on a factor graph representation
where each factor node represents a portion of the content
and a variable node represents their overlap. This repre-
sentation allows us to aggregate intermediate outputs from
diffusion models defined on individual nodes to generate
content of arbitrary size and shape in parallel without re-
sorting to an autoregressive generation procedure. We apply
DiffCollage to various tasks, including infinite image
generation, panorama image generation, and long-duration
text-guided motion generation. Extensive experimental re-
sults with a comparison to strong autoregressive baselines
verify the effectiveness of our approach.

1. Introduction
The success of diffusion models [20, 56] can largely be

attributed to their scalability. With large-scale datasets and
computing resources, practitioners can usually train high-
capacity models that are able to produce high-fidelity images.
The recent generative AI revolution led by large-scale text-
to-image diffusion models is a great example [3, 44, 49].
The same procedure, collecting a large dataset and using
it to train a large-scale model, has been applied to various
problems and achieved great success [4, 43].

In this paper, we are interested in extending the success
of diffusion models to a wider class of data. We focus on
applications where a large-scale dataset of the target content
does not exist or is prohibitively expensive to collect, but
individual pieces of the content are available in great quan-
tities. 360-degree panorama images are such an example.
While 360-degree panorama images are considered niche
image content and only exist in small quantities, there are
a large number of normal perspective images available on
the Internet, each of which can be treated as a piece of a
360-degree panorama image. Another example is generating
images of extreme aspect ratios, as shown in Fig. 1. Each

of the extreme-aspect-ratio images can be considered as the
stitching of multiple images with normal aspect ratios. For
such applications, while we cannot afford to collect a large-
scale dataset of the target content to train a diffusion model,
we wish to synthesize high-quality target content with a
diffusion model trained on smaller pieces that are readily
available.

A popular solution to this class of problems is to first
train a diffusion model on small pieces of the content and
then generate the large content piece by piece in an autore-
gressive manner [14, 48]. However, such an autoregressive
approach has three drawbacks. First, as pieces are generated
sequentially, the later-generated pieces have no influence on
the prior-generated ones. Such a sequential scheme could
lead to sub-optimal results, especially when there is a circu-
lar structure in the data. For example, it is hard to enforce
consistency between the start and end frames when generat-
ing looped videos autoregressively. Second, autoregressive
methods may suffer from error accumulation since the model
was conditioned on ground-truth data during training but is
conditioned on its own prediction at test time. Lastly, the
time consumption of autoregressive generation increases lin-
early with the size of the data and could become prohibitive
when generating very large content.

To address the large content generation problem, we pro-
pose DiffCollage, a generic algorithm that synthesizes
large content by merging the results generated by diffusion
models trained on small pieces of the large content. Our
approach is based on a factor graph formulation where a
datum is modeled by a set of nodes and the edges connecting
them. In our formulation, each node represents a contiguous
portion of the large content, and the portions of content in
neighboring nodes have a small overlap. Each node is associ-
ated with a small diffusion model and each piece affects the
generation of the other pieces. Our method generates multi-
ple pieces of content in parallel, which can greatly accelerate
sampling when a large pool of computation is available.

We evaluate our approach on multiple large content gen-
eration tasks, including infinity image generation, long-
duration text-to-motion with complex actions, content with
unusual structures such as looped motion, and 360-degree



Application 1: Long image generation. Prompt: Cute Corgis at Da-Vinci Last Supper

Application 2: Looped text-to-motion generation
Prompt: A person repeatsrunning forward, punching in a manner consistent with martial arts,

bending down to pick something, walking forward, kickingwith legs.
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Figure 1. DiffCollage, a scalable probabilistic model that synthesizes large content, including long images, looped motions, and 360
images, with diffusion models only trained on pieces of the content.

images. Experiment results show that our approach outper-
forms existing approaches by a wide margin.

In summary, we make the following contributions.

• We propose DiffCollage, a scalable probabilistic
model that synthesizes large content by merging results
generated by diffusion models trained on pieces of the
large content. It can synthesize large content efficiently by
generating pieces in parallel.

• DiffCollage can work out-of-the-box when pre-
trained diffusion models on different pieces are available.

• Extensive experimental results on benchmark datasets
show the effectiveness and versatility of the proposed ap-
proaches on various tasks.

2. Related Work
Diffusion models Diffusion models [20, 54, 56] have
achieved great success in various problems, such as text-
to-image generation [3, 44, 49], time series modeling [58],
point cloud generation [64, 68, 72], natural language pro-
cessing [30], image editing [11, 28, 37, 60], inpainting [8,

26, 27, 35], and adversarial defense [39]. Recently, im-
pressive progress has been made in improving its qual-
ity [3, 44, 45, 49], controllability [15, 18, 21, 28, 37, 46], and
efficiency [24, 55, 69, 70]. In this paper, we aim to enlarge
the kind of data that diffusion models can generate.

Large content generation Generating large content with
generative models trained on small pieces of large content
has been explored by prior works. One class of methods
relies on latent variable models, e.g., GANs [16], that map a
global latent code and a spatial latent code to an output image.
The global latent code represents the holistic appearance of
the image and the spatial latent code is typically computed
from a coordinate system. Some works [31, 53] generate
different patches using the same global code and merge them
to obtain the full image. A discriminator can be used to
ensure the coherence of the full image. Instead of gener-
ating patches independently, some recent works generate
the full image in one shot using architectures that guaran-
tee translation equivariance, such as padding-free genera-
tors [32, 40, 57] or implicit MLP-based generators [2, 5, 52].

Another popular approach to generating large content



is to autoregressively apply “outpainting” to gradually en-
large the content. The outpainting could be implemented by
a diffusion model [9, 10, 22, 26, 35, 48], an autoregressive
transformer [7, 14, 63], or a masked transformer [6, 7, 71].

3. Preliminaries
Diffusion models consist of two processes: a forward dif-

fusion process and a reverse process. The forward diffusion
process progressively injects Gaussian noise into samples
from the data distribution q0(u0) and results in a family
of noised data distributions qt(ut). It can be shown that
the distribution of ut conditioned on the clean data u0 is
also Gaussian: q0t(ut|u0) = N (u0, σ

2
t I). The standard

deviation σt monotonically increases with respect to the for-
ward diffusion time t. The reverse process is designed to
iteratively remove the noise from the noised data to recover
the clean data, which can be formulated as the following
stochastic differential equation (SDE) [25, 50, 70]

du = −(1+ η2)σ̇tσt∇u log qt(u)dt+ η
√

2σ̇tσtdw, (1)

where ∇u log qt(u) is the score function of a noised data
distribution, wt is the standard Wiener process, and η ≥
0 determines the amount of random noise injected during
the denoising process. When η = 1, Eq. (1) is known as
reverse-time SDE of the forward diffusion process [1, 56],
from which ancestral sampling and samplers based on Euler-
Maruyama can be employed [20, 56]. Eq. (1) reduces to a
probability flow ODE when η = 0 [56]. In practice, the
unknown score function ∇u log qt(u) is estimated using a
neural network sθ(u, t) by minimizing a weighted sum of
denoising autoencoder (score matching [61]) objectives:

argminθ Et,u0 [ω(t) ∥∇ut log q0t(ut|u0)− sθ(ut, t)∥2],
(2)

where ω(t) denotes a time-dependent weight.

4. Diffusion Collage
DiffCollage is an algorithm that can generate large

content in parallel using diffusion models trained on data con-
sisting of portions of the large content. We first introduce the
data representation and then discuss training and sampling.
For simplicity, we derive the formulation for unconditional
synthesis throughout this section; the formulation can be
easily extended to conditional synthesis.

4.1. Representation

A simple example A simple use case of DiffCollage
is to generate a long image by assembling diffusion models
trained on shorter images. An autoregressive solution to this
problem is to first generate an initial square image and then
perform outpainting conditioned on a part of the previously
generated image [48], which results in a slightly larger output
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Figure 2. Factor graphs for various applications. From top to
bottom: a linear chain for arbitrarily long sequences, a cycle graph
for arbitrarily long loops, a grid graph for images of arbitrary height
and width, and a complex factor graph for 360-degree panoramas.

image. We denote this larger image as u = [x(1),x(2),x(3)]
where [x(1),x(2)] is the initial image and x(3) is the out-
painted region generated by the conditional model x(3)|x(2).
Notably, this procedure makes a conditional independence
assumption: conditioned on x(2), x(1) and x(3) are indepen-
dent, i.e., q(x(3)|x(1),x(2)) = q(x(3)|x(2)). Therefore, the
joint probability is

q(u) = q(x(1),x(2),x(3)) = q(x(1),x(2))q(x(3)|x(2))

=
q(x(1),x(2))q(x(2),x(3))

q(x(2))
. (3)

The score function of q(u) can be represented as a sum over
the scores of smaller images

∇ log q(u) =∇ log q(x(1),x(2)) +∇ log q(x(2),x(3))

−∇ log q(x(2)) . (4)

Each individual score can be estimated using a diffu-
sion model trained on smaller images. Unlike the au-
toregressive method, which generates content sequentially,
DiffCollage can generate different pieces in parallel
since all individual scores can be computed independently.

Generalization to arbitrary factor graphs Now, we
generalize the above example to more complex scenar-
ios. For a joint variable u = [x(1),x(2), . . . ,x(n)], a
factor graph [29] is a bipartite graph connecting variable
nodes {x(i)}ni=1 and factor nodes {f (j)}mj=1, where f (j) ⊆
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Figure 3. How DiffCollage synthesize long images. To calcu-
late the score for each denoising step on the long image, we split
the input based on the factor graph into regions of factor nodes and
variables. We obtain the scores of individual regions by using the
individual diffusion models. We then merge the scores to compute
the score of the target diffusion model on the long image.

{x(1),x(2), . . . ,x(n)}. An undirected edge between x(i)

and f (j) exists if and only if x(i) ∈ f (j). In the above
example, there are two factors f (1) = {x(1),x(2)} and
f (2) = {x(2),x(3)}. Given a factor graph that represents the
factorization of the joint distribution q(u)1, DiffCollage
approximates the distribution as follows:

p(u) :=

∏m
j=1 q(f

(j))∏n
i=1 q(x

(i))di−1
, (5)

where di is the degree of the variable node x(i). It is easy to
verify that Eq. (5) reduces to Eq. (3) in the simple case since
the nodes for x(1) and x(3) have a degree of one (connected
to f (1) and f (2) respectively) and the node for x(2) has a
degree of two (connected to both f (1) and f (2)). Similar to
Eq. (4), we can approximate the score of q(u) by adding the
scores over factor nodes (i.e., q(f (j))) and subtracting the
scores over non-leaf variable nodes (i.e., q(x(i)))

∇ log p(u) :=

m∑
j=1

∇ log q(f (j)) +

n∑
i=1

(1− di)∇ log q(x(i)) . (6)

1In order words, the joint distribution can be written as a product of
functions, each of which is a function of a single factor.

In fact, Eq. (5) is also known in the probabilistic graphical
model literature as the seminal Bethe approximation, which
approximates the joint distribution q(u) by its marginals
defined over factor and variable nodes [65, 66]. The approxi-
mation is exact, i.e., p(u) = q(u), when the factor graph is
an acyclic graph. For a general graph with cycles, the Bethe
approximation is widely used in practice and obtains good
performance [29, 51]. More discussions and justification on
Bethe approximation are in the supplementary material.

In practice, factor graphs are general enough to cover
contents of arbitrary size and shape, such as those in Fig. 2:

• An arbitrarily long sequence: The factor graph is a linear
chain in which each factor is connected to two variables,
and each variable is connected to two factors (except for
leaf variables). We show a detailed characterization in
Fig. 3.

• An arbitrarily long sequence with a loop: Similar to the
linear chain but with a variable node connecting the head
and tail factor nodes.

• An image of arbitrary height and width: Here, each
factor is an image patch that overlaps with 4 other factors
at the 4 corners. Each overlapping region is a variable.
Thus, each factor node is connected to 4 variables, and
each variables node is connected to 2 factors (except for
edge cases).

• A 360-degree image represented as a cubemap: A cube
consists of 6 faces: Front, Back, Left, Right, Up, Down.
There are three cycles (LFRB, ULDR, UFDB) can be
modeled via the cycle graph, and these cycles overlap one
another by two faces. Intuitively, we can treat these cycles
as factors and faces as variables. We list more details in
the supplementary material.

4.2. Training and Sampling

Training DiffCollage is trained to estimate the score
of noised data distributions qt(u). Similar to the Bethe
approximation (Eqs. (5) and (6)) for clean data, we factorize
the score of the time-dependent noised data distributions:

∇ log pθ(u, t) =

m∑
j=1

∇ log pθ(f
(j), t)

+

n∑
i=1

(1− di)∇ log pθ(x
(i), t). (7)

To close the gap between our learned model and the Bethe
approximation in Eq. (5), we optimize θ by performing
denoising score matching between the marginal scores of
real data {q(x(i), t), q(f (j), t)} and learned marginal scores
{pθ(x(i), t), pθ(f

(j), t)} (following Eq. (2)). This can be
done by learning a diffusion model for each marginal distri-
bution of real data; we list the detailed algorithm for training
in the supplementary material.
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Figure 4. Long images generated by various approaches that only use diffusion models trained on smaller square images. For autoregressive
approaches (Replace and Recon), we first generate the image in the middle then outpaint towards left and right. Replace and Recon introduce
discontinuity artifacts while DiffCollage can generate high-fidelity images in parallel.

It should be noted that even though we aim to approxi-
mate one joint distribution, learning a diffusion model for
one marginal distribution is independent of learning other
marginals. With such independence, diffusion models on
different marginals can be learned in parallel. Practically,
diffusion models on different marginals can be amortized
where we employ one shared diffusion model with condi-
tional signals y[f (j)] from factor node f (j) and y[i] from
variable node x(i) to learn various marginals.

Sampling After training the diffusion models for each
marginal, the score model of DiffCollage for pθ(u, t)
is simply obtained via Eq. (7), and it is a diffusion model
with a specific score approximation. Thus DiffCollage
is sampler-agnostic, and we can leverage existing solvers
for Eq. (1) to generate samples with the approximated score
in Eq. (7), such as DDIM [55], DEIS [69], DPM-Solver [34]
and gDDIM [70], all without any modifications. We em-
phasize that diffuson models on various marginals can be
evaluated at the same time and generate different pieces of
data {f (j),x(i)} in parallel, unlike the conventional autore-
gressive approaches, so with advanced samplers, the number
of iterations taken by DiffCollage could be much less
than that of an autoregressive model.

5. Experiments

Here, we present quantitative and qualitative results to
show the effectiveness and efficiency of DiffCollage.
We perform experiments on various generation tasks, such
as infinite image generation (Sec. 5.1), arbitrary-sized image
translation (Sec. 5.2), motion synthesis (Sec. 5.3), and 360-
degree panorama generation (Sec. 5.4).

5.1. Infinite image generation

We first evaluate DiffCollage in the infinite image
generation task [53] where the goal is to generate images
extended to infinity horizontally. We employ a linear chain
as shown in Fig. 2 and use the same score network for all
factor nodes and variable nodes since the marginal image
distribution is shift-invariant.

We finetune a pre-trained GLIDE model [38], which is a
two-stage diffusion model consisting of a 64×64 square gen-
erator and one 64 → 256 upsampler on an internal landscape
dataset. We additionally finetune a pre-trained eDiff-I [3]
256 → 1024 upsampler. Combining them together, we have
a score model for individual nodes that can generate images
of resolution up to 1024× 1024. To control the style of the
output [3, 44], the base diffusion model is conditioned on
CLIP [43] image embeddings.



Other diffusion-based approaches tackle this problem by
performing outpainting autoregressively [48]. Specifically,
it generates the first image using a standard diffusion model,
then extends the image through repeated application of out-
painting toward left and right. The outpainting problem can
be treated as an inpainting problem with 50% of the content
masked out. While there exist diffusion models specifically
trained for inpainting [48], we only perform comparisons
with other generic methods that work on any pretrained
diffusion models. We compare DiffCollage with two
inpainting approaches. The first one is the “replacement”
approach, where we constantly replace part of intermedi-
ate predictions with known pixels [8, 26, 35]. The second
is the “reconstruction” approach, which uses the gradient
of the reconstruction loss on known pixels to correct the
unconditional samples [9, 22, 47]. This approach is slightly
more computationally expensive since it needs to compute
the gradient of the reconstruction loss w.r.t the intermediate
predictions. We discuss more details in the supplementary.

To compare the generation quality of generated panorama
images, we propose FID Plus (FID+). We first generate 50k
panorama images with spatial ratio W/H = 6 and randomly
crop one square image H ×H for each image. FID+ is the
Frechet inception distance (FID, [19]) of the 50k randomly
cropped images. We also include a baseline that naively
concatenates independently generated images of H×H into
a long image. Although each generated image is realistic,
this approach has a bad FID+ because randomly cropped
images may contain clear boundaries.

As shown in Tab. 1, DiffCollage outperforms other
approaches in terms of sample quality evaluated by FID+.
In Fig. 4, we show that the sample quality of autoregressive
approaches deteriorates as the image grows due to error ac-
cumulation, while DiffCollage does not have this issue.
Fig. 5 compares the latency of generating one panorama im-
age with different image sizes. Thanks to its parallelization,
DiffCollage is about H/2W times and H/W times
faster than replacement and reconstruction methods respec-
tively when generating one H ×W image with H ≥ 2W .
We further apply DiffCollage to eDiff-I [3], a recent
large-scale text-to-image model in Fig. 1, to generate a wide
image from the text prompt “Cute Corgis at Da-Vinci Last
Supper”, which demonstrates the general applicability of
DiffCollage to arbitrary diffusion models.

In addition, the score models for different nodes can be
conditioned on different control signals. We illustrate this
point by connecting any two landscape images of different
styles. This is a challenging inpainting task where only pixels
at two ends are given. The score models for intermediate
nodes are conditioned on interpolated CLIP embeddings. As
shown in Fig. 6, we are able to generate a long image that
transitions from one style to another totally different one.

We compare DiffCollage with other methods specifi-

Algo Parallel Gradients FID+ ↓ Time ↓
Baseline - - 24.15 5.61

Replacement No Not required 10.25 14.99
Reconstruction No Required 8.97 26.43

Ours Yes Not required 4.54 6.47

Table 1. Comaprison among diffusion-based methods for infinite
image generation on an internal landscape dataset. Our method
achieves the best image quality while also being the fastest since
we can compute individual scores in parallel and do not require
backpropagating through the diffusion model to obtain gradients.
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Figure 5. Wall-clock time for generating images with various
lengths (Left) and motion sequences with various durations (Right).

Dataset LHQ 2562 Tower 2562

FID FID+ FID FID+

VQGAN [14] 58.27 62.12 45.18 47.32
ALIS [53] 12.60 14.27 11.85 15.27

Replacement 6.28 28.94 7.15 30.19
Reconstruction 6.28 18.37 7.15 19.56

Ours 6.28 16.43 7.15 13.27

Table 2. Comparison against methods specifically designed for
infinity image generation (Dark-colored rows). Our approach
achieves higher quality despite being more general.

cally designed for long image generation tasks on LHQ [53]
and LSUN Tower [67], following the setting in Sko-
rokhodov et al. [53]. We evaluate standard FID over im-
ages of size H ×H , as well as FID+ in Tab. 2. As shown
in the table, even though our approach is never trained on
long image generation, it achieves competitive results com-
pared with methods that are tailored to the task and require
problem-specific networks for the image dataset.

5.2. Arbitrary-sized image translation

Our method can be applied to various image translation
tasks where the size of the input image is different from what
the diffusion model is trained on. We use DiffCollage
to aggregate the scores of individual nodes and the score
of each node can be estimated using methods that are de-
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Figure 6. Connecting real images. Given a pair of 64 × 64 real images x(0) and x(N), DiffCollage can generate a 1024 × 10752
image that transitions naturally from x(0) into x(N).
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Figure 7. Inpainting on non-square images. The first row contains
two masked images. The second row contains the inpainting results
by splitting the input non-square images into a set of square images.
In the left/right example, the input image is split into two/three
square images. The Recon results in apparent boundary artifacts.
The third row contains the inpainting results with DiffCollage.

veloped for standard diffusion models, such as replace-
ment [10, 26, 35] or reconstruction methods [9, 22] for in-
painting, and SDEdit [37] for stroke-based image synthesis.
To achieve these with existing methods, one could also split
the large image into several smaller ones and apply the con-
ditional generation methods independently. However, this
fails to model the interactions between the split images, re-
sulting in discontinuities in the final image; we illustrate
this in Fig. 7 for the task of inpainting from sparse pixels.
In contrast, DiffCollage can capture global information
and faithfully recover images from given sparse pixels. We
include more image translation results in the supplementary.

5.3. Text-to-motion generation

Given a text description of the desired motion, the goal of
this task is to synthesize a motion sequence corresponding

to the description. In this section, we evaluate our approach
on the popular benchmark HumanML3D [17, 36], using a
pre-trained motion diffusion model [59]. The pre-trained dif-
fusion model was trained with sequences of various lengths.
As a result, it can use be used as the score estimator for both
factor nodes and variable nodes in our formulation directly.

High-fidelity generated samples are expected to follow
basic rules of physics and behave similarly to realistic hu-
man motions. Specifically, we adopt the set of metrics
from Guo et al. [17], including R-precision and Multimodal-
Distance that quantify the alignment between generated sam-
ples and the given prompt, FID that measures the distance
between the distribution of ground truth motions and gener-
ated motions, and Diversity that measures the variability in
samples generated by our methods.

Long-duration motion generation In HumanML3D, the
average motion length is 7.1s, and the maximum duration is
10s. Our goal is to generate high-fidelity motion sequences
that are much longer than what we have in the training data.
To achieve this, we use a linear chain graph similar to the one
used in infinite image generation. To evaluate our method,
we generate a 24s motion for each text and randomly crop
generated sequences, analogous to FID+ for images.

We compare our approach with several methods, includ-
ing naively denoising a long sequence (Baseline) and au-
toregressive generation with replacement and reconstruc-
tion methods, respectively. The results in Tab. 3 show
that DiffCollage outperforms other approaches in all
evaluated metrics by a notable amount.

Compositing multiple actions The existing human mo-
tion generative model can only synthesize simple motions
since there are only one or two actions for one motion se-
quence in the training dataset. With DiffCollage, we
can augment the simple motion diffusion model with the
ability to synthesize complex actions. We use the desired
text prompts for the conditions of factors y[fj ], and the un-



Figure 8. Complex motions synthesis. Though the pre-trained motion diffusion model [59] can only generate simple motions with one or
two actions, DiffCollage can extend it to synthesize long sequences with an arbitrary number of actions. Prompts: (Top) A person runs
forward, then kicks his legs, then skips rope, then bends down to pick something up off the ground. (Bottom) A person runs forward, then
skips rope, then bends down to pick something up off the ground, then kicks his legs.

Method
R Precision

(top 3)↑ FID↓ Multimodal
Dist↓ Diversity→

Real data 0.798 0.001 2.960 9.471
MDM [59] 0.605 0.492 5.607 9.383
Baseline 0.298 10.690 7.512 6.764

Replacement 0.567 1.281 5.751 9.184
Reconstruction 0.585 1.012 5.716 9.175

Ours 0.611 0.605 5.569 9.372

Table 3. Quantitative results of long-duration generation on the
HumanML3D test set [17]. Dark-colored rows are the results of
short-duration motion samples (for reference only), while other
rows evaluate methods that generate 24 seconds of motion, which
is around 4 times longer than the average length of training data.
All methods are based on pre-trained MDM [59]. → means the
results are better if the metric is closer to real data.

conditional null token for that of variables y[i]. As shown
in Fig. 8, by constructing graphs with different marginal
distributions specified by different conditions y[fj ],y[i], we
can generate complex motion sequences.

5.4. Generation with complex graphs

We further show that DiffCollage is able to generate
data with a challenging dependency structure specified by
a complex graph (such as the ones in Fig. 9). As shown
in Fig. 9 (top), DiffCollage can generate a horizontal
panorama by constructing a cycle graph. We also apply
our method to generate a 360-degree panorama using a dif-
fusion model trained only on normal perspective images
conditioned on semantic segmentation maps (Fig. 9 bottom).
This allows users to create beautiful panoramas from sim-
ple doodles, similar to some existing applications such as
GauGAN [42] and GauGAN2 [23] but providing a more
immersive experience to users.

6. Conclusion
In this work, we propose DiffCollage, a novel dif-

fusion model that can synthesize large content via a collec-

Figure 9. Top: a 1024×10240 horizontal panorama image. Bottom
left: spherical/cube map representations of an input segmentation
map and the output 360-degree panorama image. Each face of
the cube is of size 1024 × 1024. Bottom right: equirectangular
representation of the input segmentation and the output image.

tion of diffusion models trained on pieces of large content.
DiffCollage is based on factor graph representation and
inspired by Bethe approximation, both commonly used in
probabilistic graphical models. DiffCollage is scalable;
it allows different diffusion models trained only with samples
from marginal distributions instead of joint data distribution,
which are easier to obtain. DiffCollage is efficient; dif-
fusion models for different marginals can be trained and
sampled in parallel. Through DiffCollage, we enable
large content generation with diffusion models.
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A. Factor graph and Bethe approximation

Approximations The Bethe approximation is a popular technique used in variational inference, probabilistic graphical
models, and density estimation. One of the key pillars of Bethe approximation is approximating distribution entropy with
Bethe entropy [29]. In terms of the factor graph,

HB :=

m∑
j=1

H(j)
f +

n∑
i=1

(1− di)H(i)
x , (8)

where H(j)
f ,H(i)

x denote entropy of marginal distribution q(f (j)), q(x(i)) defined over factor nodes and variable nodes
respectively, that is,

H(j)
f =

∫
f(j)

−q(f (j)) log q(f (j))df (j), H(i)
x =

∫
x(i)

−q(x(i)) log q(x(i))dx(i).

In fact, Eq. (8) can be derived via the joint distribution approximation by its marginal distribution,∫
u

−p(u) log p(u)du =

m∑
j=1

∫
f(j)

−q(f (j)) log q(f (j))df (j) +

n∑
i=1

(1− di)

∫
x(i)

−q(x(i)) log q(x(i))dx(i). (9)

Approximations Eq. (8) are exact when the factor graph is an acyclic graph while practitioners also use approximations in
general graphs where loops appear in the graph.

Expressiveness of DiffCollage The expressiveness of pθ heavily depends on the underlying graphical model, which
encodes the conditional independence structure of data in the sparse graph structure. A sparser graph results in a simpler joint
distribution from which it is easier to draw samples. The sparsest graph consists of only variable nodes and no factor nodes,
which indicates that all random variables are independent. Though it is the simplest joint distribution, such models fail to
capture correlations between random variables and cannot express common distributions in the real world. On the other hand,
while the fully connected graphs posses rich representation ability, they are difficult to infer or generate samples from, and
Bethe approximation may suffer from large bias. Empirically, DiffCollage is expressive enough to approximate complex
distributions on real datasets with different modalities.

Hierarchical factor graph Though we only present several simple factor graphs in the main paper, we can construct more
expressive graphical models with hierarchical factor graphs. The idea behind a “hierarchical” factor graph is to treat the nodes
and factors themselves as joint distributions over multiple random variables; by modeling these nodes / factors (defined over
multiple random variables) with factor graphs, and their likelihood can still be evaluated with Bethe approximation.

The generation of 360-degree images is a good example, where each factor node in 360 cubemap graphis a smaller
factor graph. Concretely, let us denote 6 faces as x(F),x(B),x(L),x(R),x(U),x(D). Then the three factor nodes follow
f (1) = {x(F),x(B),x(L),x(R)}, f (2) = {x(F),x(B),x(U),x(D)}, f (3) = {x(L),x(R),x(U),x(D)}. The three variable nodes
are x(1) = {x(L),x(R)}, x(2) = {x(U),x(D)}, x(3) = {x(F),x(B)}. We can apply Bethe approximation for the factor graph
over x(1),x(2),x(3) and f (1), f (2), f (3). For the individual nodes and factors, the likelihood is defined over a set of random
variables that can be modeled with factor graphs again, this time over the 6 faces. For the factor nodes, we treat it as a loop
graph; for the variable nodes, as the faces contained within are opposite to each other, the corresponding factor graph would be
just the two disconnected components.

Another way to improve expressiveness is to incorporate different conditional signals in different nodes of the factor graph.
The approach can be interpreted as another type of hierarchical factor graph, which involves latent codes based on different
conditional signals. In fact, several works [31, 53] that generate different patches of large images independently based on
global code can be viewed as a hierarchical factor graph with latent code. We apply similar techniques in our conditional
generation tasks, such as text-conditioned motion generation, and segmentation-conditioned image generation.

For applications that involve more complex dependencies among random variables and demand difficult inference tasks,
more general graph representation, such as Junction tree [29], may have some advantages over representations based on factor
graphs. We leave the generalization of DiffCollage to more complicated graphs for future research.



B. Training and Sampling of DiffCollage

B.1. Training

DiffCollage demands diffusion models over different pieces of the target content. Ideally, DiffCollage can work
out of the box if diffusion models over each node in the factor graphs are available. When pre-trained models are not
accessible, we can train DiffCollage in the same way as training standard diffusion models. We list the training algorithm
in Algorithms 1 and 2. We note that the learning process of one marginal is independent of others, making the training
procedure easy to scale since different marginals of DiffCollage can be learned in parallel. Moreover, different variable
nodes or factor nodes may share the same diffusion models due to symmetry, improving the scalability further.

Algorithm 1 Diffuison Collage: Training

Inputs: Marginal data on factor node {D[f (j)]}, marginal data on variable node {D[i]}
Output: Score models sθ for marginal distributions
# Training for marginals can be conducted in parallel.
for j ∈ 1, 2, · · · ,m do

Training diffusion model sθ(f (j), t) on data D[f (j)]
end for
for i ∈ 1, 2, · · · , n do

Training diffusion model sθ(x(i), t) on data D[i]
end for

Algorithm 2 Training diffusion models for one node

Inputs: Marginal data D
Output: Score models sθ
repeat

Sample u0 from D
Sample t and Gaussian noise ϵ
ut = u0 + σtϵ
Gradient descent on ∇θ[ω(t) ∥∇ut

log q0t(ut|u0)− sθ(ut, t)∥2]
util converged

B.2. Sampling

After training diffusion models for each marginal, DiffCollage implicitly obtains pθ(u, t) by its score ∇ log pθ(u, t).
The score of the learned distribution can be composited with its marginal scores sθ(x(i), t), sθ(f

(j), t):

∇ log pθ(u, t) = sθ(u, t) =

m∑
j=1

sθ(f
(j), t) +

n∑
i=1

(1− di)sθ(x
(i), t). (10)

The marginal scores can be computed in parallel over the entire large content, which would significantly reduce the latency of
the algorithm. We can plug Eq. (10) into existing diffusion model sampling algorithms. We include a deterministic sampling
algorithm in Algorithm 3 for reference, though we re-emphasize that any sampler applicable to regular diffusion models would
work with DiffCollage. Besides, DiffCollage also inherits the versatility of diffusion models and allows controllable
generation without re-training, such as inpainting and super-resolution [8, 26]. We include more details regarding training-free
conditional generation in Appendix C.1.



Algorithm 3 DiffCollage: Sampling with Euler

Inputs: Score models sθ, decreasing time steps {tk}Kk=0

Output: Samples from pθ(u)
Sample uK from prior distribution N (0, σtKI)
for k ∈ K,K − 1, · · · 1 do

# Pieces of sθ(uk, tk) can be evaluated in parallel.
uk−1 = uk + σ̇tkσtksθ(uk, tk)(tk − tk−1)

end for
Return u0

C. Experiments details

C.1. Replacement and Reconstruction Methods for Conditioning

Here, we describe the details of replacement and reconstruction methods that are compared with DiffCollage in the
experiments. In both cases, we are provided with an extra condition y, and our goal is to generate u such that y = H(u)
for some known function H . For example, H : Rn → Rm can be a low-pass filter that produces a low-resolution image
(dimension m) from a high-resolution image (dimension n), and the task would essentially become super-resolution; similarly,
one could define an inpainting task where H is taking a subset of the pixels of the image x. Diffusion models are particularly
better-suited to such inverse problems than other generative models, such as GANs [41], as they can produce good results with
much fewer iterations [26].

Both replacement and reconstruction methods make some modifications to the sampling procedure. At a high level, the
replacement method makes a prediction over the clean image (denoted as û0), and replaces parts of the image û0 using
information about y; one could implement this as a projection if H ∈ Rm×n is a matrix, i.e., proj(û0) = H†y+(I−H†H)û0

where H† is the pseudoinverse of H . This is the strategy used in ILVR [8] and DDRM [26]. The reconstruction method,
on the other hand, takes an additional gradient step on top of the existing sampling step that minimizes the L2 distance
between y and Hû0; this has been shown to produce higher-quality images than replacement methods on super-resolution and
inpainting [9]. We describe the two types of conditional sampling algorithms in Algorithm 4 and Algorithm 5, respectively,
using DiffCollage. This is almost identical to the conditional sampling algorithms with a standard diffusion model, as we
only changed the diffusion to the one constructed by DiffCollage. For autoregressive baselines, we use these algorithms
with regular diffusion models; for inpainting experiments with large images, we use them with DiffCollage.

Algorithm 4 Replacement-based Conditioning using Regular Diffusion Models

Inputs: Observation y, matrix H , score models sθ, decreasing time steps {tk}Kk=0, sampling algorithm from time t to time
s using a score function, denoted as sample(score,ut, t, s).
Output: Samples from pθ(u) where y = H(u)
Sample uK from prior distribution N (0, σtKI)
for k ∈ K,K − 1, · · · 1 do

# Obtain denoising result from score function sθ(uk, tk).
û0 = uk + σ2

tk
sθ(uk, tk).

# Replacement projection based in y and H .
ũ0 = H†y + (I −H†H)û0.
# Sample based on corrected result.
s̃ = (ũ0 − uk)/σ

2
tk

.
uk−1 = sample(s̃,utk , tk, tk−1).

end for
Return u0



Algorithm 5 Reconstruction-based Conditioning with DiffCollage or Regular Diffusion Models

Inputs: Observation y, matrix H , score models sθ, decreasing time steps {tk}Kk=0, sampling algorithm from time t to time
s using a score function, denoted as sample(score,ut, t, s), and hyperparameter for reconstruction gradient λt.
Output: Samples from pθ(u) where y = H(u)
Sample uK from prior distribution N (0, σtKI)
for k ∈ K,K − 1, · · · 1 do

# Obtain denoising result from score function sθ(uk, tk).
û0 = uk + σ2

tk
sθ(uk, tk).

# Update score based in y and H .
s̃ = sθ(uk, tk) + λt∇uk

∥Hû0 − y∥22.
# Sample based on new score function.
uk−1 = sample(s̃,utk , tk, tk−1).

end for
Return u0

C.2. Image experiments

Algorithm 6 Inifnite image generation with DiffCollage: training

Inputs: Square image data D
Output: Shift-invariant score model sθ for both factor nodes and variable nodes
repeat

Sample u0 from D
Random crop u0 by half with 50% probability
Sample t and Gaussian noise ϵ with shape of u0

ut = u0 + σtϵ
Gradient descent on ∇θ[ω(t) ∥∇ut

log q0t(ut|u0)− sθ(ut, t)∥2]
util converged

Training To finetune GLIDE [38] on our internal dataset, we first train our base 64× 64 model with a learning rate 1× 10−4

and a batch size 128 for 300K iterations. Then we finetune 64 → 256, 256 → 1024 upsamplers for 100K, 50K iterations.
For the 256 → 1024 upsampler, we finetune the upsampler of eDiff-I [3]. Following the prior works [3, 49], we train the
256 → 1024 model using random patches of size 256×256 during training and apply it on 1024×1024 resolution during
inference. We utilize AdamW optimzer [33] and apply exponential moving average (EMA) with a rate 0.999 during training.
The base 64× 64 diffusion model is trained to be conditioned on image CLIP embeddings with a random drop rate 50% while
the two upsampling diffusion models are only conditioned on low-resolution images. For the diffusion model conditioned on
semantic segmentation maps, we replace the first layer of our pre-trained base 64× 64 model and concatenate embeddings of
semantic segmentation maps and noised image inputs. We further finetune the diffusion model for another 100K iterations
conditioned on segmentation.

For experiments on LHQ [53] and LSUN [67] Tower, we train diffusion models from scratch with the U-net architecture
proposed in Dhariwal et al. [13]. Thanks to its success in LSUN and ImageNet [12], we adopt its hyperparameters for
LSUN dataset in [13, Table 11]. Due to limited computational resources, we train diffusion models with channel size 192
and batch size 128 for 100K iterations instead of the recommended hyperparameters. We follow the data preprocessing in
Skorokhodov et al. [53, Algorithm 1] with its official implementation 2, which extracts a subset with approximately horizontally
invariant statistics from original datasets.

Thanks to the shift-invariant property of infinite images, we use the same diffusion model to fit both factor and variable
nodes, where the width of images over the variable node is half of the width of factor nodes. The dataset for variable nodes
consists of random cropped images from factor nodes. We list its training algorithm in Algorithm 6. We apply a similar
strategy to train segmentation-conditioned diffusion models. We adopt VESDE and preconditioners proposed in Karras et
al. [25] to train our diffusion models.

2https://gist.github.com/universome/3140f74058a48aa56a556b0d9e24e857

https://gist.github.com/universome/3140f74058a48aa56a556b0d9e24e857


Method
R Precision

(top 3)↑ FID↓ Multimodal
Dist↓ Diversity→

Real data 0.798±0.002 0.001±0.000 2.960±0.006 9.471±0.100
MDM [59] 0.605±0.005 0.492±0.036 5.607±0.028 9.383±0.070
Baseline 0.298± 0.006 10.690 ±0.179 7.512±0.039 6.764±0.069

Replacement 0.567± 0.008 1.281 ±0.177 5.751±0.034 9.184±0.122
Reconstruction 0.585± 0.007 1.012 ±0.080 5.716±0.033 9.175±0.120
DiffCollage 0.611± 0.004 0.605 ±0.082 5.569±0.017 9.372±0.109

Table 4. Performance on every metric is reported based on a mean and standard derivation of 20 independent evaluations.

Sampling Regarding sampling image diffusion models, we use the stochastic sampler in Karras et al. [25] with 80
sampling steps and default hyperparameters. We find stochastic samplers are slightly better than deterministic samplers in
DiffCollage. For quantitative comparison on our internal dataset, we have the same CLIP embedding for both factor and
variable nodes in one graph while we use unconditional generation on LHQ and LSUN Tower. We use the same sampler for
baseline and autoregressive methods based on replacement or reconstruction. To connect different styles and real images
with a linear chain graph, we interpolate conditional signals with spherical linear interpolation [62]. We find DiffCollage
with Algorithm 4 can produce satisfying samples for conditional generation efficiently. More visual examples are included
in Appendix E.

C.3. Motion experiments

We use the pre-trained diffusion model3 from [59] and only make the following modifications during sampling.

• Similar to experiments in images, we inpaint motion sequences by masking 50% content in the sliding window for
Replacement and Reconstruction methods.

• All experiments employ the deterministic DDIM sampler [55] with 50 steps.

• We use the same prompt to denoise both factor and variables nodes for long motion experiments benchmark experiments
results and Tab. 4.

• To composite motions with multiple actions, we decompose the given long prompts into several short sentences manually
so that each sentence only consists of one or two actions similar to prompts in the training data. Then we assign each
factor y[fj ] with one short prompt sequentially and unconditional null token for the variables node.

• Analogous to circle image generation, we add a factor node connected to the head and tail variable nodes in the factor
graph.

We include standard derivation for long motion experiments in Tab. 4.

D. Limitations

Despite the clear advantages that DiffCollage has over traditional methods, DiffCollage is no silver bullet for
every large content generation problem. We discuss some limitations below.

Conditional independence assumptions. Since we use diffusion models trained on smaller pieces of the content,
DiffCollage place conditional independence assumptions over the joint distribution of the large content, similar to
autoregressive outpainting methods. Sometimes this assumption is reasonable (such as long images for landscape or “corgis
having dinner at a long table”), but there are cases where the long-range dependency is necessary for generating the content.
For example, generating a long image of a snake would be difficult with DiffCollage, since we drop the conditional
dependencies between the head and the tail of the snake, and it is possible that our snake would have two heads or two tails.
Part of this can be mitigated by providing global conditioning information, such as the segmentation maps in landscapes.

3https://github.com/GuyTevet/motion-diffusion-model

https://github.com/GuyTevet/motion-diffusion-model


Memory footprint. We reduce the latency of the long content generation by running the diffusion model computations in
parallel, and it comes at a cost of using more peak memory than autoregressive methods.

Number of steps in the sampler. To ensure global consistency, information needs to flow through the factor graph. This
is done by the sum over the overlapping regions in each iteration, so it can be treated as some kind of “message passing”
behavior. Similar to “message passing”, many iterations may be needed if the graph diameter is large (even when some global
conditioning information is given). For example, for a linear chain with length L, we may need the sampler to run O(L) times
to get optimal results. Empirically we also find sampling with our method using very few steps in generating infinite images,
such as 35, may result in artifacts. However, we note that this is still much better than the autoregressive counterpart; for a
DiffCollage implementation that requires O(L) steps of iteration, the reconstruction/replacement methods would require
O(L×K) steps, where K is the number of iterations for the small diffusion models.

E. Additional samples

We include more high-quality samples and motion videos in our supplementary materials.
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Figure 10. More comparison.
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Figure 11. Inpainting on non-square images. The diffusion models based on smaller patches are run in parallel.
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Figure 12. Inpainting on non-square images. The diffusion models based on smaller patches are run in parallel.



Figure 13. DiffCollage on generating long landscape images. Parts are being zoomed in for high-resolution details.



Figure 14. Baseline method on 360 cubemap image. (Left) Cubemap representation; (Right) Equirectangular representation; (Lower
middle) Semantic segmentation map used to condition the model. Even with a globally-consistent semantic segmentation map, individually
processing the patches will lead to the cube faces being quite inconsistent with one another.



Figure 15. DiffCollage on 360 cubemap image. (Left) Cubemap representation; (Right) Equirectangular representation; (Lower middle)
Semantic segmentation map used to condition the model. DiffCollage is able to “connect” the different faces and produce a globally
consistent 360 degree image.



Figure 16. DiffCollage on 360 cubemap image. (Left) Cubemap representation; (Right) Equirectangular representation; (Lower middle)
Semantic segmentation map used to condition the model.


	. Introduction
	. Related Work
	. Preliminaries
	. Diffusion Collage
	. Representation
	. Training and Sampling

	. Experiments
	. Infinite image generation
	. Arbitrary-sized image translation
	. Text-to-motion generation
	. Generation with complex graphs

	. Conclusion
	. Factor graph and Bethe approximation
	. Training and Sampling of DiffCollage
	. Training
	. Sampling

	. Experiments details
	. Replacement and Reconstruction Methods for Conditioning
	. Image experiments
	. Motion experiments

	. Limitations
	. Additional samples

