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Abstract
On-Chip Variation (OCV)-aware and Path-Based Analysis (PBA)-
accurate timing optimization achieved by gate sizing (including
𝑉𝑡ℎ-assignment) remains a pivotal step in modern signoff. However,
in advanced nodes (e.g., 3𝑛𝑚), commercial tools often yield subopti-
mal results due to the intricate design demands and the vast choices
of library cells that require substantial runtime and computational
resources for exploration. To address these challenges, we introduce
LEGO-Size, a generative framework that harnesses the power of
Large Language Models (LLMs) and GPU-accelerated differentiable
techniques for efficient gate sizing. LEGO-Size introduces three
key innovations. First, it considers timing paths as sequences of
tokenized library cells, casting gate sizing prediction as a language
modeling task and solving it with self-supervised learning and su-
pervised fine-tuning. Second, it employs a Graph Transformer (GT)
with a linear-complexity attention mechanism for netlist encoding,
enabling LLMs to make sizing decisions from a global perspective.
Third, it integrates a differentiable Static Timing Analysis (STA)
engine to refine LLM-predicted gate size probabilities by directly
optimizing Total Negative Slack (TNS) through gradient descent.
Experimental results on 5 unseen million-gate industrial designs
in a commercial 3𝑛𝑚 node show that LEGO-Size achieves up to
125x speed up with 37% TNS improvement over an industry-leading
commercial signoff tool with minimal power and area overhead.
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1 Introduction
Gate sizing is a fundamental optimization step in Physical Design
(PD) that is widely used from synthesis to sign-off to improve power,
performance, and area (PPA) metrics. However, in advanced tech-
nologies (i.e., 5𝑛𝑚 and below), achieving desirable gate sizing results
has become an increasingly challenging task. Commercial tools rely
on multiple sizing iterations to meet PPA targets, which demands
vast computational resources and extended runtime as modern de-
signs easily consist of millions of gates. Furthermore, the relentless
pursuit of high-performance and low-power designs forces signoff
tools to adopt Path-Based Analysis (PBA) for timing verification to
counter the pessimism of Graph-Based Analysis (GBA) and min-
imize over-design, which aggravates the runtime burden. Hence,
the need for more efficient, scalable, and generalizable gate sizing
methods has become extremely urgent.

Recently, Machine Learning (ML) has emerged as a promising
solution to improve the gate sizing process in commercial tools.
Several pioneering works, including ECO-GNN [24], DAGSizer [2],
and TransSizer [27], have focused on building supervised prediction
models aimed at boosting design productivity by enabling rapid
sizing predictions. However, these methods fail to generalize across
unseen designs and are fundamentally constrained by the training
dataset, making them impossible to outperform the tools they aim
to emulate. For example, in TransSizer [27], the prediction accuracy
reaches 89% on training designs, but for unseen designs, it drops
sharply to 61%. Finally, to achieve better-than-tool results, [23]
introduced RL-Sizer, framing gate sizing as a Markov Decision
Process (MDP) and solving it via Reinforcement Learning (RL).
However, although RL-Sizer can outperform a leading PD tool, its
runtime overhead makes it impractical for production flows.

In commercial tools, gate sizing is performed iteratively, with
each iteration followed by Static Timing Analysis (STA) for verifi-
cation, which is extremely time-consuming in advanced nodes [9].
To address this, AGD [29] introduces a differentiable gate sizing
framework that relies on TimingGCN [13] for predictive propa-
gation, where arrival and slack values at each level are predicted
via neural networks, allowing gradients of global timing metrics,
such as Total Negative Slack (TNS), to be easily computed with
respect to input variables (e.g., gate sizes), forming an end-to-end
differentiable sizing process. Nonetheless, AGD is constrained by
its learning-based nature, which fails to generalize beyond the train-
ing dataset. Moreover, even when tested on an outdated 130nm
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Figure 1: High-level overview of LEGO-Size. Timing paths
are considered as sequences of tokenized library cells, and
the gate sizing prediction task is solved through a language
modeling approach. To achieve better PPA beyond the com-
mercial signoff tool, a differentiable STA engine is developed
to refine LLM-predicted probabilities.

technology comprising fewer than a hundred library cells, AGD
is reported to be 60x slower than a commercial tool in reaching
comparable optimization results. This inefficiency prohibits its use
in industrial flows, since modern technologies easily involve tens
of thousands of library cells.

The goal of this work is to develop a scalable, generalizable
framework that is capable of delivering instant, better-than-tool
signoff timing optimization results onunseen designs in advanced
nodes. To achieve this, we develop LEGO-Size, a generative frame-
work that leverages the power of Large Language Models (LLMs)
and GPU-accelerated differentiable techniques for gate sizing pre-
diction and optimization. We demonstrate that LEGO-Size outper-
forms an industry-leading signoff tool1, at a commercial 3𝑛𝑚 node
with more than 10,000 library cells across 5 unseen industrial de-
signs, each with millions of cells. Our contributions are as follows:
• We are the first work that casts the gate sizing prediction problem
as a language modeling task. Unlike TransSizer [27] that only re-
lies on manually defined features for representations, we develop
the concept of library cell tokens for exact gate size prediction.

• Previous gate sizing prediction works [2, 24, 27] all confine to
supervised learning settings. We are the first to introduce self-
supervised learning tasks, including masked token prediction and
arrival time increment prediction, to enhance the generalizability.

• We present the first signoff-accurate differentiable gate sizing
framework in PD, which refines gate size probabilities through
gradient descent. Unlike AGD [29] depending on TimingGCN [13]
for predictive STA propagation via ML models, our framework
is deterministic, On-Chip Variation (OCV) aware, and signoff-
accurate. Notably, our framework achieves a 0.99 endpoint slack
correlation with the leading signoff tool in OCV-mode.

1The name of the tool is withheld in compliance with the license agreement.

Table 1: Key differences: TransSizer [27] vs. LEGO-Size.
features TransSizer [27] LEGO-Size (ours)

model architecture encoder-decoder encoder-only
prediction style iterative gate-by-gate all gates simultaneous
language-based no yes (string tokens)
exact prediction no (bin-based) yes
pre-training tasks no yes
prob. refinement heuristic search in bin differentiable STA

2 LEGO-Size Overview
This section provides a high-level overview of LEGO-Size as illus-
trated in Figure 1. LEGO-Size features two key functions: first, an
LLM-enhanced, PBA-accurate, path-based prediction model. Sec-
ond, a differentiable STA engine that refines the predicted gate size
probabilities to reach better-than-tool optimization results.
2.1 Tool-Optimized Gate Size Prediction
Given the necessity of PBA-accurate analysis to overcome GBA
pessimism, gate sizing for timing optimization during signoff is
typically conducted on a path-by-path basis. Hence, as illustrated
in Figure 1, LEGO-Size performs path-based gate sizing predictions
to facilitate signoff fixing (same as TransSizer [27]). Nonetheless,
to ensure a global perspective in path-based predictions, a Graph
Transformer (GT) [31] with a linear-complexity attention mecha-
nism is developed to encode features across the entire graph.

One of the key innovations in LEGO-Size is that timing paths are
considered as sequences of tokenized library cells (i.e., string-based
tokens), and the gate sizing prediction task is cast as a language
modeling problem solved by LLMs. Specifically, each library cell
is tokenized into exactly three tokens denoting gate type, driving
strength, and threshold voltage type (𝑉𝑡ℎ). Note that this approach
is fundamentally different from TransSizer [27], which lacks the
concept of tokenization and only relies on handcrafted features to
represent each cell (same as other works [2, 24]). Therefore, while
TransSizer adopts the transformer-based architecture [33] for gate
size predictions, it is not a language-based model as LEGO-Size.

Furthermore, unlike TransSizer [27] adopting an encoder-decoder
transformer architecture that casts gate sizing as an iterative gate-
by-gate prediction task, we introduce a PD-customized encoder-
only transformer model that predicts gate sizes for all cells on
a path simultaneously. Additionally, we develop self-supervised
pre-training tasks, including masked token prediction and arrival
time increment (i.e., stage delay) prediction to warm up token em-
beddings and trainable parameters within LEGO-Size. These pre-
training tasks are crucial for enhancing the model’s generalizability
and are shown to significantly accelerate training convergence in
subsequent Supervised Fine-Tuning (SFT) tasks, including path-
based slack improvement prediction and final gate size prediction.

Note that while the SFT tasks leverage the tool’s PBA-based sig-
noff sizing results as labels, the self-supervised pre-training tasks
do not require optimization labels. That is, both input features
and groundtruths of the pre-training tasks are gathered from the
design state before performing the time-consuming signoff opti-
mization. This greatly mitigates the data scarcity challenge in the
realm of PD, because such pre-optimized databases are abundant in
any semiconductor company. Finally, the key differences between
TransSizer [27] and LEGO-Size are summarized in Table 1.
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Figure 2: Illustration of the expected delta delay computation.
Assume a target gate 𝐺 has 𝑁 sizing options, each associated
with a probability predicted by the LLM model. For each
option, we use the tool’s estimateECO command to estimate
the delay change 𝑑 for neighboring arcs (dashed, 3-hop of
𝐺), categorized by rise/fall and unateness (positive/negative).
A dot product between the estimated delay changes and the
corresponding probabilities is applied to compute the total
expected delta delay.

2.2 From Prediction to Optimization via
GPU-accelerated Differentiable STA

The ultimate goal of this work is not only to match the optimiza-
tion quality of the reference tool through prediction, but to achieve
better-than-tool results through optimization. To accomplish this,
we develop a GPU-accelerated differentiable STA engine that re-
fines LLM-predicted gate size probabilities by optimizing the global
TNS metric directly through gradient descent. Similar to DREAM-
Place [20], we leverage PyTorch [28] C++/CUDA extension to build
custom kernels for differentiable STA propagation. Specifically, we
design a forward kernel for arrival time propagation from timing
startpoints, and a backward kernel for gradient propagation from
endpoints. During the propagation, the LLM-predicted gate size
probabilities of each cell are used to re-annotate the original cell
delays with the “expected” cell delays, and are made as leaf opti-
mization variables (i.e, directly updated by the gradient descent
optimizer), creating a fully end-to-end differentiable process.

Recently, extensive research has focused on GPU-accelerated
STA,with priorworks leveragingGPU power for bothGBA-based [10,
11] and PBA-based [8, 9] timing analysis. However, these efforts
primarily aim to improve STA runtime through parallelism, without
introducing differentiability into the propagation process. Addition-
ally, same as AGD [29] as aforementioned, they all do not account
for OCV during propagation, and their timing correlation with
commercial signoff tools remains unexplored. Another work [12]
presents a timing-driven placement framework that employs the
Non-Linear Delay Model (NLDM) to compute cell delays, which
are differentiable with respect to pin locations using the chain
rule. However, the use of NLDM, while effective for gradient com-
putation, has proven to be inaccurate in advanced nodes, where
Composite Current Source (CCS) models are preferred [19]. Hence,
until now, no existing GPU-accelerated STA framework is suit-
able for the signoff gate sizing task in advanced nodes that we are
solving in this work, as none provides both the differentiability re-
quired for gate size selection and the signoff accuracy that matches
commercial tools, which motivates us to develop one.
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Figure 3: Illustration of constructing library cell embeddings
through token and function embeddings in LEGO-Size. Each
library cell name is tokenized into three distinct tokens, rep-
resenting gate type (red), drive strength (green), and 𝑉𝑡ℎ type
(blue). Additionally, the function of the library cell (func_ID)
is incorporated as a trainable token to further capture the
cell’s characteristics. Note that only librarcy cells with same
function are swappable.

2.3 Refining Probability with Delay Estimation
Unlike prior GPU-accelerated [8–11] or differentiable STAworks [12,
29] that mainly focus on full graph STA update, our differentiable
STA propagation is based on an incremental (or delta-based) philos-
ophy. Specifically, given the initial state of a netlist before signoff
optimization, and the LLM-predicted gate size probabilities for re-
finement, we first sync the arc delays from the initial state, and then
re-annotate them by multiplying the probabilities with the refer-
ence tool’s what-if analysis of delay changes (incurred by new gate
sizes). For instance, given a cell arc 𝑡 with an original delay 𝐷𝑡

𝑜𝑟𝑔 ,
and the LLM-predicted probability distribution 𝑃 = [𝑝1, 𝑝2, 𝑝3]
across three potential library cell candidates, we first obtain the
estimated delay changes 𝐷 = [𝑑1, 𝑑2, 𝑑3] with the what-if analysis.
Then, the total expected delay change for arc 𝑡 is calculated as 𝑃 ·𝐷 ,
leading to a new delay of 𝐷𝑡

𝑛𝑒𝑤 = 𝐷𝑡
𝑜𝑟𝑔 +𝑃 ·𝐷 . Note the this what-if

analysis to compute the expected delay changes 𝐷 is common in
commercial signoff tools and can be performed efficiently using
CPU multi-threading as it does not introduce any real update (i.e.,
commit) to the underlying netlist.

Figure 2 illustrates the expected delta delay computation process
in LEGO-Size. When sizing a cell 𝐺 , we consider the impacted arcs
as the dashed cell (red) and net (green) arcs in the figure, which
approximately span a 3-hop neighborhood around 𝐺 . Note that
while the theoretical timing impact of sizing a cell can propagate
throughout the netlist, this ripple effect is pointed out to diminish
quickly in RL-Sizer [23], where a 3-hop neighborhood is shown to
be sufficient for capturing the relevant timing impact.

Finally, after estimating the new delays for all arcs in the netlist
impacted by the LLM-predicted gate size probabilities 𝑃 , we lever-
age our STA kernels to perform instantaneous timing propagation
with the newly annotated delays in an end-to-end differentiable
manner. Particularly, our STA engine considers the gate size proba-
bilities 𝑃 as leaf differentiable variables, and calculates the gradient
of TNS with respect to each gate size choice (i.e., 𝜕𝑇𝑁𝑆

𝜕𝑃𝑖
) directly.

These gradients are used to refine the LLM-predicted probabilities,
optimizing TNS in a truly global, full-graph optimization approach.
3 LEGO-Size Algorithm
In this work, we focus on gate sizing for timing optimization of
combinatorial cells as TransSizer [27]. However, unlike TransSizer
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struggling to generalize beyond the training designs, LEGO-Size is
engineered to effectively handle unseen designs while achieving
better-than-tool optimization results. An overview of LEGO-Size is
presented in Figure 1. Below, we explore each component in detail.
3.1 LibCell Embeddings: Unlock Generalizable

Gate Sizing via Language Modeling
It is widely acknowledged that the rise of LLMs has a foreseeable im-
pact in the chip design process [21]. However, in PD, existing efforts
have primarily focused on enhancing productivity through human-
machine interaction (e.g., prompting) using natural language such
as ChatEDA [35]. Up to now, no prior works have demonstrated
the use of LLMs to solve combinatorial nature tasks such as gate
sizing [14]. In this work, we present the first LLM-based framework
that solves the gate sizing task via language modeling.

As aforementioned, we consider a timing path as a sequence
of tokenized library cells. As illustrated in Figure 3, a library cell
name is tokenized into 3 tokens, denoting gate type, drive strength,
and 𝑉𝑡ℎ type of the cell. The key advantage of tokenization is that
it significantly reduces the number of tokens that are required
to characterize the entire vocabulary. For example, although the
commercial 3𝑛𝑚 node used in this work contains over 10,000 library
cells (exact numbers cannot be disclosed due to confidentiality),
they are formed by 300 tokens with our strategy. The key rationale
can be explained with this equation:
# all libCells = {type tokens} ⃝× {drv tokens} ⃝× {𝑉𝑡ℎ tokens}, (1)

where {·} denotes a token set, and⃝× denotes the Cartesian product,
meaning each element from one set is combined with every element
from the other sets. The sum of tokens across the three sets in
Equation 1 is much smaller than the total number of combinations
generated by the Cartesian product. Finally, as shown in Figure 3,
beside the library cell name tokenization, we create a “function
token” per library cell group denoting the functionality.

Finally, while token and function embeddings capture some char-
acteristics of a library cell, they fail to represent crucial physical
properties such as timing tables, pin capacitance, and resistance,
which are essential for accurate gate sizing. To address this, we

token embeddings layers (see Figure 3.){
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Figure 5: Illustration of the self-supervised tasks in LEGO-
Size including masked token prediction and cell-based ar-
rival time prediction. In the first task, tokens are randomly
masked along the path, and the model must leverage the
remaining context to predict the missing tokens. The “GT
feat” refers to the node embeddings from the GT model.

Figure 6: t-SNE [26] visualization results of gate type (e.g.,
BUFX) embeddings after self-supervised learning.

introduce a CNN-based timing table encoder as shown in Figure 4
to encode cell delay and transition tables. The rationale for apply-
ing a CNN to encode timing tables is that proximity among table
values reflects key properties of library cells, governed by index
vectors representing output loads and input slews. Thus, neighbor-
ing grids in the timing tables signal their proximity in the physical
context, making convolution-based methods particularly suited for
capturing these spatial relationships. The resulting table embed-
dings, along with pin capacitance and resistance, are concatenated
with name embeddings to form the final cell embedding for the
relevant arc in the timing path.
3.2 Self-Supervised Embedding Learning
In Natural Language Processing (NLP), word embeddings are critical
for successful downstream Supervised Fine-Tuning (SFT) tasks [4].
Directly training embeddings from scratch during SFT has been
shown to be less effective compared to pre-trainingwith self-supervised
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learning tasks [22]. We observe the same pattern in LEGO-Size. By
pre-training the embeddings with PD-aware self-supervised tasks,
LEGO-Size demonstrates significantly better generalization on un-
seen designs than previous works [2, 24, 27] that rely on direct SFT
for gate sizing prediction.

Figure 5 illustrates the self-supervised tasks used to pre-train
token embeddings and initialize LEGO-Size’s parameters. These
tasks include masked token prediction and cell-based arrival time
increment prediction. In the first task, certain tokens are randomly
masked, such as the drive strength token (D3) in the figure, which
the model reconstructs by leveraging PD features, including path,
cell, and pin attributes, as well as netlist information encoded by the
GT model (detailed in the next section). In the second task, “arrival
increment” represents the stage delay (cell arc + net arc delays).
By using a CNN-based model to encode timing tables (Figure 4),
the model predicts arrival time changes with a goal to enhance its
PD awareness. Figure 6 visualizes the gate type token embeddings
after self-supervised learning. Each dot represents a gate type token
(e.g., BUFX), with embeddings projected onto a 2D plane using t-
SNE [26]. Gate types with same logic function (e.g., BUFX, BUFY,
...) form distinct clusters. Experiments show that these pre-trained
embeddings are essential for improving model’s generalization to
handle unseen designs (i.e., never used in SFT) effectively.
3.3 Netlist Encoding via Graph Transformer in

Linear-Complexity Attention Mechanism
While LEGO-Size follows the path-by-path timing optimization
methods as the commercial signoff timing ECO and TransSizer [27],
we recognize that graph-based netlist attributes are vital for opti-
mization. The decision on which cells to resize depends on factors
such as the number of violating paths a cell sits on, its fanout/fanin
structure, and its sensitivity to other endpoints. To capture this
information, we employ Graph Neural Networks (GNNs). How-
ever, prior GNN approaches in PD, like ECO-GNN [24], limit their
scope to local neighborhoods, using a 3-hop proxy for instance size
changes. Similarly, DAGSizer [2] and TimingGCN [13] propagate
information level-by-level but fail to capture long-range depen-
dencies, akin to limitations in Recurrent Neural Networks (RNNs).
Hence, a scalable GNN that jointly considers all cells is needed.

Table 2: Initial node features for the GT netlist encoding
including both physical (first box) and netlist (second box)
features. A node denotes a cell in the netlist graph.

feature # dim. description
cell density 3 densities in 3x3, 5x5, 7x7 bin granularities
congestion 2 horizontal and vertical routing congestions

bounding box 4 lower-left and upper-right coordiantes
wst. input slew 1 max input transition of input pin(s)
wst. output slew 1 max transition of output pin(s)
wst. output slack 1 min setup slack of output pin(s)
wst. input slack 1 min setup slack of input pin(s)

wst. output arrival 1 max arrival of output pin(s)
wst. input arrival 1 max arrival of input pin(s)
tot. input cap 1 sum of input pin cap
avg fanin cap 1 average capacitance of fan-ins
tot. pin res 1 sum of lib pin resistance
avg. pin res 1 average lib pin resistance
tot. drv. load 1 sum of driving load capacitance

To address this issue, we use a GT model [31] to perform at-
tention across all nodes simultaneously. However, traditional self-
attention mechanisms [33] have 𝑂 (𝑛2) complexity as:

Self-Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 , (2)

where 𝑄,𝐾,𝑉 ∈ R𝑛×𝑑𝑘 are the query, key, and value matrices, and
𝑑𝑘 is the hidden dimension. The quadratic complexity results from
the softmax kernel, which computes the dot product of every query
with every key, prohibiting practical use for large designs.

To overcome this challenge, we adopt linear-complexity atten-
tion from Performer [3], approximating softmax with a kernel fea-
ture map 𝜙 (·) based on random Fourier features [30] as:

Linear-Attention(𝑄,𝐾,𝑉 ) = 𝜙 (𝑄)
(
𝜙 (𝐾)𝑇𝑉

)
, (3)

𝜙 (𝑥) = 1
√
𝑚

[
exp(𝑖𝜔𝑇1 𝑥), . . . , exp(𝑖𝜔

𝑇
𝑚𝑥)

]𝑇
, (4)

with 𝜔1, . . . , 𝜔𝑚 sampled from N(0, 𝐼 ). This reduces complexity
to 𝑂 (𝑛), allowing efficient computation of node embeddings. To
further improve computational efficiency, instead of feeding the
entire netlist into the GTmodel, we focus on relevant cells as shown
in Figure 7(a), including those on PBA-violating paths (target cells),
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Figure 8: Detailed architecture of LEGO-Size. A slack improvement conditioning mechanism is introduced to the gate size
prediction head (libCell head), which is followed by a differentiable STA engine for refinement of the LLM-predicted probabilities
of library cells to achieve better-than-tool optimization results.

within a 3-hop neighborhood (support cells), or the remaining don’t
care cells. This reduces unnecessary computation, as the majority
of cells have positive slack and minimal impact on sizing.

To encode graph Positional Embeddings (PE) into the GT model,
we use Random Walk PE (RWPE) [7], where the random walk
operator is 𝑅𝑊 = 𝐴𝐷−1 . The 𝑘-step random walk 𝑅𝑊 𝑘 defines a
node’s PE as:

RWPE(𝑖) =
[
𝑅𝑊𝑖𝑖 , 𝑅𝑊

2
𝑖𝑖 , . . . , 𝑅𝑊

𝑘
𝑖𝑖

]
, (5)

with k=12 in our work. These PE vectors are computed once per
node and used throughout the learning process.

Our GT model builds node embeddings using the transformation
method from [25], where each node represents a cell, and each
edge represents a timing arc, with skip connections added between
startpoints and endpoints. The initial node features include physical,
timing, and RC attributes (Table 2), and arc delays are used as edge
features. The aggregation process at each layer 𝑙 is summarized as:

𝑋
(𝑙+1)
𝑀𝑃

, 𝐸 (𝑙+1) = GINE
(
𝑋 (𝑙 ) , 𝐸 (𝑙 ) , 𝐴

)
, (6)

𝑋
(𝑙+1)
𝐿𝐴

= Linear-Attention
(
𝑋 (𝑙 )

)
, (7)

𝑋 (𝑙+1) = MLP
(
𝑋

(𝑙+1)
𝑀𝑃

+ 𝑋 (𝑙+1)
𝐿𝐴

)
, (8)

where GINE [15] is a message passing network, 𝐴 is the adjacency
matrix, and 𝑋 (𝑙 ) , 𝐸 (𝑙 ) are the node and edge features at layer 𝑙 . At
each level, node and edge embeddings from the previous level are
processed through the GINE module for local aggregation (Equa-
tion 6), and the linear attention layer for global netlist encoding
(Equation 7). The outputs of these two modules are then merged
and passed through a Multi-Layer Perceptron (MLP) to generate the
next-level embeddings 𝑋 (𝑙+1) (Equation 8). Ultimately, as shown
in Figure 7(c), the embeddings 𝑋 (𝐿) from the last layer 𝐿 are fed to
the LLM for gate size predictions. During SFT, a graph-based size
prediction task is introduced to further improve the quality of node
embeddings, making it more task-relevant.
3.4 Slack-Improvement-Conditioned

Path-Based Gate Size Prediction using LLM
After pre-training the token and function embeddings (Section 3.2),
we fine-tune LEGO-Size using SFT tasks, including path-based slack
improvement and optimized gate size prediction, with groundtruth

labels from a commercial signoff tool. Unlike TransSizer [27], which
predicts gate sizes sequentially, LEGO-Size predicts all gate sizes
on a path simultaneously. Figure 8 outlines the gate size prediction
process. First, we tokenize the PBA-violating path into a sequence
of library tokens (Figure 3) and extract timing table embeddings
via CNN (Figure 4). Concurrently, the GT model aggregates node
features (Table 2), generating embeddings that are concatenated
with the token and table embeddings as inputs to the LLM. Rotary
PE is applied to preserve the order of library tokens, with the self-
attention mechanism operating across 𝑁 = 12 layers.

The key idea of slack improvement conditioning is to train the
model to learn the precise amount of gate size change required to
achieve the target slack improvement (i.e., the condition), which
enables flexible trade-offs between timing and power. During SFT,
the conditioning is achieved through teacher forcing [34], where
the groundtruth slack improvement value is used as input. However,
at inference, the model uses predicted slack improvement values
to predict gate sizes. Another innovation is that we incorporate an
entropy term as a regularization loss alongside the standard Cross-
Entropy (CE) loss for gate size prediction. Given a probability vector
𝑃 = [𝑝1, 𝑝2, . . . , 𝑝𝑛], the entropy function𝐻 (𝑃) = −∑𝑛

𝑖=1 𝑝𝑖 log(𝑝𝑖 ).
This entropy regularization helps prevent overconfidence in the
model’s predictions by avoiding cases where a single gate size
dominates with an excessively high probability, ensuring better
generalization. Finally, the SFT loss functions for both slack im-
provement and gate size predictions are defined as follows:

Lsize = CE(𝑌size, 𝑌size) + 𝜆 · 𝐻 (𝑌size), (9)

Lslack = RMSE(𝑌slack, 𝑌slack), (10)

where {𝑌 } denote the predictions, {𝑌 } denote the groundtruths,
𝜆 denotes the regularization coefficient, and RMSE denotes the
root-mean-squared-error loss. In the experiments, we set 𝜆 = 0.001.
3.5 Cross-Attention for Effective Embedding

Learning and Cell Constraints Handling
In this work, we introduce a cross-attention mechanism during the
decoding step to enable effective token embedding learning and
robust handling of cell constraints as illustrated in Figure 9. The
rationale is that unlike conventional NLP tasks, our path-based
gate-sizing prediction task is a sequence-to-sequence problem in
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Figure 9: Cross-attention mechanism in LEGO-Size for effec-
tive embedding learning and accurate constraint handling.

which each input token directly maps to a corresponding output
token because only gate sizes are changed and the tokenization
rules are exact. For example, a drive-strength token can only be
replaced by another drive-strength token, and a gate-type token
must be mapped to another gate type with the same functional
identifier. We exploit this property by performing cross-attention
between each input token (as query 𝑄) and its corresponding per-
mitted tokens in the vocabulary serving as keys 𝐾 and values 𝑉 ,
which are governed by a predefined token constraint mask 𝑇 . We
then calculate attention scores based on Equation 2 to generate the
final token embeddings of the input sequence. Note that the con-
straint mask ensures that any illegal tokens receive zero scores and
are effectively excluded. Finally, we want to emphasize that this
constraints-guided cross-attention mechanism can handle more
complex cell constraint rules. For example, we can limit a buffer-
function cell to only “delay cells” instead of all regular buffers for
hold optimization while mitigating setup violations by modifying
the token constraint mask.
3.6 Differentiable STA for Graph-Based

Probability Refinement
The last piece of LEGO-Size is a GPU-accelerated differentiable STA
engine that refines LLM-predicted gate size probabilities using a
delta-based approach as described in Section 2.2, which allows us to
achieve better-than-tool gate sizing results. As shown in Figure 2,
for each cell 𝐺 , given its sizing candidates and the probabilities
predicted by the LLM, we first sync the initial arc delays from the
pre-optimized netlist to our engine, and then re-annotate the delays
of the cell and net arcs that are impacted by sizing (dashed arcs in
Figure 2) by computing the dot product between the LLM-predicted
probabilities and the delay estimates provided by the estimateECO
command in the reference tool, which performs fast local what-if
analyses over the impacted arcs.

Although the estimateECO command is highly parallelizable,
allowing the estimation of millions of timing arcs within seconds,
it operates under the assumption that the neighboring cells remain
unchanged for estimation. Consequently, the delay estimation for
each arc is conditioned on the stability of surrounding cells. To
account for this assumption, we first prioritize gates to be sized in
current iteration by sorting them based on the cumulative slack of
PBA-violating paths they lie on. And then similar to RL-Sizer [23],
we introduce a subgraph blocking mechanism, which prevents

pre-optimized netlist levelization

a
b

z

OCV-aware STA kernels

cell
prob

from
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expected
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differentiable TNS:

cell arc delays

SDC constraints

net arc delays

one-time extraction

from
backprop.

our
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(see Fig. 2)
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Figure 10: Our differentiable STA engine for LLM-predicted
gate size probability refinement via gradient descent on the
TNS value with re-annotated delays from estimateECO.

gates with overlapping subgraphs from being selected in the same
iteration for differentiable gate sizing. Once the gates are selected,
the LLM-predicted library cell probabilities for those gates are
treated as differentiable leaf variables during the STA propagation.
Specifically, these probabilities are used to update the initial arc
delays related to the selected gates, as detailed in Section 2.2, directly
influencing the calculation of the arrival time at each pin.

In arrival time propagation, the max operation is commonly used
to select the maximum arrival time at a pin from multiple incoming
paths. However, this operation presents a challenge, as it is not dif-
ferentiable with respect to all inputs. To address this, we replace the
max operation with the numerically stable Log-Sum-Exponential
(LSE) operator, which provides a smooth approximation while re-
taining differentiability as:

LSE(𝐴𝑇1, 𝐴𝑇2, . . . , 𝐴𝑇𝑛) = 𝑀 +𝑇 · log
(
𝑛∑︁
𝑖=1

exp
(
𝐴𝑇𝑖 −𝑀

𝑇

))
, (11)

where𝐴𝑇 denotes the arrival time, M denotes the maximum arrival
time𝑀 = max(𝐴𝑇1, 𝐴𝑇2, . . . , 𝐴𝑇𝑛), and T denotes the temperature
that controls the smoothness of the approximation. The gradient
of Equation 11, which is essential for backpropagation in the differ-
entiable STA engine, is given by:

𝜕

𝜕𝐴𝑇𝑖
LSE(𝐴𝑇1, . . . , 𝐴𝑇𝑛) =

exp
(
𝐴𝑇𝑖−𝑀

𝑇

)
∑𝑛

𝑗=1 exp
(
𝐴𝑇𝑗−𝑀

𝑇

) , (12)

which acts as a softmax-like distribution over the input arrival
times. This smooth approximation ensures the model remains fully
differentiable and allows the optimization to propagate through all
relevant paths during backpropagation of gradient descent.

Figure 10 illustrates the workflow of our differentiable STA en-
gine which refines the LLM-predicted gate size probabilities. The
process begins with a one-time extraction of key inputs, includ-
ing cell/net arc delays and SDC constraints that are necessary to
build the timing graph. Also, the netlist is levelized once using
topological sort to ensure parallel processing of arrival time calcu-
lation for pins at the same level. The core of our differentiable STA
engine is two GPU-accelerated CUDA-based STA kernels: one for
arrival time propagation from startpoints, and the other for gradient
propagation from endpoints, respectively. For timing arcs that are
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Figure 11: Endpoint slack correlation between the commer-
cial signoff tool and our differentiable STA engine. Each dot
denotes an endpoint and is colored by its maximum logic
depth. Our GPU-accelerated differentiable STA propagation
across the entire netlist (5.8M pins) takes less than 3 seconds.

impacted by sizing (e.g., az and bz arcs in the figure), their delays
are re-annotated based on the dot product between LLM-predicted
library cell probabilities {𝑃} and delta delay estimates {𝑑} derived
from estimateECO. Note that as illustrated in Figure 2, this delta
delay re-annotation, takes into account both rise/fall conditions and
unateness. At the end of the propagation, the achieved TNS value
is used to update the probabilities {𝑃} using gradient descent and
chain rule. By leveraging PyTorch’s auto-differentiation feature,
we focus solely on computing the gradient 𝜕𝐴𝑇𝑧

𝜕𝑃𝑖
at each propaga-

tion level as shown in the purple box, where the key computation
involved is shown in Equation 12.

Finally, as our framework targets signoff optimization, it has
to be OCV-aware as the reference signoff tool for accurate STA
propagation. To achieve this, our arrival kernel propagates both
mean and standard deviation of delay distributions. Given an arc
𝑗 → 𝑖 and its variation attributes, the final arrival time 𝐴𝑇 at the
pin 𝑖 is determined by:

𝑑𝑒𝑙𝑎𝑦_𝑚𝑒𝑎𝑛𝑖 = 𝑑𝑒𝑙𝑎𝑦_𝑚𝑒𝑎𝑛 𝑗 + 𝑎𝑟𝑐_𝑚𝑒𝑎𝑛 𝑗→𝑖 , (13)

𝑑𝑒𝑙𝑎𝑦_𝑠𝑡𝑑2𝑖 = 𝑑𝑒𝑙𝑎𝑦_𝑠𝑡𝑑2𝑗 + 𝑎𝑟𝑐_𝑠𝑡𝑑
2
𝑗→𝑖 , (14)

𝐴𝑇𝑖 = 𝑑𝑒𝑙𝑎𝑦_𝑚𝑒𝑎𝑛𝑖 + 𝜎 ∗ 𝑑𝑒𝑙𝑎𝑦_𝑠𝑡𝑑𝑖 , (15)
where 𝜎 controls the level of pessimism. In alignment with the
commercial signoff tool, we set 𝜎 = 3.0. Finally, Figure 11 presents
the endpoint slack correlation results between our STA engine and
the reference signoff tool on a commercial block with 5.8M pins
and 1.8M cells. It is shown that the correlation reaches 0.9984, with
the entire differentiable STA propagation takes less than 3 seconds.
4 Experimental Results
4.1 Experimental Setup and Infrastructure
We develop a comprehensive benchmark suite which includes
around 28 millions timing paths with sizing optimization labels
generated by an industry-standard signoff tool (the tool’s name
is withheld in compliance with license agreements) across 21 PD

implementations (each with different recipes) of 8 million-scale
industrial designs in a commercial 3𝑛𝑚 technology node with more
than 10,000 library cells, In contrast, the most advanced academic
node ASAP-7 [5] only has 196 library cells in total. These extracted
PBA setup-violating paths span across multiple PVT corners that
reflect real-world signoff scenarios, providing rich RC and library
information. Training and validation are performed on a Linux-
based compute cluster with 8 NVIDIA A100 GPUs (each with 96GB
memory), and AMDEPYC 7742 64-Core Processor with 2TB of RAM.
The LEGO-Size framework is implemented using PyTorch [28] 2.1.2
and CUDA 12.1 for ML models and GPU-accelerated STA kernels
for forward arrival propagation and backward gradient distribution.
4.2 Self-Supervised Pre-Training Results
The self-supervised pre-training phase is illustrated in Section 3.2,
which requires approximately 200 real-hours (about 1011 GPU-
hours) on our compute cluster. During pre-training, all trainable
parameters including token, function embeddings, and the weights
of the ML models are updated using the self-supervised tasks as
illustrated in Figure 5 without the need of sizing labels. Note that
while this computational requirement is substantial, it is a one-time
cost that enables the subsequent rapid optimization of unseen de-
signs in advanced technologies that offer a vast number of library
cell choices. Once the pre-training is complete, we freeze the token
and function embeddings, and proceed with fine-tuning the model
on supervised tasks (Figure 8). The pre-training results in terms of
gate type embeddings are visualized in Figure 6 with the t-SNE [26]
dimension reduction technique.
4.3 LEGO-Size Optimization Results
In this experiment, we activate all components of LEGO-Size, in-
cluding the GT model, LLM encoder, and differentiable STA engine
for probability refinement, to directly compare with a commercial
signoff tool on PBA-based timing optimization in a 3nm node. All
benchmarks are evaluated in a completely unseen setting, achieved
by fine-tuning the pre-trained model on other designs in the bench-
mark suite. For probability refinement, we use Adam [17] to perform
10 iterations of gradient descent, selecting the sizing solution with
the best TNS from our differentiable STA engine. Table 3 presents
the optimization results reported by the commercial signoff tool.
LEGO-Size consistently surpasses the industry-leading tool across
all benchmarks, achieving an average improvement of 26% in TNS
and 15.9% in NVE, along with a 113X speedup. This is remarkable
as all designs used for validation are completely unseen.

Finally, in the table, we also report the area impact of gate siz-
ing between the commercial signoff tool and LEGO-Size, where a
blue entry indicates situations in which LEGO-Size attains lower
cell area than the industry reference. Note that although LEGO-
Size does not explicitly optimize for area or density constraints, it
often yields comparable or even reduced total cell area in advanced-
node designs. We attribute this emergent behavior to our model’s
learning process: the optimization labels provided by the signoff
tool inherently reflect a design methodology that prioritizes timing
closure with minimal overhead in both area and power. By absorb-
ing these labels during pre-training and fine-tuning, we believe
LEGO-Size implicitly learns to inherit the signoff tool’s tendency
to preserve smaller gate footprints if possible. To further enhance
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Table 3: Complete optimization results on totally unseen commercial blocks. Note that we use the same seed across all
experiments to completely remove non-deterministic run-to-run variation. The timing unit is 𝑛𝑠 and the power unit is𝑚𝑊 .
Δarea shows the total cell area difference between the commercial tool and LEGO-Size, where blue indicates improvement.

unseen design initial state (pre-optimized) commercial signoff tool (32 threads) LEGO-Size (GT + LLM + Differentiable STA)

(# cells) WNS TNS #vio. total WNS TNS #vio. total sped- WNS TNS #vio. total sped- Δarea
EPs power (goal) EPs power up (goal) EPs power up (𝑢𝑚2)

block1 (1.8M) -0.066 -17.46 2410 238.6 -0.028 -1.953 271 238.8 1.00 -0.034 -1.237 (-36.7%) 184 (-47.3%) 238.8 125x -1.42
block2 (1.3M) -0.041 -30.38 5410 293.4 -0.038 -7.82 1201 293.7 1.00 -0.035 -5.47 (-30.0%) 943 (-27.4%) 293.9 111x -0.36
block3 (1.2M) -0.054 -10.03 1539 119.7 -0.032 -5.37 906 119.8 1.00 -0.033 -4.32 (-19.5%) 812 (-10.4%) 119.8 100x +2.28
block4 (1.5M) -0.102 -59.25 6955 248.5 -0.097 -24.77 1912 249.1 1.00 -0.083 -20.36 (-17.8%) 1658 (-15.3%) 249.3 119x +3.52
block5 (1.4M) -0.072 -11.33 1525 127.2 -0.038 -6.68 620 127.5 1.00 -0.036 -4.85 (-27.4%) 529 (-17.2%) 127.5 114x -1.15

Table 4: Ablation study on optimization results of predictive
models. Refer to Table 3 for commercial tool baseline.
Design Method WNS TNS NVE F1 Speedup

block1

TransSizer [27] -0.045 -7.43 1072 0.65 367x
ECO-GNN [24] -0.048 -11.06 1157 0.56 1575X
GT-only (ours) -0.041 -9.84 1068 0.61 1427X
GT+LLM (ours) -0.032 -2.32 483 0.92 870X

block4

TransSizer [27] -0.114 -35.49 3419 0.70 328x
ECO-GNN [24] -0.104 -32.12 3270 0.67 1362X
GT-only (ours) -0.094 -29.83 2709 0.74 1185X
GT+LLM (ours) -0.086 -22.33 1852 0.87 627X

area efficiency in gate sizing, we plan to incorporate area as a regu-
larization term within the gradient descent process that optimizes
WNS and TNS (Section 3.6). By leveraging the probabilistic gate
selections to estimate “expected” area overhead, we can guide final
sizing decisions while balancing timing and area objectives.
4.4 Optimization Results of Predictive Models
Now, we conduct an ablation study to analyze the optimization
results of predictive models. In LEGO-Size, gate size predictions can
be obtained from two key components: the GT model, which en-
hances node embeddings through a graph-based gate size prediction
task (Figure 7), and the LLM encoder (before differentiable STA re-
finement) which makes path-based predictions. We benchmark our
predictive models against ECO-GNN [24], which focuses on graph-
based predictions similar to the GT model, and TransSizer [27],
which performs path-based predictions as our LLM encoder. Ta-
ble 4 presents the comparison, showing that the proposed LLM
encoder, which incorporates GT node embeddings, achieves the
best prediction accuracy among unseen designs. We attribute this
improvement to the proposed self-supervised pre-training tasks.
Importantly, our LLM encoder demonstrates a much faster runtime
compared to TransSizer, as it predicts gate sizes for an entire path
simultaneously rather than sequentially (i.e., auto-regressive) as in
TransSizer. Finally, for cells on multiple violating paths, we select
predictions with the largest drive strengths as the final gate sizes.
4.5 Slack-Conditioning Experiment
As shown in Figure 8, we introduce a slack improvement condition-
ing mechanism to guide gate size predictions of the LLM encoder.
The concept is similar to the “effort level” used in TransSizer [27],
however, instead of using discrete levels (e.g., low, medium, high)
as TransSizer, our approach conditions the model on the expected
slack difference before and after optimization. This fine-grained
conditioning enables the model to better predict the extent of gate
size changes required to meet specific slack improvement targets.
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Figure 12: Slack conditioning experiment. We vary the
amount of slack improvement condition for LLM and evalu-
ate the sizing predictions using the commercial signoff tool.

Figure 12 illustrates our slack conditioning study, where the x-axis
represents the conditioned slack improvement of each path, and the
y-axis shows the final achieved path slack. While the relationship
is not perfectly linear (which is ideal), a clear positive correlation
emerges, indicating that our slack improvement conditioning ap-
proach is effectively guiding the LLMs for accurate predictions. We
envision this slack improvement conditioning technique can enable
flexible trade-off between timing and power metrics.
5 Discussion
In this section, we discuss the key considerations that enable LEGO-
Size to achieve robust performance in a commercial 3𝑛𝑚 node on
real-world, high-performance industrial designs. We also outline
potential enhancements for further improving optimization quality
and integrating LEGO-Size into leading industrial production flows.
5.1 The Power of Differentiable STA Engine
Although prior works [2, 24, 27] have demonstrated the effective-
ness of ML-based approaches for gate sizing predictions, they re-
main limited by the optimization quality of the data and tools they
emulate. Our differentiable STA engine overcomes these limitations
by offering an entirely new optimization dimension that comple-
ments the predictive module. Specifically, once a pre-optimized
netlist is obtained from the LLM-encoder, we narrow the high-
dimensional solution space to a near-optimal region, then refine
the gate sizes within that region by directly performing gradient
descent on the global metrics such as TNS to update leaf variables.
While commercial signoff tools typically rely on localized analyt-
ical methods often due to memory constraints as the number of
decision variables grows, our differentiable STA engine can execute
a full-graph timing optimization on a single GPU using under 10GB
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of memory per design. This enables a holistic view of the netlist
and is well-suited for large-scale designs in a 3nm technology node.

In this work, we encode the probabilities of each library cell
choice as the leaf optimization variables, where each chosen cell
triggers a localized fast re-annotation of the 3-hop neighborhood
subgraph (see Figure 2). Therefore, we do not have the rounding
issues as we are not leveraging the common continuous relax-
ation technique for gradient descent. However, a natural challenge
in gradient-based optimization is to handle the high-dimensional
space of variables, particularly for multi-million-cell netlists [18].
To address this, we focus only on gates whose LLM-predicted li-
brary choices differ from their originals, substantially reducing the
dimensionality and providing a strong initialization for the differen-
tiable STA engine (in contrast to random guessing as in AGD [29]).
This careful restriction of optimization variables, combined with
our full-graph GPU-accelerated timing propagation, leads to the
ultimate success of LEGO-Size.
5.2 Industrial Consideration: Handling Scale

and Complexity via Language Modeling
LEGO-Size is specifically tailored for industrial design flows and
is validated in this work using a 3𝑛𝑚 node with real-world, multi-
million-cell designs. Unlike academic PDKs such as ASAP7 [5],
which offers only 196 library cells, commercial 3𝑛𝑚 technologies
easily present tens of thousands of cell options with complex char-
acteristics, necessitating robust strategies that can handle enormous
design spaces without exhausting computational resources.

In LEGO-Size, a key innovation for tackling the above challenges
is the simple yet elegant tokenization strategy that converts netlists
into “sequences” suitable for language modeling. Together with
the token constraint mask approach (described in Figure 9 and
Section 3.5), this method effectively prevents the combinatorial ex-
plosion of the library search space while enabling accurate learning
of relationships among tokens through language modeling. An-
other key technique is the linear attention mechanism that captures
crucial graph connectivity at scale without incurring prohibitive
computational overhead. Such graph-based encoding is critical be-
cause the final gate size decision for each instance depends not only
on the most critical path it sits on, but also on the sub-critical paths
as well as the neighboring parasitic effects in its vicinity.
5.3 Tackling Multi-Corner Multi-Mode with

Differentiable Gate Sizing
Although Table 3 reports results for a single-scenario setting, LEGO-
Size can be naturally extended to handle Multi-Corner Multi-Mode
(MCMM). Unlike TransSizer [27] addresses MCMM gate sizing by
simply selecting features from the “dominant” scenario, LEGO-Size
can easily refine LLM-predicted gate-size probabilities across all
desired scenarios via our differentiable STA engine, where we can
maintain a separate timing graph for each scenario and merge them
into a single PyTorch computational graph, enabling gradient-based
updates that jointly improve the gate size selections for every sce-
nario. A straightforward approach is to form a weighted sum of
TNS across multiple scenarios, reflecting their relative importance.
Our differentiable STA kernels then back-propagate gradients from
this weighted-summed global TNS metric into library cell probabil-
ities, guiding the final cell choices toward a solution that optimizes
the objective. We envision that by going beyond TransSizer’s [27]

dominant-scenario focus for MCMM handling and explicitly cov-
ering sub-critical coroners, this holistic approach yields a more
robust, practical gate sizing solution for real-world industrial flows.
5.4 Scaling Language Models for Gate Sizing
Language modeling has emerged as a powerful technique for cap-
turing rich representations, with scaling laws indicating that perfor-
mance improves when model capacity and dataset size grow [16].
However, naively enlarging a model without a robust “warmup”
stage can lead to slow or suboptimal convergence during the pro-
ceeding SFT phase [6]. To address this, we employ a customized
pre-training phase in LEGO-Size, consuming over 1000 GPU-hours
on high-performance clusters, to construct meaningful token and
function embeddings before fine-tuning (Figure 6).

By integrating industrial signoff databases during pre-training,
LEGO-Size acquires meaningful embeddings and starts from a well-
initialized parameter space. Subsequent fine-tuning then focuses
on gate sizing for timing closure, showing faster convergence and
higher accuracy on unseen designs (Table 3). This multi-stage ap-
proach aligns with other findings of applying language models in
domain-specific tasks [1], where an effective pre-training routine
reliably boosts downstream tasks. Motivated by these results, we
plan to scale both the model’s size and the dataset in future work,
further harnessing language modeling principles and advancing
LEGO-Size’s accuracy on complex designs.
5.5 Implicit Area-Aware Gate Sizing via

Effective Generative Learning
Although LEGO-Size does not explicitly optimize for area efficiency
during gate sizing, training on the optimization data generated
from the reference commercial signoff tool indirectly incorporates
area-aware sizing decisions. This is because the reference tool’s
optimization engine aims to fix timing with minimal area overhead,
LEGO-Size inherits a similar practice, leading to small or even negli-
gible area changes compared to the reference tool. The area impact
is shown in Table 3. While certain blocks experience slight increases
due to aggressive upsizing and others seemodest improvements, the
area difference is below 0.01% of total combinational cell area across
all benchmarks. While LEGO-Size currently focuses on timing clo-
sure alone, looking ahead, we plan to integrate LEGO-Size into
a complete ECO signoff flow that encompasses ECO-place/route,
EM/IR closure, and other ECO checks.
6 Conclusion and Future Work
In this paper, we have introduced LEGO-Size, a generative frame-
work that significantly advances signoff optimization quality of
an industry-leading signoff tool via language modeling and differ-
entiable gate sizing. By framing gate sizing as a language model-
ing task and utilizing self-supervised learning, LEGO-Size brings a
novel approach to handling complex design characteristics in a 3𝑛𝑚
node with over 10,000 library cells effectively. Furthermore, the in-
tegration of a differentiable STA engine enables direct optimization
of TNS via gradient descent, yielding better-than-tool optimization
results. In the future, we plan to (1) take area as regularization
during gate sizing, (2) improve LEGO-Size for multi-scenario han-
dling via differentiable STA, and (3) validate the framework in a
complete signoff flow. We believe this work shall open the gate of
using language models to solve key PD optimization problems.
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