
DCO-3D: Differentiable Congestion Optimization in 3D ICs

Hao-Hsiang Hsiao1, Yi-Chen Lu2, Pruek Vanna-iampikul3, Anthony Agnesina2, Rongjian Liang2, Yuan-Hsiang Lu1, Haoxing Ren2,
and Sung Kyu Lim1

1School of ECE, Georgia Institute of Technology, Atlanta, GA
2NVIDIA, Santa Clara, CA, USA; 3Deparment of Electrical Engineering, Burapha University, Chonburi, Thailand;

{thsiao, yuan-hsiang.lu, limsk}@gatech.edu; {yilu, aagnesina, rliang, haoxingr}@nvidia.com;

Abstract—State-of-the-art 3D IC flows fail to consider 3D congestion
during earlier stages, leading to excessive use of end-of-flow ECO
resources for routability correction that severely degrades full-chip
Power, Performance, and Area metrics. We present DCO-3D, a Machine
Learning-based routability-aware 3D PD flow that performs early post-
route congestion prediction using Siamese Networks and resolves the
predicted hotspots using a fully differentiable 3D cell spreading with
Graph Neural Network. On 6 industrial designs in a commercial 3nm
node, DCO-3D improves Pin-3D, the known best Pin-3D flow, by up to
47.2% in overflow, 86.2% in TNS and 5.1% in power at signoff.

I. INTRODUCTION

State-of-the-art (SOTA) 3D Physical Design (PD) flows leverage 2D
commercial Place and Route (P&R) tools to build signoff-quality 3D
Integrated Circuits (ICs), a methodology commonly referred to as the
”pseudo” approach [1]. Despite significant advances in improving
the Power, Performance, and Area (PPA) envelope, the challenge
of routability in 3D ICs remains a critical and underexplored issue,
posing a bottleneck to further advancements in 3D integration.

Decades of research in 2D PD have underscored the critical role
of routability optimization during the placement stage in achieving
superior full-chip PPA metrics [2], [3]. However, this foundational
design principle has yet to be fully adopted in the context of 3D ICs.
The advent of Machine Learning (ML)-based data-driven approaches
has driven the development of various methodologies [4], [5], [6], [7],
[8], [9] aimed at predicting routability in early PD stages, enabling
proactive optimization. However, these advancements are limited to
2D ICs and cannot be seamlessly extended to 3D ICs due to the
unique and inherent complexity of 3D designs.

To address these limitations, we propose DCO-3D, the first ML-
driven, routability-aware 3D PD flow that incorporates 3D congestion
prediction using customized Siamese networks [10]. Building on
this prediction, we introduce a fully differentiable 3D congestion
optimization framework that minimizes congestion while preserv-
ing placement quality. Unlike prior 2D approaches, our frame-
work enables cell spreading across all three dimensions—x, y, and
z—facilitating congestion redistribution not only horizontally and
vertically but also across tiers. This cross-tier capability effectively
utilizes 3D resources to resolve congestion hotspots that are in-
tractable in conventional 2D layouts.

DCO-3D can seamlessly integrate into any existing 3D PD flow.
In this work, we specifically compare it against Pin-3D [11], the
widely recognized SOTA 3D design flow, to highlight its advantages.
Figure 1 illustrates how our DCO-3D methodology (highlighted in
red) integrates with the Pin-3D flow.

DCO-3D takes a 3D global placement as input and directly gener-
ates cell spreading decisions in TCL constraints for the commercial
P&R tool, Synopsys ICC2. Notably, DCO-3D introduces no additional
PD optimization steps beyond those already present in the Pin-3D
flow. Instead, it provides supplemental TCL and Python scripts to
guide cell spreading decisions for congestion optimization within

Differetiable 3D

cell spreading

3D congestion

prediction

2D place-opt 2D place-opt

tier partitioning

tier partitioning

3D route-opt

signoff 3D GDS

signoff 3D GDS

2D CTS

2D route-opt

(a) Pin-3D flow (b) DCO-3D flow

3D place-opt

3D legalization

3D CTS

3D route-opt

3D global place

: pseudo-2D

 stages

: concurrent

 multi-die opt.

: 3D concurrent

 DCO opt.

Fig. 1: SOTA 3D PD flow Pin-3D [11] vs. our ML-driven routability-
aware 3D flow DCO-3D, which introduces additional differentiable 3D
cell spreading for early and precise congestion optimization.

the existing tool. Experimental results demonstrate that this early
optimization yields significant full-chip PPA improvements by the end
of the flow. This work represents the first routability-aware 3D PD
flow, offering accurate and efficient congestion optimization during
the early design stages. Our main contributions are as follows:
• We propose DCO-3D, the first commercial-quality 3D PD flow that

performs congestion optimization for 3D ICs.
• We introduce the first congestion optimization framework that

leverages the z-dimension, allowing cells to dynamically move
between tiers to optimize congestion.

• We develop a fully differentiable, multi-objective cell spreading
methodology using GNN, facilitating direct gradient-based opti-
mization.

• We design a customized Siamese network tailored for concurrent
multi-die 3D congestion prediction. Existing 2D routability predic-
tion methods [4], [5], [6], [7], [8], [9] are inadequate for addressing
such 3D concurrent challenges.

• We achieve significant 3D full-chip PPA improvements over the
SOTA 3D PD flow Pin-3D [11], demonstrated on six industrial
designs in a commercial 3nm technology node.

II. PRELIMINARIES

A. State-of-the-art 3D Flow
Pseudo-3D [1], unlike academic true-3D approaches [12], [13], [14],
[15], [16], utilizes commercial tools to construct 3D ICs, ensuring
commercial PPA quality and manufacturing readiness in GDS format.
The Pseudo-3D flow [17] strategically leverages commercial tools
to determine the optimal (x, y) locations of standard cells while
assigning z-coordinates through tier assignments. In this work, we
adopt the SOTA Pin-3D [11] flow to directly optimize 3D placement
for improved routability. As illustrated in Figure 1, the process

encompasses placement, Clock Tree Synthesis (CTS), post-CTS
optimization, routing, and timing closure, all within a 3D context.
B. Early Congestion Estimation
1) RUDY (Rectangular Uniform wire DensitY)
RUDY[18] is routing demand estimation based solely on the pin
locations. The RUDY of a net e can be computed as follows: For
a net with bounding box coordinates {xl

e, y
l
e, x

h
e , y

h
e }, its RUDY at

any location (x, y) is proportional to the wire area divided by the
bounding box area:

RUDYe(x, y) ∝ µe

(
(we + he)

wehe

)
∝ µe

(
1

we
+

1

he

)
(1)

where we = xh
e − xl

e and he = yh
e − yl

e, and µe is an indicator
function that checks whether (x, y) lies within the bounding box of
net e. Given the design is divided into multiple tiles, the RUDY at
tile (m,n) is:

RUDY(m,n) =
∑
e∈N

(
1

we
+

1

he

)
Areatile∩bbox

Areatile
(2)

2) PinRUDY
PinRUDY, an extension of RUDY for estimating pin density, is
defined as follows:

PinRUDY(m,n) =
∑

pin∈tilemn

(
1

we
+

1

he
), pin ∈ e (3)

C. Overview of Our Approach
This study addresses two critical challenges in 3D IC design: (1)
predicting post-3D routing congestion maps from a given 3D global
placement (”images-to-images” prediction), and (2) refining place-
ments based on these predictions to mitigate congestion hotspots
while preserving signoff-quality QoR.

Our methodology consists of two main stages:
1) 3D Congestion Prediction: Predict post-route congestion maps to

identify potential hotspots.
2) 3D Congestion Optimization: Utilize these predictions to perform

3D cell spreading and alleviate congestion.
III. ML-BASED ROUTABILITY PREDICTION

A. Dataset Construction
The proposed prediction framework relies on a prebuilt dataset for
supervised learning. Using our in-house 3nm process design kit
(PDK), we synthesize RTL into gate-level netlists with Synopsys
Design Compiler, followed by Pseudo-3D P&R using Synopsys IC
Compiler II (ICC2). For each netlist, 300 diverse 3D placement
layouts are generated by sampling placement parameters listed in
Table I, serving as training input. Ground truth congestion maps are
obtained by completing 3D CTS and routing for each layout.
B. Data Engineering
In this subsection, we describe the input features of the prediction
model, the training labels, and the data processing methods.
1) Input Feature Maps
During global routing, the chip layout is divided into routing bins,
referred to as GCells. Our approach partitions each die in a 3D
placement based on these GCell coordinates to generate feature
maps that aid in predicting the post-3D routing layout. Each pixel
in these maps encapsulates specific local information corresponding
to its respective bin area. We designed the following feature maps
specifically for 3D ICs:
• Cell Density: The ratio of cell area within a bin to the bin’s area.
• Pin Density: The number of pins per unit area
• 2D RUDY: Routing demand for 2D nets (nets with all pins on a

single die), as described in Section II-B.

TABLE I: 3D Placement Parameters used for constructing placement
dataset

Placement Parameter type value
coarse.pin density aware bool ”false”, ”true”

coarse.target routing density float [0, 1]
coarse.adv node cong max util float [0, 1]

coarse.congestion driven max util float [0, 1]
coarse.cong restruct effort enum [0, 4]

coarse.cong restruct iterations int [0, 10]
coarse.enhanced low power effort enum [0, 4]

coarse.low power placement bool ”false”, ”true”
coarse.max density float [0, 1]

legalize.displacement threshold int [0, 10]
initial place.two pass bool ”false”, ”true”

initial drc.global route based bool ”false”, ”true”
flow.enable ccd bool ”false”, ”true”

initial place.effort enum [0, 2]
final place.effort enum [0, 2]
flow.enable irap bool ”false”, ”true”

2D RUDY 3D RUDY

3D PinRUDY

2D PinRUDY

cell density pin density

input features ground truth

top cong.

bot. cong.

(3D Global Placement) (post-route)

Fig. 2: Visualization of input features and ground truth: ”2D” features
represent nets with all pins located on the same die, whereas ”3D”
features capture nets with pins spanning across different dies.

• 3D RUDY: Routing demand for 3D nets (nets connecting pins
across multiple dies), scaled by 0.5 to account for additional 3D
routing resources.

• 2D PinRUDY: Pin-based routing demand II-B for 2D nets.
• 3D PinRUDY: Pin-based routing demand II-B for 3D nets.
• Macro Blockage: Area occupied by macros.
2) Training Label Maps
The training labels for each data point are congestion maps for both
the top and bottom dies, as the objective is to predict these maps
concurrently. Each congestion map is divided into bins corresponding
to GCells, with each bin assigned a routing overflow value derived
from the congestion report generated by the tool. A visualization of
these maps from a selected data sample is presented in Figure 2.
3) Pre- and Post-Processing of Maps
The overall data processing pipeline is illustrated in Figure 3. For
each design in the dataset, the placement layout is divided into bins
based on GCell dimensions to compute the feature maps. Similarly,
the post-route layout is divided into GCell bins to generate the label
maps. To handle varying GCell grid sizes across different designs,
both feature and label maps are resized to a fixed dimension of
H×W , where H and W denote the height and width required by the
convolutional neural network (CNN). In this study, we set H = W =
224. During preprocessing, nearest neighbor interpolation is used to
resize each map, preserving the original pixel magnitudes during both
upscaling and downscaling. This ensures accurate recovery of the
original map after transformation. Post-training, the output maps are

share weight

Top die

Bottom die share weight

skip connection

pointwise conv.

concat split

HxWxF HxWConv

(Pool)

Conv

(Pool)

Conv Conv

Trans TransConv

(flip, rotate)

placement layoutfeature

extraction

resize,

augmentation

post-route

layout

label
extraction

downsize

training

target

output prediction

(a) input preprocessing (b) 3D siamese UNet (c) label/output processing

(show only top die)

Input features

(shows only top die)

MSE

ground truth

upsize

Fig. 3: Our 3D images-to-images Siamese UNet employs a shared encoder-decoder architecture for the top and bottom dies in the F2F 3D IC design.
A pointwise communication convolutional layer enables efficient information exchange between the dies, enabling concurrent post-route congestion
hotspot prediction in a fully 3D manner.

Algorithm 1 Congestion Prediction

Input: Dataset D = {(F i
0, F

i
1, C

i
0, C

i
1)} with features F i

0, F
i
1 ∈

Rh×w×7 and targets Ci
0, C

i
1 ∈ Rh×w

Output: Predicted congestion maps {Ĉi
0, Ĉ

i
1 ∈ Rh×w}

1: Resize features: F i
d ∈ Rh×w×7 → RH×W×7 ∀d ∈ {0, 1}

2: Resize targets: Ci
d ∈ Rh×w → RH×W ∀d ∈ {0, 1}

3: Initialize SiaUNet with parameters θ
4: while not converged do
5: {Ĉi

0, Ĉ
i
1} ← SiaUNet(F i

0, F
i
1; θ)

6: Compute loss: L = 1
2

∑
d∈{0,1}

√
1

HW
∥Ĉi

d − Ci
d∥

2
F

7: Update parameters: θ ← θ − η∇θL

8: end while

resized back to their original dimensions for inference, maintaining
consistency with the initial grid structure and ensuring compatibility
with subsequent design analyses. To improve the model’s robustness
to layout orientation, we applied random transformations—-rotations
by 0°, 90°, 180°, and 270°, as well as horizontal and vertical
flipping—-during training. This data augmentation strategy increases
the diversity of training samples by a factor of eight and enhances
the model’s generalizability to various layout orientations.
C. Overview of Our Prediction Model
Our customized 3D prediction model architecture, illustrated in
Figure 3, utilizes feature maps from the 3D global placements of
both dies as inputs to predict their post-route congestion maps. The
model is built on the UNet architecture, which is well-suited for
image-to-image prediction tasks. It features a downsampling encoder
and an upsampling decoder: the encoder progressively reduces the
spatial dimensions of the input images while increasing the number
of feature channels to capture contextual features, and the decoder
restores the spatial dimensions by reducing the feature channels
through transposed convolutions, ultimately generating the predicted
congestion maps. To retain finer details and mitigate information loss,
skip connections are incorporated between the encoder and decoder.

Given the interchangeable nature of the top and bottom dies in
our face-to-face bonded design, we propose a customized Siamese
3D UNet architecture. This architecture employs shared weights
for the encoders and decoders of both dies, ensuring identical
feature extraction and reconstruction processes. To capture inter-
die dependencies, we introduce a communication layer between the
encoder and decoder. This layer merges the encoder outputs from both
dies, processes them through pointwise convolution to enable inter-
die channel communication, and subsequently splits the processed

Algorithm 2 Differentiable Congestion Optimization (DCO)

Input: Trained congestion predictor SiaUNet∗, initial 3D placement P =

[x,y, z] ∈ RN×3, netlist graph G, cell attributes h

Output: Optimized 3D placement P∗

1: Initialize GNN parameters θ

2: while iter < max iter and not converged do
3: P′ ← GNNθ(G,h) ▷ Updated 3D placement
4: Ldisp., Lovlp., Lcutsize ← Compute losses(P,P′)
5: Fd ← Generate features(P′) ∀d ∈ {0, 1}
6: C′

d ← SiaUNet∗(Fd) ∀d ∈ {0, 1} ▷ Congestion prediction
7: Lcong. ← Compute congestion loss(C′

d)

8: Ltotal = αLdisp. + βLovlp. + γLcutsize + δLcong.

9: θi+1 ← θi − η · ∂Ltotal
∂θ

▷ Gradient update
10: end while
11: return P∗ ← GNNθ∗ (G,h) ▷ Optimized 3D placement

features back into two streams for decoding. Overall, our model is
an images-to-images framework that takes the feature map tensors
of both dies, F0, F1 ∈ RH×W×7, as input, and outputs the
corresponding post-route congestion maps, C0, C1 ∈ RH×W ; we
set the dimensions to H = W = 224.
D. Training Our Prediction Model
The complete training procedure is described in Algorithm 1. The
training of our prediction model is guided by the sum of the root
mean squared Frobenius losses between the predicted congestion
maps, Ĉ ∈ RH×W , and the ground truth label maps, C ∈ RH×W

for both dies. This objective function is expressed as follows:

L =
1

2

∑
d∈{0,1}

√√√√ 1

HW

H∑
i=1

W∑
j=1

(
Ĉd(i, j)−Cd(i, j)

)2

(4)

IV. DIFFERENTIABLE CONGESTION OPTIMIZATION

Our optimization framework is fully differentiable and three-
dimensional, allowing for direct, gradient-based refinement of cell
placement to enhance congestion metrics and placement quality.

The optimization consists of the following core steps:
1) GNN-based 3D Cell Spreading: A GNN predicts updated cell

locations to mitigate congestion and enhance placement quality.
2) Differentiable Loss Functions: Custom loss func-

tions—including congestion, displacement, overlap, and
mincut—guide the GNN during training.

3) End-to-End Optimization: Gradients are backpropagated to it-
eratively update the GNN using gradient descent.

3D Global
Placement

cell attributes

G=(V, E) |V| x |F|

...

...

...

...

...

...

+

netlist

GNN Model

cell location

|V| x 3

3D Siamese UNet

share weight share weight

skip connection

pointwise conv.

concat split

2D/3D RUDY

Density Map

2D/3D PinRUDY

“soft” Input Feature Maps Post-Route

Cong. Map

(prediction)

Congestion

Displacement

Overlap

Total
Cutsize

z~[0, 1]

1-z

(x, y, z)

“soft” spreaded 3D placement

top

tier

bottom

tier

cell

(default autograd)

(custom grad.)

(smooth approx.)

Graph embedding

gradient

update top

bot.net e

P1

P2

soft 2D RUDY map

soft 3D RUDY map

(b) soft map conversion (top die)

...

Loss Computation(a) DCO fwd/bwd path

P(top tier)

P(top tier)

Fig. 4: Differentiable 3D Congestion Optimization Flow: The process starts with a 3D global placement result. The GNN predicts new cell locations
as soft probabilistic assignments, partially contributing to both top and bottom tiers. These locations are converted into ”soft” feature maps and
processed by a 3D Siamese U-Net to predict post-route congestion. The predicted congestion guides GNN optimization with other objectives. A
custom backward function handles non-differentiable components, enabling gradient-based optimization of cell locations to achieve design goals.

TABLE II: Initial handcrafted features of each node in the netlist graph.
features descriptions
wst slack worst slack of cell
wst output slew maximum transition of output pin
wst input slew maximum transition of input pin
drv net power switching power of driving net
int power cell internal power
leakage cell leakage power
width cell width
height cell height

The optimization iterates until convergence, as outlined in Algo-
rithm 2. Starting from a 3D global placement, the GNN predicts
updated cell locations as soft probabilistic assignments, allowing
cells to contribute to both tiers. These locations are transformed
into feature maps and passed to the 3D Siamese U-Net to predict
post-route congestion. The predicted congestion, along with other
objectives, guides GNN optimization. To handle non-differentiable
components, a custom backward function enables direct gradient-
based refinement of cell locations for multi-objective optimization.
A. Differentiable 3D Cell Spreading
Our cell spreading approach jointly optimizes routability and place-
ment quality using differentiable loss functions that balance con-
gestion, overlap, displacement, and cutsize. Their differentiability
enables gradient-based optimization of cell locations. Unlike 2D
methods limited to horizontal and vertical spreading, our 3D solution
redistributes cells across dies. This added flexibility in the z-direction
effectively resolves congestion hotspots that are unsolvable in tradi-
tional 2D layouts. To efficiently optimize cell placement, we avoid
learning independent (x, y, z) coordinates per cell, which would scale
poorly for large netlists with millions of parameters. Instead, we
utilize a GNN consisting of three Graph Convolutional Network
(GCN) layers with shared weights across all cells. This approach
leverages cell connectivity and intrinsic characteristics (Table II),
allowing globally informed updates and stable convergence. The
GNN predicts (x, y, z), where x and y are continuous 2D positions,
and z ∈ [0, 1] represents the probability of assigning a cell to the
top die (z) or bottom die (1 − z). This probabilistic z promotes
differentiable optimization across tiers, allowing each cell to influence
both dies before final hard assignment via z = 1z ≥ 0.5. During
training, z guides soft tier assignments in feature and density maps.
For RUDY maps (Fig. 4b), the 2D contribution is weighted by∏

p ∈ ezp (top) or
∏

p∈e(1−zp) (bottom), while the 3D contribution
is weighted by 1 −

∏
p∈e zp −

∏
p∈e(1 − zp). These maps inform

loss computations for gradient-based optimization.
B. Congestion Loss
After the GNN generates new cell locations, the input feature maps
(Sections III-B1 and IV-A) are processed by the model (Figure 3) to
predict congestion maps C ∈ RH×W×2 for the top and bottom dies.
The congestion penalty is calculated using Eq. 4. The gradient with
respect to the GNN parameters θ is computed via the chain rule:

∂L

∂θ
=

∑
d∈[top,bottom]

∂L

∂Cd
· ∂Cd

∂Fd
· ∂Fd

∂Xcells
· ∂Xcells

∂θ
(5)

∂L/∂Cd measures how the loss changes with respect to the
predicted congestion map Cd. The term ∂Cd/∂Fd represents the
sensitivity of congestion predictions to changes in the feature maps
Fd, while ∂Fd/∂Xcells describes how feature maps are influenced
by cell positions. Since ∂Fd/∂Xcells is non-differentiable at grid
boundaries, we implement a custom PyTorch backward function
that approximates gradients using subgradients for non-differentiable
components while leveraging PyTorch’s native autograd for smooth
terms. For each tile (m,n), we compute the gradient of RUDY values
with respect to cell positions by summing contributions from all
crossing nets. The sensitivity of a net e’s RUDY value in tile (m,n)
to the x-position of cell i ∂RUDYe(m,n)/∂xi is given by:

µe(m,n)

[
(we − w′)h′

w2
e

+
h′

he

]
1

AGCell
(δih − δil) (6)

where w′, h′ are the dimensions of the net-tile overlap, AGCell is the
tile area, and µe(m,n) indicates whether net e crosses tile (m,n).
The term (δih − δil) represents changes in the net’s bounding box
due to cell i’s movement. Here, δ is the Kronecker delta function,
which is nonzero only when cell i contains the leftmost (δil = 1) or
the rightmost (δih = 1) pin of the net.
C. Cutsize Loss
While 3D spreading allows cell movements between dies to alleviate
congestion hotspots, it is essential to minimize the cut size—the
number of inter-die connections—as excessive cuts can increase
fabrication costs and degrade circuit performance. To address this,
we incorporate a min-cut loss into our optimization:

Lcut(T,B) =
cut(T,B)

deg(T)
+

cut(T,B)

deg(B)
(7)

Epochs

L
o

s
s

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0
training

validation

(a) model training curve

NRMSE

top tier

bottom tier

SSIM

p
e

rc
e

n
ta

g
e

 (
%

)

0
0

10

20

30

40

0.2 0.4 0.6 0.8 0.6 0.7 0.8 0.9

35

25

15

5

(b) model testing performance

ground truth RUDY3DUNet

(c) prediction comparison with traditional methods

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: Evaluation of prediction results: (a) Training and testing loss curves, (b) X-axis denotes absolute NRMSE/SSIM values; y-axis denotes
percentage of testing samples. Both metrics fall in desired regions. (c) Comparison of predicted, traditional, and ground-truth congestion maps.

top bottom top bottom

congestion map density map

Pin3D

Ours

Fig. 6: Post-route congestion and density map of Pin3D vs. ours

Here, cut(T,B) counts the edges connecting cells between the top
die T and the bottom die B, while deg(T) and deg(B) represent
the total connections within each die. This normalized formulation
balances inter-die and intra-die connectivity, ensuring a manageable
number of inter-die connections for fabrication.
D. Overlap Loss
To address overlap in cell spreading efficiently, we use a density loss
metric to promote spatial separation. Since density function Db(x, y)
are typically non-smooth and non-differentiable, we apply smoothing
using bell-shaped potential functions for both the x and y directions.
These functions are piecewise-defined based on the center-to-center
distance dx or dy between the block and the bin:

px(b, v) =


b
(
1− ad2x

)
if 0 ≤ dx ≤ wb +

wv
2
,

b
(
dx − wv

2
− 2wb

)2 if 2wb +
wv
2

≤ dx ≤ wb+2wv

2
,

0 otherwise,
(8)

where wb and wv are the block and bin width, and a and b are
smoothing parameter:

a =
4

(wv + 2wb)(wv + 4wb)
, b =

2

wb(wv + 4wb)
. (9)

Our objective is the density function D̂b(x, y):

D̂b(x, y) =
∑
v∈V

cvpx(b, v)py(b, v). (10)

E. Displacement Loss
To preserve the quality of the optimized 2D positions in initial 3D
global placement, we constructed a displacement loss function to
constrain cell movement. Displacement loss minimizes the deviation
of cells’ current positions from their original locations, preserving
the quality of the 3D global placement. The loss is defined as:

top tier bottom tier

Pin3d

Ours

Fig. 7: Final placement and routing layout of Pin3D vs. ours.

Ldisp. =
∑
i

(xi − xo
i)

2 + (yi − yo
i)

2 (11)

V. EXPERIMENTAL RESULTS

We perform thorough experiments by comparing our DCO-3D flow
against Pin-3D [11], the state-of-the-art 3D design flow and its
improved variations on 6 industrial designs, including RocketCore,
LDPC, AES, ECG, DMA, and VGA. All the benchmarks are syn-
thesized under a commercial 3nm technology node using Synopsys
Design Compiler with 1µm pitch face-to-face 3D hybrid bonding.
We leverage Synopsys ICC2 to perform pseudo-2D and 3D P&R. The
Siamese network and the differentiable GNN-based cell spreader, are
implemented in Python using PyTorch and PyTorch Geometric.
A. Prediction Results
To train the proposed Siamese architecture, illustrated in Figure 3, we
construct our dataset as described in Section III-A, reserving 20% as
the testing set. To evaluate the spatial accuracy and visual similarity of
the model’s map predictions, we use two metrics for 2D grid signals:
normalized root mean square error (NRMSE) and structural similarity
index (SSIM). NRMSE measures the discrepancy between predictions
and observed values, with lower values indicating higher accuracy.
For image prediction tasks, an NRMSE below 0.2 signifies close
alignment with actual images. SSIM quantifies structural similarity
between images, ranging from -1 to 1, where 1 denotes identical
images. SSIM values above 0.7 are sufficient.

Figure 5 presents our Siamese UNet-based model’s prediction
results, including training curves, metrics, and visualizations. As
shown in Figure 5 (b), over 85% of test samples achieve NRMSE
below 0.2 and SSIM above 0.8, indicating high prediction accuracy.
Figure 5 (c) compares our model with the RUDY estimator on a
test sample (AES design), with pixel values normalized to [0, 1]
for fairness. While RUDY poorly correlates with the ground truth
in 3D ICs, our 3D IC-customized Siamese UNet shows far higher
similarity, validating its effectiveness as a reliable proxy for post-
route routability optimization during 3D global placement.

TABLE III: Detailed comparisons of optimization results between state-of-the-art 3D flow Pin-3D [11], Pin-3D with Synopsys ICC2 congestion-focus
optimization (Pin-3D + Cong.), Pin-3D with Bayesian Optimization (Pin-3D + BO), and the proposed DCO-3D flow over 6 industrial benchmarks
in a commercial 3nm technology node. The best metric in each column is colored in red. Note that we use the exact same Synopsys ICC2 seed
across all experiments to completely remove run-to-run non-determinism.

evaluation after 3D placement optimization after signoff optimization (end-of-flow)
stage overflow ovf. gcell% H ovf. V ovf. setup wns (ps) setup tns (ps) total power (mW) WL (µm)

DMA (#cells: 13K, #nets: 14K, #IO: 961)
Pin3D [11] 3389 26.17 1914 1475 -24.45 -5277 11.3 25572.14

Pin3D + Cong. 2352 23.62 693 1659 -42.67 -6439 11.2 26705.18
Pin3D + BO 2214 21.96 573 1641 -58.87 -17503 11.2 26387.22

DCO-3D (ours) 2018 (-40.45%) 20.15 586 1432 -22.05 (-9.82%) -4443 (-15.79%) 10.9 (-3.54%) 25076.70
AES (#cells: 114K, #nets: 114K, #IO: 390)

Pin3D [11] 34158 32.11 18149 16009 -35.64 -10877 75.1 243430.25
Pin3D + Cong. 21018 23.13 5617 15401 -46.27 -11714 74.4 246183.06

Pin3D + BO 19362 22.07 3872 15490 -52.28 -12049 74.1 252131.34
DCO-3D (ours) 18026 (-47.23%) 21.99 2498 15528 -27.15 (-23.82%) -7928 (-27.11%) 72.6 (-3.33%) 233401.63

ECG (#cells: 83K, #nets: 84K, #IO: 1.7K)
Pin3D [11] 15083 19.32 548 14535 -54.96 -41163 78.0 200362.67

Pin3D + Cong. 14137 18.49 559 13578 -75.25 -90069 77.9 199021.49
Pin3D + BO 13929 18.27 607 13322 -78.28 -47713 75.9 207186.17

DCO-3D (ours) 13686 (-9.26%) 17.06 1520 12166 -41.47 (-24.55%) -12394 (-69.89%) 75.9 (-2.69%) 198998.32
LDPC (#cells: 39K, #nets: 41K, #IO: 4.1K)

Pin3D [11] 17666 38.90 3318 13709 -154 -145389 71.3 211438.43
Pin3D + Cong. 13637 33.81 1335 12302 -160.32 -167845 71.1 214667.37

Pin3D + BO 13091 31.43 1668 11423 -169.13 -193429 71.0 220390.83
DCO-3D (ours) 12511 (-26.52%) 29.77 2685 9826 -75.68 (-50.86%) -69314 (-52.33%) 67.6 (-5.19%) 209304.86

VGA (#cells: 52K, #nets: 52K, #IO: 184)
Pin3D [11] 38523 34.38 2766 35757 -20.16 -114.77 17.1 124202.71

Pin3D + Cong. 34005 38.69 929 33076 -150.53 -4505 16.9 138850.31
Pin3D + BO 33969 38.99 700 33269 -227.41 -12170 16.7 147160.69

DCO-3D (ours) 32578 (-15.43%) 37.42 905 31673 -10.3 (-48.91%) -25.14 (-78.10%) 16.5 (-3.51%) 123712.41
Rocket (#cells: 120K, #nets: 120K, #IO: 379)

Pin3D [11] 27742 7.00 818 26924 -308.95 -20321 31.2 345382.06
Pin3D + Cong. 22958 5.81 627 22331 -605.58 -59599 30.6 350021.31

Pin3D + BO 22286 5.73 613 21673 -779.8 -183225 31.2 363796.28
DCO-3D (ours) 17963 (-35.25%) 4.49 1460 16503 -147.33 (-52.31%) -2800 (-86.22%) 29.7 (-4.81%) 328475.40

B. Optimization Results
Figure 6 and 7 show the post-route layout, congestion maps, and
density maps for both dies of the optimized and unoptimized designs
using the LDPC benchmark. In the optimized design, cells are more
effectively distributed, leading to improved congestion and density
without significantly increasing wirelength (Table III), due to reduced
detours. This translates into substantial full-chip PPA improvements
at the end of the flow, as detailed in Table III.

To address limited congestion awareness in the standard Pin-3D
flow, we introduce two enhanced benchmarks for comprehensive
comparisons. The first enhancement, ”Pin-3D + Cong.”, enables ICC2
congestion-driven placement at the highest effort during the 3D
placement stage. The second benchmark, ”Pin-3D + BO,” augments
Pin-3D with Bayesian Optimization (BO) techniques from [19] to
optimize tool parameters listed in Table I.

The detailed optimization results of Pin-3D, its variants, and our
DCO-3D are presented in Table III. While DCO-3D demonstrates
immediate congestion optimization benefits following the 3D place-
ment stage, the key achievement lies in translating these benefits into
superior 3D PPA outcomes at the end of the 3D signoff step. Across
six industrial benchmarks using a foundry 3nm technology node,
DCO-3D consistently delivers the best end-of-flow PPA metrics, with
setup TNS improved by up to 86% and total power reduced by up to
4.8%. These results highlight how our early congestion optimization
leads to significant full-chip PPA improvements in 3D ICs.

C. Why Does DCO-3D Work While Others Do Not?
Unlike “Pin-3D + Cong.” and “Pin-3D + BO,” which rely on ad-hoc
congestion optimization, DCO-3D introduces differentiable conges-
tion objectives optimized directly via gradient-based methods. By en-
abling cross-die cell spreading, DCO-3D redistributes congestion and
substantially reduces routing overflow. Furthermore, by co-optimizing
congestion with other objectives, DCO-3D minimizes congestion
without compromising overall design quality. As shown in Table III,
DCO-3D achieves notable PPA improvements, outperforming BO
and commercial auto-fixing features, which often compromise critical
PPA metrics.

VI. CONCLUSION

In this paper, we introduce DCO-3D, the first 3D flow that employs
ML techniques to tackle routability issues in advanced technology
nodes. DCO-3D accurately forecasts routability during the early
stages of 3D global placement and a implements differentiable 3D
cell spreading treatment. Extensive experiments show that DCO-3D
not only effectively reduces congestion but also significantly improves
PPA metrics during the final signoff evaluation.

VII. ACKNOWLEDGEMENT

This work was supported by the Semiconductor Research Corporation
under the JUMP 2.0 Center Program (CHIMES), Samsung Advanced
Institute of Technology (SAIT) under the AI for Semiconductors
Program, and the Ministry of Trade, Industry & Energy of South
Korea (1415187652, RS-2023-00234159).

REFERENCES

[1] H. Park, B. W. Ku, K. Chang, D. E. Shim, and S. K. Lim, “Pseudo-3d
approaches for commercial-grade rtl-to-gds tool flow targeting mono-
lithic 3d ics,” in Proceedings of the 2020 International Symposium on
Physical Design, pp. 47–54, 202.

[2] W.-T. J. Chan, P.-H. Ho, A. B. Kahng, and P. Saxena, “Routability
optimization for industrial designs at sub-14nm process nodes using
machine learning,” in Proceedings of the 2017 ACM on International
Symposium on Physical Design, pp. 15–21, 2017.

[3] W.-T. J. Chan, Y. Du, A. B. Kahng, S. Nath, and K. Samadi, “BEOL
stack-aware routability prediction from placement using data mining
techniques,” 2016 IEEE 34th International Conference on Computer
Design (ICCD), pp. 41–48, 2016.

[4] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen,
and J. Hu, “RouteNet: Routability prediction for Mixed-Size Designs
Using Convolutional Neural Network,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–8, 2018.

[5] S. Kim, H. Park, K. Baek, K. Choi, and T. Kim, “Methodology
of Resolving Design Rule Checking Violations Coupled with Fully
Compatible Prediction Model,” in Proceedings of the 2024 International
Symposium on Physical Design, ISPD ’24, (New York, NY, USA),
p. 103–111, Association for Computing Machinery, 2024.

[6] R. Liang, H. Xiang, D. Pandey, L. Reddy, S. Ramji, G.-J. Nam,
and J. Hu, “DRC Hotspot Prediction at Sub-10nm Process Nodes
Using Customized Convolutional Network,” in Proceedings of the 2020
International Symposium on Physical Design, ISPD ’20, (New York,
NY, USA), p. 135–142, Association for Computing Machinery, 2020.

[7] C. Yu and Z. Zhang, “Painting on Placement: Forecasting Routing Con-
gestion using Conditional Generative Adversarial Nets,” in Proceedings
of the 56th Annual Design Automation Conference 2019, DAC ’19, (New
York, NY, USA), Association for Computing Machinery, 2019.

[8] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z.
Pan, “High-Definition Routing Congestion Prediction for Large-Scale
FPGAs,” in 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 26–31, 2020.

[9] Y.-H. Huang, Z. Xie, G.-Q. Fang, T.-C. Yu, H. Ren, S.-Y. Fang, Y. Chen,

and J. Hu, “Routability-Driven Macro Placement with Embedded CNN-
Based Prediction Model,” pp. 180–185, 03 2019.

[10] G. Koch, R. Zemel, R. Salakhutdinov, et al., “Siamese neural networks
for one-shot image recognition,” in ICML deep learning workshop,
vol. 2, Lille, 2015.

[11] S. S. Kiran Pentapati et al., “Pin-3D: A Physical Synthesis and Post-
Layout Optimization Flow for Heterogeneous Monolithic 3D ICs,” in
2020 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pp. 1–9, 2020.

[12] J. Cong and G. Luo, “A multilevel analytical placement for 3D ICs,” in
2009 Asia and South Pacific Design Automation Conference, pp. 361–
366, 2009.

[13] Y.-J. Chen, Y.-S. Chen, W.-C. Tseng, C.-Y. Chiang, Y.-H. Lo, and Y.-W.
Chang, “Late Breaking Results: Analytical Placement for 3D ICs with
Multiple Manufacturing Technologies,” in 2023 60th ACM/IEEE Design
Automation Conference (DAC), pp. 1–2, 2023.

[14] J. Lu, H. Zhuang, I. Kang, P. Chen, and C.-K. Cheng, “ePlace-3D:
Electrostatics based Placement for 3D-ICs,” in Proceedings of the 2016
on International Symposium on Physical Design, ISPD ’16, (New York,
NY, USA), p. 11–18, Association for Computing Machinery, 2016.

[15] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “TSV-Aware Analytical
Placement for 3-D IC Designs Based on a Novel Weighted-Average
Wirelength Model,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 32, no. 4, pp. 497–509, 2013.

[16] X. Zhao, S. Chen, Y. Qiu, J. Li, Z. Huang, B. Xie, X. Li, and
Y. Bao, “iPL-3D: A Novel Bilevel Programming Model for Die-to-Die
Placement,” in 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pp. 1–9, 2023.

[17] H. Park et al., “Pseudo-3D Physical Design Flow for Monolithic 3D ICs:
Comparisons and Enhancements,” ACM Trans. Des. Autom. Electron.
Syst., vol. 26, jun 2021.

[18] P. Spindler and F. M. Johannes, “Fast and Accurate Routing Demand
Estimation for Efficient Routability-driven Placement,” in 2007 Design,
Automation & Test in Europe Conference & Exhibition, pp. 1–6, 2007.

[19] Y. Ma, Z. Yu, and B. Yu, “CAD Tool Design Space Exploration via
Bayesian Optimization,” in 2019 ACM/IEEE 1st Workshop on Machine
Learning for CAD (MLCAD), pp. 1–6, 2019.

