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Abstract—Analog and mixed-signal (AMS) circuits are commonly
represented as schematic images in textbooks, research papers,
patents, and other technical documents to facilitate understanding.
However, AMS design workflows rely on netlists rather than schemat-
ics for tasks such as modeling, simulation, automated circuit sizing,
and layout synthesis. Converting schematic images into netlists is a
challenging task due to the wide variety of circuit components and
the complexity of their connectivity. This paper presents Netlistify, an
automated deep learning-based tool that transforms schematic dia-
grams into netlists through precise component recognition, orientation
detection, and connectivity analysis and extraction. Unlike traditional
methods that rely on fixed algorithmic rules for connectivity extrac-
tion, Netlistify employs deep learning to comprehensively analyze
both components and their interconnections, offering a detailed
understanding of circuit structures and significantly improving netlist
generation accuracy. By addressing the challenges of connectivity com-
plexity with a data-driven approach, Netlistify provides a robust and
efficient solution for schematic interpretation. Experimental results
demonstrate that Netlistify achieves high accuracy, surpassing state-
of-the-art methods and showing great promise for AMS design data
collection and seamless integration into modern design automation
workflows.

I. INTRODUCTION

The application of machine learning (ML) and large language
models (LLMs) in electronic design automation (EDA) for analog
and mixed-signal (AMS) design [1]–[12] depends on extensive data
collection and processing. However, much of the AMS design data
remains confidential and unavailable in the public domain. Instead,
AMS design knowledge is primarily documented in technical
resources such as textbooks, research papers, and patents, which
commonly use schematics to visually represent circuits for clarity
and ease of understanding. For EDA workflows, these schematic
diagrams must be transformed into netlists, or text-based descrip-
tions of circuit connectivity, that are critical for macro modeling [3],
circuit classification [4]–[6], circuit synthesis and simulation [7],
[9], parasitic estimation [8], layout synthesis [10]–[12], and other
AMS EDA tools. Although the idea of automatic figure extraction
and classification from technical documents has been proposed in
the literature [13], addressing the challenge of converting visual
schematics into machine-readable formats is essential for advancing
automation in AMS design. Fig. 1(a) illustrates a schematic image
of a voltage follower, sourced from [14]. Automating the transfor-
mation of such schematic image into its corresponding netlists, as
depicted in Fig. 1(b), is highly desirable for efficient data collection
and processing in the application of ML and LLMs for AMS EDA.

A. Related Works

The process of transforming a schematic into a netlist, or
schematic interpretation, involves two primary tasks: component

detection and recognition, and connectivity analysis and extrac-
tion. Most previous works have focused on component recogni-
tion, leaving the challenge of connectivity extraction unaddressed.
Huoming [15] employed the k-nearest neighbors (KNN) classifier
based on pixel distribution to identify components, leveraging
spatial relationships within the pixel data. While this approach
was straightforward, it relied heavily on carefully selected features,
making it highly sensitive to variations in image quality and compo-
nent representation. Moetesum [16] utilized histogram of oriented
gradients (HOG) features combined with a support vector machine
(SVM) classifier, offering a higher level of abstraction compared
to raw pixel-based methods. However, both methods struggled to
generalize effectively across diverse datasets, particularly when
the visual characteristics of components varied significantly. These
early efforts underscored the challenges of hand-crafted feature
extraction and paved the way for modern approaches that leverage
deep learning to address these limitations and improve robustness.

More recently, Img2Sim [17], [18] utilized YOLOv5 [19] for
component detection, combined with the Hough Transform for
connectivity analysis. This hybrid approach effectively integrates
advanced deep learning techniques for object detection with clas-
sical line detection methods, achieving reasonable accuracy in
identifying component connections, particularly in structured and
noise-free environments. In contrast, AMSNet [20] takes a different
approach by leveraging YOLOv8 [21] for component detection
and employing a breadth-first search algorithm on black pixels
representing interconnecting wires for connectivity analysis. Fur-
thermore, it uses 2D convolution to detect wire intersections,
enhancing its ability to resolve complex circuit connections. In
addition to [17], [18], modern LLMs, such as ChatGPT [22],
excel at describing the content of various images. However, their
performance remains suboptimal and unsuitable for the critical task
of converting schematics into precise and accurate netlists within
AMS design workflows.

We have observed several shortcomings and challenges in state-
of-the-art approaches for transforming circuit schematics into
netlists, which can be summarized as follows:

• Most existing approaches are limited to recognizing basic
device symbols in analog circuits, such as transistors, diodes,
capacitors, resistors, inductors, and current/voltage sources.
However, AMS circuit schematics often include a wider
range of component symbols, such as operational amplifiers,
hierarchical functional blocks, transmission gates, and various
digital logic gates, which are typically represented as subcir-
cuits in a SPICE netlist.

• Device symbols in circuit schematics can appear in multi-
ple orientations. Existing approaches may fail to accurately
identify these orientations, leading to errors in component de-
tection and connectivity analysis, and hence degrading overall979-8-3315-3762-3/25/$31.00 ©2025 IEEE
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Fig. 1. (a) A schematic image of a voltage follower. (b) The corresponding SPICE
netlist of the voltage follower in (a).

performance.
• For connectivity analysis and extraction, real-world schematic

images often come from diverse sources, leading to varia-
tions in resolution. High-resolution images allow fixed-size
2D convolution to detect intersections effectively, but lower-
resolution images with thin wire segments and sparse pixel
density often result in inaccuracies. These inconsistencies un-
dermine robustness, making reliable detection across diverse
datasets challenging.

B. Our Contributions
To address the aforementioned shortcomings, this paper proposes

a deep learning-based methodology to tackle the key challenges
in schematic interpretation, including component detection and
recognition, orientation determination, and connectivity analysis
and extraction. Unlike previous approaches, our method leverages
data-driven learning to adapt to schematic variability, minimizing
manual intervention while improving the efficiency and reliability
of netlist generation. The new contributions of our method are
summarized in the following:

• Our method extends beyond basic device symbols in analog
circuits to detect and recognize a broader range of schematic
symbols in AMS circuits, including operational amplifiers,
hierarchical functional blocks, and digital logic gates. This
expanded capability allows our approach to accommodate
a wider variety of circuit types, significantly enhancing the
versatility and applicability of netlist generation.

• Unlike previous works, we decouple orientation determination
from component detection by employing separate ML models,
YOLOv8 [21] for component detection and ResNet [23] for
orientation determination, enabling each model to specialize
in its respective task. This separation significantly improves
component detection accuracy, as demonstrated by our exper-
imental results.

• We extend a transformer-based model for connectivity analysis
and extraction. To handle varying resolutions and different
schematic image sizes, we adopt a window-based approach for
processing wire segments, which mitigates the risk of gradient
explosion and ensures stable training.

• In the most recent work, AMSNet [20], the dataset is pri-
marily derived from textbooks, posing a significant challenge
in obtaining sufficient training data. To overcome this, we
generate synthetic schematics using a commercial tool, ex-
porting schematic images to build an initial training dataset.
Our transformer model, which requires large datasets for
connectivity analysis and extraction, is first trained on these

synthetic schematics and then fine-tuned on textbook-derived
data to enhance performance.

• In addition to developing an extensive dataset for our work,
we also release these synthetic schematics as open source after
the paper is published. This initiative aims to contribute to
the research community and drive further advancements in
schematic interpretation.

The rest of this paper is organized as follows: Section II presents
the problem formulation. Section III introduces the proposed deep-
learning methodology. Section IV demonstrates our experimental
results, and finally Section V concludes this paper.

II. PROBLEM FORMULATION

Given the schematic image of an AMS circuit, which includes
various circuit components in different orientations and their cor-
responding interconnections, as shown in Fig.1(a), the task of
schematic interpretation is to accurately generate the correspond-
ing netlist, typically in SPICE format, as depicted in Fig.1(b). The
types of components and their possible orientations are detailed in
Table I and Fig. 3, respectively.

III. THE PROPOSED DEEP-LEARNING-BASED METHODOLOGY

We present Netlistify, a deep learning-based tool for schematic
interpretation, designed to transform the schematic image of an
AMS circuit into its corresponding netlist, as illustrated in Fig.2.
Our methodology comprises four key stages: Component Detec-
tion (Fig.2(a)), Orientation Determination (Fig.2(b)), Connectivity
Analysis (Fig.2(c)), and Connectivity Extraction (Fig. 2(d)).
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Fig. 2. The proposed deep learning-based flow for schematic interpretation consists
of the following stages: (a) component detection, (b) orientation determination,
(c) connectivity analysis, and (d) connectivity extraction.

A. Component Detection
Similar to AMSNet [20], Netlistify utilizes YOLOv8 [21] for

component detection within a schematic image. YOLO is a state-
of-the-art object detection model renowned for its ability to identify
and localize objects in images or videos through a single, unified
process, providing an excellent balance of speed and accuracy.
Unlike traditional multi-stage detectors, YOLO processes the entire
image in a single pass, directly predicting bounding boxes and class
probabilities using a neural network. This efficiency and precision
make it particularly well-suited for schematic interpretation appli-
cations.

A key distinction between AMSNet [20] and our approach,
Netlistify, lies in how orientation determination is handled. Unlike
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Fig. 3. The eight possible orientations of a component symbol.

AMSNet [20], Netlistify does not determine component orientation
during the component detection stage but treats each component
type with all possible orientations as a single category. In contrast,
AMSNet [20] assigns a label to each component bounding box that
includes both the component category and orientation, using YOLO
to simultaneously detect component types and their orientations.
This results in a significantly larger number of categories, as
AMSNet [20] must differentiate between various orientations of the
same component type. However, this approach faces challenges, as
the visual features of components with different orientations are of-
ten highly similar, particularly in complex circuit schematics. This
similarity makes it difficult for a single model to accurately perform
both detection and orientation tasks simultaneously, increasing the
risk of misclassification.

B. Orientation Recognition

After detecting each component and identifying its type in
the schematic image, we crop the detected components and use
ResNet [23] to determine their orientations. Fig. 3 shows all
possible orientations of a component symbol. ResNet is particularly
well-suited for orientation determination due to its ability to learn
robust, hierarchical feature representations. Its residual connections
enable efficient training of deep networks without the vanishing
gradient problem, allowing it to capture subtle differences critical
for distinguishing orientations. Additionally, ResNet’s capacity to
identify spatial hierarchies and fine-grained visual distinctions
ensures strong generalization across similar classes, making it an
ideal choice for accurately determining component orientations.

By decoupling orientation determination from component detec-
tion, each model optimized for its specific role. YOLO is dedicated
to accurately detecting the presence and location of components,
while ResNet focuses on determining their precise orientations.
This division of tasks simplifies feature extraction for each model,
reduces ambiguity caused by visually similar component orienta-
tions, and significantly enhances detection accuracy by minimizing
the risk of misclassification. Furthermore, Netlistify not only en-
hances detection accuracy but also introduces adaptability, which is
capable of handling various types of components and schematics.
The modular design of Netlistify facilitates the seamless integration
of new models or techniques, making it easy to expand the range
of supported components or further improve accuracy in future
developments.

C. Connectivity Analysis

After completing component detection and orientation determi-
nation, the next step is connectivity analysis, a crucial process for
accurately extracting the relationships between the detected com-
ponents and identifying the physical interconnections represented
as wires. This step ensures that the extracted connections faithfully
reflect the actual circuit design depicted in the schematic image.
Inspired by [24], we utilize a Transformer-based model [25] for this
task, leveraging its ability to detect wire segments and analyze their
spatial relationships. The Transformer, a deep learning architecture
built on self-attention mechanisms, is particularly well-suited for

tasks requiring both local and global context understanding. Un-
like traditional neural networks, such as CNNs, which primarily
focus on local features, the Transformer excels at modeling long-
range dependencies, making it ideal for connectivity mapping in
schematic interpretation.

In circuit schematics, accurately identifying whether intersecting
wires belong to the same net or represent different connections
is a complex task. This challenge is further intensified by the
presence of components and text labels, which must be carefully
distinguished from wire segments to avoid errors in netlist gen-
eration. The Transformer, with its ability to capture both local
details and global contexts, enables precise discrimination between
intersecting wires and effective differentiation between connections
and non-wire elements, such as components and labels. To address
these challenges, we propose to divide the schematic image into
smaller cells. This segmentation strategy simplifies the schematic
complexity, allowing the model to process localized, less intricate
regions, thereby stabilizing the training process. Although this
approach may result in nets being split across multiple cells, it
preserves the distribution of net features and mitigates the risk
of gradient explosions. This ensures stable training and enhances
the model’s ability to learn connectivity features effectively. By
focusing on smaller, localized regions, the model is better equipped
to handle the variability present in complete schematic images,
improving accuracy and reliability.

Figure 4 illustrates the proposed Transformer model for connec-
tivity analysis in schematic images. The inputs to the model are
image cells of a schematic, where detected components are masked.
Each segmented cell is processed through a ResNet [23] to extract
feature maps that capture the essential visual characteristics of the
schematic content. These feature maps are then augmented with po-
sition encoding, which embeds spatial information into the feature
representation. Position encoding allows the Transformer to under-
stand the relative locations of elements within the images, providing
crucial context for interpreting spatial relationships. The augmented
feature maps are subsequently fed into the Transformer encoder,
which generates a rich representation of the input by capturing both
local and global relationships within the schematic. The encoder
consists of multiple layers, each comprising self-attention mecha-
nisms and feed-forward networks. These components work together
to model the contextual dependencies between different parts of the
image effectively. After encoding, the processed representations are
passed to the Transformer decoder. The decoder begins with a set of
initial learnable queries, which represent potential wire segments
in the schematic image. It attends to both these queries and the
encoded feature maps, interpreting the information to predict the
connectivity of wire segments. By combining the context provided
by the encoder with the initialized queries, the decoder identifies
the positions of wire segments within the schematic. The final
stage involves passing the decoder’s output through a Feed-Forward
Network (FFN), which consists of fully connected layers that refine
the predictions. In the proposed model, the FFN predicts the exact
start and end coordinates of each wire segment. By transforming the
rich feature representations from the decoder into precise numerical
values, the FFN provides the final output required for schematic
interpretation. This detailed process enables accurate connectivity
analysis, ensuring the generated predictions faithfully represent the
schematic design.

Dividing the schematic image into smaller cells, while simplify-
ing analysis, introduces additional challenges. Wires and compo-
nents may be inadvertently split during segmentation, potentially
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Fig. 5. An example illustrating the process of connectivity analysis and extraction: (a) A schematic image divided into cells with detected components and texts masked.
(b) Segmented image cells. (c) Expanded image cells to include features near cell boundaries. (d) Wire segments detected by the Transformer model. (e) Shrinking of
image cells to their original size. (f) Connectivity extraction based on detected components and wire segments.

causing errors in model interpretation. For instance, components
or text labels might be misclassified as wire segments, degrading
the model’s performance. To address this, we implement a masking
mechanism that applies masks to the predicted locations of com-
ponents and text, identified during the component detection stage.
This ensures that even if components or text are partially cut, their
identity and role within the schematic are preserved.

Furthermore, we expand the image cells to include a broader con-
text around their boundaries, creating overlapping regions between
adjacent cells. These overlapping regions provide the model with
additional information about neighboring areas, enabling it to better
interpret connectivity at the cell boundaries. This approach ensures
that the model has a more comprehensive understanding of net
connectivity, even at the edges of individual cells. By incorporating
masking and overlapping regions, the proposed methodology not

only improves the accuracy of connectivity analysis but also
enhances the reliability of netlist generation. Fig. 5 gives an
example illustrating the whole process of connectivity analysis and
extraction based on the proposed approach.

During model training, the optimal assignment between the
ground truth and predicted wire segments must be determined.
To achieve this, the Hungarian algorithm is used to find the
best match between predicted and ground truth wire segments by
minimizing the overall assignment cost. This process ensures that
each predicted wire segment is paired with the most appropriate
ground truth wire segment, which is essential for accurate error
calculation in subsequent steps. The optimal assignment between
the ground truth and predicted wire segments resulting from
Hungarian algorithm is denoted as:

Hungarian(ŵ,w) → matched wire segment pairs, (1)



where ŵ = (ŵ1, ŵ2, ŵ3, . . . , ŵm) and w = (w1, w2, w3, . . . , wn)
corresponding to the predicted and ground truth sequence of
wire segments, respectively. Each sequence may contain different
numbers of wire segments, denoted by m and n, respectively.

We define the localization loss, Lloc, to measure how well the
predicted coordinates match the ground truth for each matched
wire segment pair. If pi = (xstart

i , ystart
i , xend

i , yend
i ) represents the

predicted coordinates and gi = (xgt-start
i , ygt-start

i , xgt-end
i , ygt-end

i ) the
ground truth coordinates for ŵi and wi, respectively, then:

Lloc =
1

N

N∑

i=1

SmoothL1(pi,gi), (2)

where N is the number of matched wire segments, and

SmoothL1(z) =

{
0.5z2 if |z| < 1,

|z|↑ 0.5 otherwise.
(3)

D. Connectivity Extraction
Finally, using the detected component types, orientations, and

wire segments, along with the physical locations of all components
and interconnecting wires, Netlistify extracts the logical connec-
tions from the schematic image and reconstruct the corresponding
netlist, which is the text-based representation of an AMS circuit
that accurately reflects the original schematic design.

IV. EXPERIMENTAL RESULTS

We conducted our experiments on two datasets. The first dataset
was synthetically generated by creating random SPICE netlists for
various analog and mixed-signal circuits, generating schematic dia-
grams using Custom Compiler [31], and exporting the correspond-
ing schematic images. The second dataset comprises schematic im-
ages of analog circuits captured from textbooks [26]–[30]. Tables I
and II provide detailed information about each dataset, including
the number of schematic images and the distribution of component
types. Both datasets were divided into training, validation, and test
subsets. Table III further summarizes the test dataset, classified
into three categories: (1) Real Analog Circuits from textbooks,
(2) Synthetic Analog Circuits, and (3) Synthetic Mixed-Signal
Circuits.

In our experimental evaluation, we employed distinct metrics to
comprehensively assess the performance of our proposed method
in three key areas: component detection, connectivity analysis, and
component orientation determination. The evaluation was divided
into three parts: Component Metrics, Connectivity Metrics, and
Component Orientation Metrics. We also conducted experimental
comparisons between our method, Netlistify, and state-of-the-art
approaches, including GPT-4o [22] and AMSNet [20].

For component evaluation, we used metrics derived from the
results of the component detection process. Specifically, we cal-
culated accuracy, precision, recall, and F1 score to evaluate the
model’s performance in identifying components within schematic
images. Accuracy measured the overall correctness of component
detection, while precision, recall, and F1 score provided a more
detailed assessment of the model’s ability to detect and classify
components accurately. In addition to component detection, we
assessed the accuracy of the connections formed between compo-
nents, referred to as connectivity metrics. For this evaluation, we
defined connectivity pairs based on the generated SPICE netlist. A
connectivity pair captures the logical relationship between specific
component pins, representing how components are interconnected
within the circuit. These pairs derived from the pin connections

associated with each component are formally defined by the
following equation:

Pc = {(pi, pj) | pi ↓ T (Ca), pj ↓ T (Cb), net(pi) = net(pj)},
(4)

where T (Ca) and T (Cb) represent the sets of pins associated
with components Ca and Cb of specific types, and net(p) denotes
the net to which pin p is connected. Using this representation,
we computed the true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) by comparing the predicted
connectivity pairs with those from the ground truth netlist. From
these values, we derived accuracy, precision, recall, and F1 score
to quantitatively evaluate the quality of the model’s connectivity
predictions. The component orientation metrics include accuracy,
precision, recall, and F1 score, which collectively evaluate the
model’s ability to correctly recognize the orientation of components
within schematic images. Similarly, we define TP, TN, FP, and FN
specifically for component orientation. If a component’s orientation
is incorrectly predicted, both FP and FN are incremented by one:
the incorrect prediction is counted as a false positive for the
predicted orientation and as a false negative for the true orientation.
This approach provides a detailed and fair assessment of the
model’s performance in determining the precise rotational states
of components.

Our experimental results are summarized in Tables IV and V.
Notably, GPT-4o [22] underperformed in generating netlists from
schematic images, failing to surpass both AMSNet [20] and our
proposed method in terms of component and connectivity metrics.
For component metrics, AMSNet [20] employs YOLO [21] to
simultaneously recognize component types and orientations. This
approach resulted in reduced accuracy, recall, and F1 scores for
components, particularly on the “Real Analog Circuits” and “Syn-
thetic Analog Circuits” datasets, thereby compromising the overall
integrity of the generated netlists. AMSNet was not tested on the
“Mixed-Signal Circuits” dataset because it does not support the
broader range of component types required for AMS design.

Focusing on the connectivity metrics, our approach achieved
superior performance compared to AMSNet [20] in all connectivity
metrics: accuracy, precision, recall, and F1 score were improved by
2.4%, 0.4%, 20.7%, and 12.4%, respectively. These improvements
demonstrate the enhanced generalizability of our model, as further
evidenced by our better results on the “Synthetic Analog Circuits”
test dataset. On the “Synthetic Mixed-Signal Circuits” test dataset,
our method also outperformed GPT-4o [22] significantly, which
highlights the inadequacy of large language models in addressing
this problem effectively.

The component orientation metrics presented in Table V demon-
strate that our method outperforms AMSNet across both datasets.
Specifically, our approach achieves higher accuracy, precision,
recall, and F1 scores. This improvement is largely attributed to the
decoupled design of our detection pipeline, which separates com-
ponent detection from orientation recognition. By handling these
tasks independently, specialized models can optimize each task
more effectively. This separation minimizes confusion caused by
visually similar components with different orientations, a challenge
that AMSNet faces due to its simultaneous handling of detection
and orientation classification.

In summary, the experimental results demonstrate that our pro-
posed approach, Netlistify, achieves superior accuracy in all aspects
when transforming schematic images into netlists, outperforming
state-of-the-art methods. It shows great potential for AMS design



TABLE I
DATASET OF SYNTHETIC AMS SCHEMATIC IMAGES FEATURING VARIOUS TYPES OF AMS COMPONENTS.

Dataset Image GND PMOS NMOS PNP NPN Resistor Capacitor Inductor

Synthetic AMS Circuits 40000 134002 15768 15902 15739 15770 15736 15721 15883

Dataset Diode AND OR XOR INV FUNC OP TG

Synthetic AMS Circuits 15621 63339 47740 15995 15718 15684 15854 15956

TABLE II
DATASET OF ANALOG SCHEMATIC IMAGES EXTRACTED FROM FIVE TEXTBOOKS, FEATURING ONLY BASIC ANALOG DEVICE COMPONENTS.

Textbook Image GND PMOS NMOS PNP NPN Resistor Capacitor Voltage source Current source

[26] 13 26 18 21 2 5 12 6 0 11
[27] 37 57 3 22 3 64 80 12 27 25
[28] 44 67 105 122 0 13 35 7 8 30
[29] 51 60 184 206 2 4 27 39 2 24
[30] 214 392 252 443 9 0 273 77 16 68

Total 359 602 562 814 16 86 427 141 53 158

TABLE III
TEST DATASET

Test Dataset Image GND PMOS NMOS PNP NPN Resistor Capacitor Inductor Voltage source Current source

Real Analog Circuits 61 93 71 109 5 19 79 22 0 16 25
Synthetic Analog Circuits 800 1562 1191 1199 0 0 1183 1178 1176 0 0
Synthetic Mixed-Signal Circuits 1500 5002 587 598 605 572 553 609 622 0 0

Test Dataset Diode AND OR XOR INV FUNC OP TG

Synthetic Mixed-Signal Circuits 618 2382 1155 599 593 653 635 596

TABLE IV
EXPERIMENTAL RESULTS ON THREE TEST DATASETS: REAL ANALOG CIRCUITS [26]–[30], SYNTHETIC ANALOG CIRCUITS, AND SYNTHETIC MIXED-SIGNAL
CIRCUITS. COMPARISON OF COMPONENT DETECTION ACCURACY, CONNECTIVITY ACCURACY, PRECISION, RECALL, AND F1 SCORE ACROSS THREE DIFFERENT

METHODS: GPT-4O [22], AMSNET [20], AND OUR PROPOSED APPROACH.

Dataset Method
Component Metrics (%) Connectivity Metrics (%)

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

Real Analog Circuits [26]–[30]

GPT-4o [22] 90.3 98.7 91.3 94.1 86.9 56.2 34.1 40.0
AMSNet [20] 99.1 100.0 99.1 99.5 96.2 95.9 70.4 81.2

Netlistify [This Work] 99.7 100.0 99.7 99.7 98.6 96.3 91.1 93.6

Synthetic Analog Circuits

GPT-4o [22] 77.4 94.1 90.8 86.3 83.4 51.1 26.4 32.7
AMSNet [20] 96.2 100.0 96.2 98.1 86.5 72.3 29.5 41.9

Netlistify [This Work] 100.0 100.0 100.0 100.0 91.2 80.1 81.0 77.2

Synthetic Mixed-Signal Circuits
GPT-4o [22] 72.2 88.4 77.1 81.8 80.9 15.8 4.6 6.6

Netlistify [This Work] 100.0 100.0 100.0 100.0 92.9 83.3 77.1 78.4

TABLE V
COMPARISON OF COMPONENT ORIENTATION METRICS BETWEEN AMSNET [20]

AND OUR PROPOSED METHOD.

Dataset Method Component Orientation Metrics (%)

Accuracy Precision Recall F1 Score

Real AMSNet [20] 93.7 97.4 95.1 96.0
Analog Circuits Netlistify 99.4 99.7 99.5 99.6

Synthetic AMSNet [20] 97.7 98.9 98.4 98.6
Analog Circuits Netlistify 100.0 100.0 100.0 100.0

data collection, enabling the application of ML and LLMs for AMS
EDA.

V. CONCLUSIONS

In this work, we presented Netlistify, a novel deep learning-
based approach for transforming schematic images into netlists,
addressing key challenges in AMS circuit data collection from

literature. Our methodology features separating component de-
tection from orientation recognition, which significantly enhances
accuracy by leveraging specialized models for each task. Addition-
ally, we proposed a Transformer-based framework for connectivity
analysis, effectively capturing both local and global relationships
within schematics to ensure precise wire segment detection and
connectivity extraction. Experimental evaluations on both synthetic
and real-world datasets demonstrated that Netlistify outperforms
state-of-the-art methods, achieving superior accuracy in compo-
nent detection, orientation recognition, and connectivity analysis.
Furthermore, our method supports a broader range of component
types, making it versatile for AMS design workflows. By enabling
reliable schematic interpretation and netlist generation, Netlistify
shows great promise for advancing AMS design data collection
and facilitating seamless integration into modern electronic design
automation (EDA) systems.
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APPENDIX

A. Abstract
This artifact contains the complete setup, codebase, and pre-

trained models for replicating the experimental results of Netlistify,
a modular deep learning framework designed to convert analog
and mixed-signal (AMS) circuit schematics into SPICE/HSPICE-
compatible netlists. Netlistify integrates YOLOv8 for component
detection, ResNet for orientation classification, and a modified
DETR Transformer for precise wire detection and connectivity
analysis.

The package includes scripts for preprocessing schematic im-
ages, training and evaluating model components, as well as syn-
thetic datasets. With the provided preprocessing scripts, synthetic
datasets, and pre-trained models, Netlistify enables accurate, end-
to-end schematic interpretation and netlist reconstruction out-of-
the-box. All necessary assets to run inference and evaluate the
method are publicly available.

B. Description
A.2.1 Check-List (meta-information)

• Program: Netlistify
• Compilation: Python 3.11 with PyTorch 2.7.1
• Binary: Python scripts and Jupyter notebooks
• Model: YOLOv8 + ResNet + Transformer
• Dataset: Synthetic schematics generated via Synopsys Custom

Compiler
• Run-time environment: Ubuntu 24.04, CUDA 12.2
• Hardware: NVIDIA GPU 24+ GB VRAM, 64+ GB RAM
• Output: Predicted SPICE netlists
• Experiments: See Section C
• How much disk space required (approximately)?: 30GB
• How much time is needed to complete experiments (approxi-

mately): 2 days
• Publicly available?: Yes (via GitHub)

A.2.2 How to access
Our source code are available on Github: https://github.com/

NYCU-AI-EDA/Netlistify

A.2.3 Hardware dependencies
• A modern Intel CPU (e.g., Core i5 or above)
• An NVIDIA GPU with a minimum of 24 GB VRAM is recommended

for efficient training and inference

A.2.4 Software dependencies
• Linux-based operating system (Ubuntu recommended)
• Python 3.11
• PyTorch 2.7.1

A.2.5 Datasets

Synthetic AMS Circuits: 100,000 images auto-generated with
over 15 different component classes (e.g., PMOS, NMOS, OPAMP)

C. Experiment workflow

After successfully cloning and installing the required dependen-
cies from our repository, the complete experiment pipeline can be
executed with the following command:

$ python main.py

As the process runs, progress and intermediate results (e.g., best
training and validation checkpoints) are saved to the designated
output directory. The exact paths to these outputs are clearly
displayed in the terminal, ensuring traceability and facilitating easy
access for inspection, evaluation, or debugging purposes.

D. Evaluation and expected results

Once you have finished the training, you can then run:

$ python inference.py

Some demonstration images (data/test_images) can be used
to validate the pipeline that generates the correct SPICE netlists.
All outputs are given in the folder results.

E. Experiment customization

Key parameters (e.g., number of components, model checkpoint
paths, image resolution) are configured in main_config.py.

F. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-and-badging-current
• http://cTuning.org/ae/submission-20201122.html
• https://github.com/ml-eda/artifact-evaluation/


